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Abstract

We address the challenge of generating fair and unbiased image retrieval results
given neutral textual queries (with no explicit gender or race connotations), while
maintaining the utility (performance) of the underlying vision-language (VL)
model. Previous methods aim to disentangle learned representations of images and
text queries from gender and racial characteristics. However, we show these are
inadequate at alleviating bias for the desired equal representation result, as there
usually exists test-time bias in the target retrieval set. So motivated, we introduce a
straightforward technique, Post-hoc Bias Mitigation (PBM), that post-processes
the outputs from the pre-trained vision-language model. We evaluate our algorithm
on real-world image search datasets, Occupation 1 and 2, as well as two large-
scale image-text datasets, MS-COCO and Flickr30k. Our approach achieves the
lowest bias, compared with various existing bias-mitigation methods, in text-based
image retrieval result while maintaining satisfactory retrieval performance. The
source code is publicly available at https://github.com/timqqt/Fair_Text_
based_Image_Retrieval.

1 Introduction

Image search on the web based on text-based image retrieval (TBIR) (Lew et al., 2006) involves
interpreting a user’s (text) query and returning corresponding images that are considered relevant
in terms of semantic meaning (Chen et al., 2015). With recent advancements in multi-modal
representation learning, Vision-Language (VL) models such as CLIP have been widely used to
enhance the efficacy of text-based image retrieval (Radford et al., 2021; Cao et al., 2022). These
models are usually trained on vast datasets that consist of millions of text-image pairs scrapped from
the web, which inevitably manifest societal biases especially for neutral queries (Wang et al., 2021a;
Hall et al., 2023; Wang et al., 2021b), i.e., queries without explicit demographic (gender or race)
connotations. In Figure 1, we show image retrieval results for the neutral query “Bus Driver” using
CLIP and an unbiased alternative delivered by the proposed approach.

In our work, we adhere to equal representation as our fairness objective (Mehrotra and Celis, 2021;
Kay et al., 2015), as an alternative to proportional representation (Jalal et al., 2021; Berg et al., 2022).
The latter, which aligns the demographic proportions in the retrieval results with those in the dataset,
which is susceptible to biases during collection (Kay et al., 2015). Instead, equal representation for
all demographic groups of interest attempts to mitigate (obscure) the influence of any inherent biases.

Previous works have been dedicated to developing unbiased VL models that promote fairness in
TBIR tasks (Wang et al., 2021a; Berg et al., 2022; Wang et al., 2022; Kim et al., 2023; Chuang
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Figure 1: Text-based image retrieval (TBIR) results of a neutral query. Right: all returned images are
male bus drivers, possibly pushing the message that only men (can) perform this job. Left: desirable
unbiased result with equal gender representation obtained by the proposed PBM approach.

et al., 2023; Parraga et al., 2022). Berg et al. (2022) leveraged adversarial training for debiasing
in which a learnable prompt is prepended to the input text queries, while an adversary seeks to
discourage the image and text encoders from capturing gender or race information for retrieval.
Alternatively, Wang et al. (2021a) discarded the components of the visual and text representations that
are highly correlated with gender, by estimating the mutual information between these components
and gender attributes. Further, Wang et al. (2022) neutralized the gender contributions in image
representations by enforcing equal contributions from gender (male and female) features using a
bias contrast loss, while maximizing the contribution of gender-irrelevant features. These studies
largely rely on demographic attributes that can be somewhat visually perceived. For instance, gender
attributes are derived from perceived characteristics of masculinity or femininity, leading to labels
such as “Male” or “Female”. Similarly, race-related attributes are often characterized based on skin
tones and typically categorized into groups such as “Fair Skin” and “Dark Skin” (Kay et al., 2015;
Celis and Keswani, 2020). However, these methods primarily focus on debiasing the gender or
race encoding within VL models, which may be insufficient due to bias or imbalance in the image
retrieval candidate pool (test set). In contrast, though we also mitigate bias in TBIR using the same
demographic attribute annotations as other works, the proposed solution is simpler in the sense that it
forgoes the need for access to gradients or retraining the VL model.

In this paper, we start Section 3.1 by defining the text-based image retrieval task in the context of
a fairness objective focused on equal representation. We then analyze the effectiveness of existing
bias reduction methods in Section 3.4 and demonstrate how they fall short in achieving equal
representation, mainly due to imbalances in the test-time image retrieval set. Based on this observation,
in Section 3.5 we propose a simple yet effective post-processing debiasing method called post-hoc
bias mitigation (PBM) that creates fair retrieval subsets guided by predicted gender (or race) attributes
obtained from either an off-the-shelf gender (or race) classifier or zero-shot inference using a pre-
trained VL model. In Section 4, we evaluate PBM on real-world web image search (Kay et al., 2015;
Celis and Keswani, 2020) and large-scale image-text datasets such as MS-COCO (Chen et al., 2015)
and Flickr30K (Plummer et al., 2015). By comparing our approach to various existing bias-mitigation
techniques, we show that our method achieves the lowest bias while maintaining satisfactory retrieval
performance, as evidenced by both quantitative and qualitative results. Importantly, PBM strives to
provide a more unbiased, fair and diverse visual representation of different groups in search results,
ultimately promoting social welfare by challenging existing social perceptions of gender and race.

The summarized contributions of this work are:

• We present an analysis of the effect of existing debiasing methods on VL models, and highlight
their insufficiency in achieving equal representation for text-based image retrieval.

• We propose PBM, a straightforward and efficient test-time post-processing debiasing algorithm
that generates fair retrieval subsets, guided by predicted gender/race information obtained from
an off-the-shelf classifier or inferred via zero-shot using the VL model itself.

• We evaluate PBM on two real-world web image search and two large-scale image-text datasets
for text-based image retrieval, and compare with existing bias-mitigation techniques, demon-
strating its effectiveness in achieving the lowest bias among all tested methods.
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2 Related work

Text-based image retrieval Text-based image retrieval is the process of searching and retrieving
images from a large database using textual descriptions or keywords as queries. The task is usually
tackled by image-text feature alignment (Cao et al., 2022), which embeds image and text inputs
into a shared feature space such that relevant image and text features are close to each other. In
recent years, substantial progress has been made due to the emergence of large-scale datasets, as well
as the development of effective deep learning-based image-text models. Pioneering works include
DeViSE (Frome et al., 2013), which bridges the semantic gap between image content and textual
descriptors by aligning CNN-based features of images with textual embeddings from ImageNet labels.
Subsequent approaches, such as VSE++ (Faghri et al., 2017) and SCAN (Lee et al., 2018), further
refine these joint embeddings to improve retrieval performance. Recently, OpenAI’s CLIP (Radford
et al., 2021) has emerged as a powerful approach for image retrieval based on similarity matching
between extracted image and text features. CLIP leverages a pre-trained transformer model, jointly
optimized for both image and text understanding, which allows it to effectively match images and
textual descriptions.

Fairness in machine learning Recent studies have highlighted numerous unfair behaviors in
machine learning models (Angwin et al., 2016; Buolamwini and Gebru, 2018). For example, a risk
assessment algorithm used in the United States criminal justice system predicted that Black defendants
were more likely to commit future crimes than white defendants, even after controlling for criminal
record (Angwin et al., 2016). Moreover, individuals with different gender and skin-tones are likely to
receive disparate treatment in commercial classification systems such as Face++, Microsoft, and IBM
systems (Buolamwini and Gebru, 2018). Consequently, there has been a surge in demand and interest
for developing methods to mitigate bias, such as regularizing disparate impact (Zafar et al., 2015) and
disparate treatment (Hardt et al., 2016), promoting fairness through causal inference (Kusner et al.,
2017), and incorporating fairness guarantees in recommendations and information retrieval (Beutel
et al., 2019; Morik et al., 2020).

Fairness in vision-language models After some studies revealed the bias of using VL models
in downstream tasks (Wang et al., 2021a; Hall et al., 2023; Wang et al., 2021b), efforts to address
and mitigate these biases in VL models have gained increasing attention. Existing solutions for
fair vision-language models can be generally classified into pre-processing, in-processing, and post-
processing methods. Pre-processing techniques usually involve re-weighting or adjusting the training
data to counter imbalances across demographic attributes, while preserving the utility of the dataset
for the target task (Friedler et al., 2014; Calmon et al., 2017). In-processing methods focus on
altering the training objective by incorporating fairness constraints, regularization terms or leveraging
adversarial learning to obtain representations invariant to gender/race (Berg et al., 2022; Wang et al.,
2023; Xu et al., 2021; Cotter et al., 2019). Post-processing approaches achieve fairness by applying
post-hoc corrections to a (pre-)trained model (Cheng et al., 2021; Calmon et al., 2017) or via feature
clipping (Wang et al., 2021a) on the output of image-text encoders based on mutual information.

Our work lies in the post-processing category of debiasing methods that encourages equal repre-
sentation of diverse demographics. We also identified the fair subset selection approach used in
Mehrotra and Celis (2021) as a potential post-hoc debiasing method for TBIR. While Mehrotra
and Celis (2021) shares our goal of ensuring equality of gender/race attributes in the set of results,
their focus did not extend to the TBIR scenario with an underlying VL model nor detail an effective
method for obtaining accurate demographic attributes for debiasing. More importantly, they assumed
demographic attributes seen by their algorithm to be available ground truth labels subject to noise.
This assumption creates difficulties when attempting to adapt their method to a real-world problem
such as TBIR. Complementary, our approach is meant to address these deficiencies by providing a
practical debiasing procedure, that includes acquiring demographic attributes.

Gender/Racial Bias in Web Image Search Our research is closely related to studies in the Human
Computer Interaction community that demonstrated gender inequality issues in current online image
search systems (Kay et al., 2015; Noble, 2018; Celis and Keswani, 2020). These studies revealed how
gender bias in occupational image search results influences people’s perceptions about the presence
of men and women in various professions. Our work builds upon these findings by examining the
gender and racial bias in image search algorithm and offering innovative solutions for reducing bias in
popular image retrieval framework using pre-trained VL model, such as CLIP (Radford et al., 2021).
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3 Method

3.1 Problem formulation

Image retrieval Suppose C is the set of all text queries of interest (gender-neutral defined below),
andV = {𝑣𝑖}𝑁𝑖=1 is a database of 𝑁 images, from which we retrieve images given query inputs. Each
query input 𝑐 ∈ C is relevant to a ground-truth set of images 𝑉∗𝑐 ⊆ V provided by human annotators.

The text-based image retrieval task aims at finding images from the database so they best match the
text query inputs. Specifically, given any text query 𝑐 ∈ C and a fixed retrieval size 𝐾 (𝐾 ≪ 𝑁) as
inputs, the goal is to design an algorithm that returns a bag of 𝐾 images 𝑉𝑐,𝐾 ⊆ V, where |𝑉𝑐,𝐾 | = 𝐾 ,
such that 𝑉𝑐,𝐾 contains as many relevant images from 𝑉∗𝑐 as possible.

For evaluation purposes, a top-𝐾 recall score (“Recall@𝐾”) is usually computed to quantify whether
the most relevant images are included in the retrieval output. Specifically, we write

Recall@𝐾 =

∑
𝑐∈C |𝑉𝑐,𝐾 ∩𝑉∗𝑐 |∑

𝑐∈C |𝑉∗𝑐 |
× 100%,

where 𝐾 is selected specifically for each dataset so that |𝑉∗𝑐 | ≤ 𝐾 for most queries 𝑐 ∈ C; this way,
the recall can be realistically close to 100%.

Debiasing in image retrieval Using gender as a motivating scenario, we are interested in gender
debiasing in cases where queries relate to human characteristics with no gender connotations, which
we refer to as gender-neutral queries. For example, queries could be occupations that are widely open
to all individuals, irrespective of gender (Organization, 2019), such as chef, nurse, social worker, etc.

We anticipate that gender-neutral queries should yield image retrieval sets that comprise equal
representation of both male and female associated images, i.e., in a 1:1 ratio, which is consistent with
the equal representation goal discussed by Wang et al. (2021a, 2023); Mehrotra and Celis (2021);
Mehrotra and Vishnoi (2022). Note that we use gender debiasing as an example, but the same setting
can be generalized to other debiasing issues such as racial discrimination, as we will demonstrate in
the experiments.

Specifically, assume each image 𝑣 ∈ V has a gender attribute 𝑔(𝑣) ∈ {+1,−1}, which corresponds
to the two genders manifested in the image, male and female, respectively. For each gender-neutral
query 𝑐, the gender bias of the resulting retrieved bag of images 𝑉𝑐,𝐾 is defined as the normalized
absolute difference between the numbers of images of each gender, i.e.,

𝐵(𝑉𝑐,𝐾 ) =
1
𝐾

������ ∑︁
𝑣∈𝑉𝑐,𝐾

1{𝑔(𝑣) = +1} −
∑︁

𝑣∈𝑉𝑐,𝐾
1{𝑔(𝑣) = −1}

������ = 1
𝐾

������ ∑︁
𝑣∈𝑉𝑐,𝐾

𝑔(𝑣)

������ , (1)

which ranges from 1
𝐾

mod(𝐾, 2) (minimum bias) to 1 (maximum bias). In our retrieval approach, we
average 𝐵(𝑉𝑐,𝐾 ) across all gender-neutral queries 𝑐 ∈ C as an evaluation metric for fairness, i.e.,

AbsBias@𝐾 =
1
|C|

∑︁
𝑐∈C

𝐵(𝑉𝑐,𝐾 ) =
1
|C|

∑︁
𝑐∈C

1
𝐾

������ ∑︁𝑣∈𝑉𝑐
𝐾

𝑔(𝑣)

������ .
The goal is to minimize AbsBias@𝐾 while maintaining a satisfactory retrieval Recall@𝐾 .

3.2 Similarity-based image-text matching

Overall framework As in previous works (Singh et al., 2003; Bai et al., 2014; Zaidi et al., 2019;
Cao et al., 2022; Mukhoti et al., 2022), we use a similarity matching approach to tackle the image
retrieval task. Such an approach involves aligning image and text features from largely pre-trained
vision and language models during training time. At inference time, we rank images based on whether
their features are similar to the input query text features and use the top-ranked images as our retrieval
output. Specifically, we use an image encoder network 𝑓𝜙 (·) and a text encoder network 𝑓𝜓 (·) to
embed both image 𝑣 and text 𝑐 inputs into a shared 𝑑-dimensional feature space as 𝑓𝜙 (𝑣), 𝑓𝜓 (𝑐) ∈ R𝑑 .
A cosine similarity score 𝑆(𝑣, 𝑐) is then computed to quantify the relevance between 𝑣 and 𝑐 (Singh
et al., 2003; Bai et al., 2014; Wang et al., 2021a).
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Training As in previous works (Chen et al., 2020; Radford et al., 2021), the training of the image
and text encoders is achieved through optimizing an NT-Xent (Normalized Temperature-scaled Cross
Entropy) loss with stochastic gradient descent on mini-batches.

Inference Given a new image databaseV test, for each new query input 𝑐 ∈ Ctest, we compute its
similarity score 𝑆(𝑣𝑖 , 𝑐) with every image 𝑣𝑖 ∈ V test and then pick the top-𝐾 images that have the
maximum similarity scores to form our retrieved set 𝑉𝑐,𝐾 .

3.3 Fairness criterion for image retrieval

Fairness can be defined in numerous ways in favor of different situation (Saxena et al., 2020). In the
context of fair image retrieval (Wang et al., 2021a; Berg et al., 2022), we define our fairness objective
as equal representation, implying that the retrieved image set through the retrieval algorithm should
encompass an equal number of samples from each demographic group. We formally define our
criterion as follows:

Definition 3.3.1 (Equal Representation) An image retrieval algorithm satisfies equal representa-
tion with respect to binary demographic attributes 𝑔(𝑣) if,

E𝑉𝑐∼𝑃 [E𝑣 [1(𝑔(𝑣) = +1)]] = E𝑉𝑐∼𝑃 [E𝑣 [1(𝑔(𝑣) = −1)]]

where 𝑃 represents the distribution of retrieved image set 𝑉𝑐 corresponding to neutral queries 𝑐.

The above definition implies E[𝐵(𝑉𝑐)]𝑉𝑐∼𝑃 = 0, i.e., the expected bias is zero for any retrieved
image sets. Our definition of equal representation is equivalent to “Equal opportunity for ranking
distributions” introduced by Singh and Joachims (2017) when ranking position bias is constant.

3.4 Bias analysis

Using the image retrieval framework defined above as a basis, it is important to incorporate strategies
to reduce gender (and race) biases of the retrieval output 𝐵(𝑉𝑐,𝐾 ). Below, we briefly analyze existing
methods and discuss their limitations.

Existing methods Most methods address the gender fairness issue by enforcing model features
to be less dependent on gender information. This is achieved by mainly two types of approaches,
namely adversarial training (Edwards and Storkey, 2015; Berg et al., 2022; Xu et al., 2021) and
mutual information (MI) minimization (Wang et al., 2021a, 2023). Specifically, adversarial training
involves training a separate (adversarial) classifier network by adding an adversarial loss so that
the adversarial network cannot distinguish gender given the encoded image features (Edwards and
Storkey, 2015; Berg et al., 2022; Xu et al., 2021). Alternatively, MI minimization aims at reducing
the MI between feature distribution and their gender by clipping feature dimensions highly correlated
with gender (Wang et al., 2021a). Both methods encourage the model to extract features that are
independent of gender. However, we argue below that enforcing this kind of independence between
image features and gender is not sufficient to effectively eliminate gender bias in image retrieval.
Illustrative example We start by showing debiasing results using mutual information minimization.
Similar insights can be obtained via adversarial training, which is shown in the Supplementary
Material (SM). Figure 2 shows an example for the query “engineer” comparing three methods,
namely, CLIP (no debiasing), MI-based debiasing and the proposed PBM (described below). For
each method, we first compute, sort and group the similarity scores of all images into 1% quantiles
(∼ 30 images each). Then, for each quantile, we compute the gender bias as defined in (1). This
analysis shows the relationship between gender bias and similarity scores. Note that for retrieval,
we use samples with the largest similarity scores to form our retrieved bag of images, thus only the
right-most data points (highlighted in the figure) are part of the retrieval set. We show percentiles in
the figure to emphasize similarity rank rather than the similarity scores per se.

As shown in Figure 2(a), the original image retrieval algorithm with no debiasing based on CLIP
tends to assign higher scores (at larger percentiles) to samples associated with male attributes, as
evidenced by the high correlation between gender and the similarity scores. This makes the final
retrieval output largely biased towards male samples. In contrast, Figure 2(b) shows the result of
debiasing via MI minimization (Wang et al., 2021a). Using the regression line as a visual guide, we

5



0 25 50 75 100
Similarity score percentile

1

0

1

Ge
nd

er
 b

ia
s

(a) CLIP (no debiasing)

0 25 50 75 100
Similarity score percentile

1

0

1

Ge
nd

er
 b

ia
s

(b) MI debiasing

0 25 50 75 100
Similarity score percentile

1

0

1

Ge
nd

er
 b

ia
s

(c) PBM
Figure 2: Gender bias distribution for different methods using “engineer” as query. We compute
similarity scores for all images from the test image set and plot them against gender bias in 1%
quantile increments. The red circle marks the top-𝐾 window covering the final retrieval output 𝑉𝑐,𝐾 .
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(a) CLIP (no debiasing)
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(c) PBM
Figure 3: Comparing top-100 retrieval gender bias with full set similarity gender bias Spearman’s
correlation. For each query (occupation), we visualize the correlation between similarity score
and gender bias against the top-100 retrieval gender bias. Two typical examples: “engineer“ and
“administrative assistant” are highlighted for illustration.

see that the correlation between gender and similarity score is close to zero. However, the gender
bias is consistently larger than zero across the range of similarity scores, so the final retrieval is still
biased. A desirable debiasing outcome is that for which the regression line aligns with the dotted line
(zero gender bias across the similarity range), as shown in Figure 2(c). This is accomplished by the
proposed PBM (described below).

Example with multiple queries In order to get a more generalizable understanding of the behavior
shown in Figure 2, we repeat the analysis with all 45 occupations from the dataset provided by Kay
et al. (2015) and visualize the results in Figure 3. Specifically, for each query (occupation), we
calculate the Spearman’s rank correlation between all (test-set) similarity scores and gender bias
similar to Figure 2. We use Spearman’s rank correlation because it is more appropriate to quantify
associations between (variable) rankings. Moreover, we also calculate the gender bias of the final
retrieval bag (𝐾 = 100) for each occupation. Consistent with the illustrative findings on the “engineer”
query, in Figure 3(a), we see a large correlation between similarity scores and gender bias as well as
a large retrieval-set gender bias. MI minimization in Figure 3(b) manages to reduce the correlation
between similarity score and gender but suffers from considerable gender bias; mostly clustered
around 0.4. The proposed PBM not only reduces the correlation between similarity scores and gender
bias but also significantly pushes the bias of each retrieval result to zero, which is the sought target
debiasing outcome.

Insights Our observations can be explained and understood from a theoretical perspective. Previous
methods are mostly concerned with making their image features independent of gender information.
For a fixed query 𝑐, suppose we sample a random image from the test image data distribution
𝑣 ∼ V test, its feature distribution 𝑓𝜙 (𝑣) is independent of gender distribution 𝑔(𝑣). Since the query
feature 𝑓𝜓 (𝑐) is constant, the similarity score 𝑆(𝑣, 𝑐), defined in Section 3.2, is a deterministic
function of 𝑓𝜙 (𝑣) and is thus also independent of gender 𝑔(𝑣). This is why the results for MI-based
unbiasing shown in Figure 2(b) and 3(b) show little correlation between similarity scores and gender
bias. Similar results for debiasing with adversarial learning can be found in the SM.

However, as shown in Figure 2(b), there is still a consistent gender bias across similarity score values.
This means that the gender distribution in each window tends to manifest the gender distribution of
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Algorithm 1 Post-hoc Bias Mitigation (PBM).
Input: Text query 𝑐, retrieval size 𝐾, image database V test, similarity measure from pre-trained
vision-language models 𝑆(·, ·), and gender prediction model �̂�(·).
Output: Image retrieval bag 𝑉𝑐,𝐾 .

1: SplitV test intoV test
+1 ,V test

−1 andV test
N/A using the gender prediction model �̂�(·);

2: Let 𝑉𝑐,𝐾 = ∅;
3: while |𝑉𝑐,𝐾 | < 𝐾 do
4: 𝑣+1 = arg max

𝑣∈V test
+1

𝑆(𝑣, 𝑐); 𝑣−1 = arg max
𝑣∈V test

−1

𝑆(𝑣, 𝑐); 𝑣N/A = arg max
𝑣∈V test

N/A

𝑆(𝑣, 𝑐);

5: if [𝑆(𝑣+1, 𝑐) + 𝑆(𝑣−1, 𝑐)] /2 > 𝑆(𝑣N/A, 𝑐) then
6: 𝑉𝑐,𝐾 ← 𝑉𝑐,𝐾 ∪ {𝑣+1, 𝑣−1}; V test

+1 ←V
test
+1 \ {𝑣+1}; V test

−1 ←V
test
−1 \ {𝑣−1};

7: else
8: 𝑉𝑐,𝐾 ← 𝑉𝑐,𝐾 ∪ {𝑣N/A}; V test

N/A ←V
test

N/A \ {𝑣N/A};
9: end if

10: end while
11: return 𝑉𝑐,𝐾

the whole test image setV test, which may not be balanced. This is also confirmed in Figure 3(b), as
the final output bias of most occupations is clustered around 0.4, which is precisely the gender bias of
the entire image setV test. Therefore, ensuring independence, quantified here in terms of correlation,
between image features and gender may not guarantee zero gender bias if the test image set itself is
biased due to imbalance.

Two types of bias From the examples above, we can differentiate two types of bias, namely,
the model bias from training and the bias from the test-time image distribution. The former can
be quantified based on the correlation between similarity score and gender and only depends on
the training data distribution and the way in which the model is trained. This has been previously
described and studied (Caliskan et al., 2017; Zhao et al., 2017). In comparison, the latter type of bias
manifests in the test phase because the test image set (the database from which we retrieve images)
does not necessarily have commensurate numbers of male and female samples. We refer this type of
bias as test-time bias. In fact, such proportions are usually unknown for image databases.

These two sources of bias coexist and can be addressed separately during model training and inference.
Previous methods (Edwards and Storkey, 2015; Wang et al., 2021a; Berg et al., 2022) have been
fairly successful at addressing the first type of bias on the training side, but neglect the test-time bias
that is specific to the test set. To tackle the test-time bias, it is necessary to find a strategy targeting
the test image set, so that the retrieved image genders are balanced despite the gender imbalance in
the training (source) set. This very insight motivates our approach called PBM, which we describe
below. As previously shown in Figures 2(c) and 3(c), PBM achieves substantially smaller retrieval
gender bias than MI debiasing. Other existing approaches will be considered in the experiments.

3.5 Post-hoc Bias Mitigation (PBM)

To address the second type of bias induced by the imbalanced image test set, one simple idea is
sub-sampling. Specifically, we could first sub-sample the image set to make sure its gender ratio is
balanced before doing retrieval. However, a clear limitation of such an approach is that some highly
relevant images may be dropped during sub-sampling, which may negatively affect retrieval quality.
This problem is especially exacerbated if the test set has a very large gender bias. Alternatively,
our intuition is to sub-sample after computing and ranking similarity scores of all images using a
post-hoc method to control gender bias while sampling from the image source set, which we call
Post-hoc Bias Mitigation (PBM).

A general version of the PBM algorithm, which is straightforward, is presented in Algorithm 1. For
each image 𝑣𝑖 ∈ V test, we first predict its gender �̂�(𝑣𝑖) ∈ {+1,−1}, which splits the images into
two subsets, V test

+1 and V test
−1 . We then rank images from the two subsets based on their similarity

scores separately. While forming the retrieval bag, we sample the top of both subsets together in
pairs. Specifically, we select the top ⌊𝐾/2⌋ samples from each subset. If 𝐾 is odd, we randomly pick
one of the subsets and select one more top sample from it. This method ensures low gender bias of
the retrieval output as long as gender predictions �̂�(𝑣𝑖) are accurate.
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One extension of our method considers the case where gender may not be applicable to some images.
For instance, our image dataset may contain cartoon characters that are not easily associated with any
gender, or maybe the gender cannot be determined from the image due to body or facial coverings. In
this case, we allow our gender predictions to take N/A values, yielding aV test

N/A subset. Images from
V test

N/A do not inherently exhibit visually perceptible bias. Thus, they could be selected in favor of
other male-female pairs if their similarity scores are higher and are exempt from bias measurement.

Gender prediction To predict gender �̂�(𝑣), we consider the following two methods for different
scenarios. Note that all options are considered in the experiments.

Supervised gender classification: For scenarios where ground-truth gender attributes are available,
such as MS-COCO (Lin et al., 2014; Zhao et al., 2021), we can train a complementary small gender
classification network. Using our encoded image feature 𝑓𝜙 (𝑣) as input, we train a 3-layer MLP to
classify gender. For datasets where gender may not be applicable to some samples, we add a N/A
class to the set of labels for predictions.

Zero-shot inference using word embeddings or prompt: For scenarios where supervised training
of gender is not possible, we can infer gender in a zero-shot manner (Radford et al., 2021; Li
et al., 2022) using the implicit knowledge embedded in the text features of large pre-trained vision-
language models (Radford et al., 2021; Li et al., 2022). Given that the semantics of gender and race
attributes are already incorporated into the text encoder, we can extract them from word embeddings
using words such as “Man” and “Woman”. Alternatively, we could use prompts prepended to the
occupation search query. For example, we add gender-specific adjectives like “Male” or “Female”
in front of a query. Finally, we compute the (cosine) similarity score of each image 𝑣 with them, i.
e., 𝑆(𝑣, “Male ” + c), 𝑆(𝑣, “Female ” + c). The plus operator (+) here refers to string concatenation.
The gender prediction �̂�(𝑣) is then generated by comparing these two similarity scores.

4 Experiments

We first evaluate our image retrieval algorithm on two real-world web image search datasets, Occupa-
tion 1 (Kay et al., 2015) and Occupation 2 (Celis and Keswani, 2020). We also test on two large-scale
image-text datasets, MS-COCO (Lin et al., 2014) and Flickr30k (Plummer et al., 2015) to further
validate the effectiveness of PBM in handling more complex text-based image retrieval scenarios.

For comparison, we consider adversarial training (Edwards and Storkey, 2015; Berg et al., 2022)
and mutual information minimization (Wang et al., 2021a) as baseline methods. We also include
other types of debiasing methods such as FairSample (Wang et al., 2021a), which balances the gender
distribution of image-text pairs within a training batch, and FairExpec (Mehrotra and Celis, 2021), a
denoised selection algorithm designed to select fair subset based on noisy demographic attributes.
We use AbsBias@KK and Recall@KK as evaluation metrics as described in Section 3.1.

Real-world web image search The first dataset, which we refer to as Occupation 1 (Kay et al.,
2015), comprises the top 100 Google image search results for 45 gender-neutral occupation terms,
such as “chef”, “librarian”, “primary school teacher”, etc. Each image within this dataset is annotated
with a crowd-sourced gender attribute (either “male” or “female”) that characterizes the person
depicted in the image. Occupation 2 (Celis and Keswani, 2020), the second dataset, includes the
top 100 Google image search results for 96 occupations, where both gender and race (represented
as skin-tone: fair and dark skin) annotations are provided. Notably, the gender and race attributes
also include a N/A category in Occupation 2, where the annotators have chosen the option of “Not
applicable” or “Cannot determine” for the gender or skin-tone represented in the image. Consequently,
we treat the images labeled with N/A as neutral examples that do not contribute to the bias of retrieval,
since in principle, the users cannot perceive gender or racial information from the image.

For these two datasets, we consider OpenAI’s CLIP ViT-B/16 (Radford et al., 2021) as the VL model
for all debiasing methods. The baselines for comparison are MI-clip from Wang et al. (2021a),
adversarial training adapted from Edwards and Storkey (2015), and Debias Prompt from Berg et al.
(2022). We have also tailored FairExpec (not originally proposed for TBIR) to our task by integrating
it with CLIP and our proposed gender predictor �̂�(·). We refer to this adapted model as CLIP-
FairExpec in our experiments. We test our PBM method with four variants of gender predictors �̂�(·),
as discussed in Section 3.5. These variants include a supervised classifier, zero-shot inference, and
ground truth from annotators. The implementation details are provided in the SM.
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Table 1: Results for debiased image retrieval from Occupation 1 and 2 datasets.
Method Occupation 1 - Gender Occupation 2 - Gender Occupation 2 - Race

AbsBias@100 (↓) Recall@100(↑) AbsBias@100(↓) Recall@100(↑) AbsBias@100(↓) Recall@100(↑)
Random Selection .6370 - .3155 - .4171 -
CLIP Original (Radford et al., 2021) .6231 58.3 .3566 46.2 .5002 46.2
MI-clip (Wang et al., 2021a) .3769 47.0 .2539 42.2 .4099 42.3
Adversarial Training (Edwards and Storkey, 2015) .2316 44.0 .2603 37.8 .4880 43.3
Debias Prompt (Berg et al., 2022) .6373 59.3 .3564 46.2 .4946 50.2
CLIP-FairExpec (Mehrotra and Celis, 2021) .2498 47.0 .2619 44.2 .2788 34.7
PBM - Zero-shot Embedding .0969 49.8 .1150 42.1 .3133 40.2
PBM - Zero-shot Prompt .0560 46.1 .0443 42.5 .2571 36.0
PBM - Supervised Classifier .1404 50.3 .1171 42.1 .0955 37.9
PBM - Ground-truth Gender and Skin-tone .0000 49.1 .0000 42.4 .0000 41.3

Table 2: Results for debiased image retrieval from MS-COCO and Flickr30k datasets.
Dataset Method Gender Bias Recall

Bias@1 (↓) Bias@5(↓) Bias@10(↓) Recall@1(↑) Recall@5(↑) Recall@10(↑)

COCO-1k

SCAN (Lee et al., 2018) .1250 .2044 .2506 47.7 82.0 91.0
FairSample (Wang et al., 2021a) .1140 .1951 .2347 49.7 82.5 90.9
CLIP (Radford et al., 2021) .0900 .2024 .2648 48.2 77.9 88.0
MI-clip (Wang et al., 2021a) .0670 .1541 .2057 46.1 75.2 86.0
Our PBM .0402 .0961 .1082 37.3 73.6 84.8

COCO-5k

SCAN (Lee et al., 2018) .1379 .2133 .2484 25.4 54.1 67.8
FairSample (Wang et al., 2021a) .1133 .1916 .2288 26.8 55.3 68.5
CLIP (Radford et al., 2021) .0770 .1750 .2131 28.7 53.9 64.7
MI-clip (Wang et al., 2021a) .0672 .1474 .1611 27.3 50.8 62.0
Our PBM .0492 .1006 .1212 22.3 50.5 61.9

Flickr30K

SCAN (Lee et al., 2018) .1098 .3341 .3960 41.4 69.9 79.1
FairSample (Wang et al., 2021a) .0744 .2699 .3537 35.8 67.5 77.7
CLIP (Radford et al., 2021) .1150 .3150 .3586 67.2 89.1 93.6
MI-clip (Wang et al., 2021a) .0960 .2746 .2951 63.9 85.4 91.3
Our PBM .0360 .1527 .1640 41.2 85.3 92.6

We summarize the experimental results in Table 1. Compared with other methods, PBM variants
achieve significantly lower AbsBias@100 while maintaining comparable Recall@100 scores. The
male:female ratio of images in Occupation 1 is approximately 61:49, thereby mitigating the first type
of bias by MI-clip, adversarial training, debias prompt and random selection is not enough. The CLIP-
FairExpec cannot achieve better results since the FairExpec algorithm relies on the independence
assumption, while the samples in our test dataset are correlated. This happens because images for
occupations are collected from the same Google image search, which is biased. Further, FairExpec
requires reliable probabilistic predictions for gender, however, in our setting the gender attributes are
provided by an off-the-shelf MLP predictor based on visual features. In such a scenario, the label
estimates yielded by the off-the-shelf MLP may not be always trustworthy, as the domain has shifted
during inference. Consequently, these estimates could include misleading information, resulting
in undesirable debiasing outcomes for CLIP-FairExpec. Moreover, it should be noted that Debias
Prompt (Berg et al., 2022) always achieves the highest Recall@100, since we utilize their publicly
accessible model, which has been fine-tuned on the Flickr30k dataset to enhance the performance of
text-based image retrieval.

Large-scale text-based image retrieval We consider MS-COCO (Lin et al., 2014) and
Flickr30k (Plummer et al., 2015). Our setup aligns with Wang et al. (2021a), where the gen-
der attributes are directly inferred from the text captions of images. We consider the same baseline
models as Wang et al. (2021a), which are SCAN (Lee et al., 2018) and CLIP, as well as their proposed
approach, FairSample and MI-clip. It should be noted that FairSample is specifically designed to
debias SCAN, a specialized in-domain VL model. We choose the best performing PBM model, which
leverages the pre-trained classifier for gender attributes.

The performance metrics in Table 2 are consistent with Wang et al. (2021a), which resemble our
AbsBias@𝐾 metric, with the omission of using absolute values in the sum. This bias metric is
computed as Bias@𝐾 = 1

|𝐶 |
∑
𝑐∈𝐶

1
𝐾

∑
𝑣∈𝑉𝑐

𝐾
𝑔(𝑣). From the Table 2, we see that PBM maintains the

bias to a minimum even when dealing with intricate text queries or images of complex scenes.

Bias-performance trade-off analysis In Figure 4, we show the trade-off between retrieval perfor-
mance and bias for MI-clip, adversarial training and the four PBM variants. We choose MI-clip and
adversarial training for comparison, as these models offer implementation simplicity of adjusting
trade-off between AbsBias@100 and Recall@100. For PBM, we introduce a trade-off parameter
through a stochastic variable representing the probability of opting for a fair subset at any given
time, as opposed to merely selecting the image with the highest similarity score. Additional details
about this experiment are provided in the SM. Our results indicate that in a range of relatively high
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Figure 4: Trade-off between Recall@K and AbsBias@K for debiasing gender attributes within
Occupation 1 (Middle) and race attributes using Occupation 2 (Right).

AbsBias@𝐾 values, MI-clip and adversarial training are still able to reduce bias while preserving
Recall@𝐾 . However, in terms of lowering AbsBias@𝐾 , they struggle to maintain satisfactory TBIR
performance. In contrast, the proposed PBM consistently succeeds in sufficiently reducing bias and
maintaining performance, provided that predictions of attributes are reasonably accurate. Details of
implementing this trade-off can be found in the SM.

5 Discussion

In this study, we examined gender and racial bias in text-based image retrieval (TBIR) for neutral text
queries. In an attempt to identify bias in the test-time (inference) phase, we conducted an in-depth
quantitative analysis on bias reduction, alongside existing debiasing methods and the proposed PBM.
We concluded that solely addressing training-time model-encoded bias is not sufficient for obtaining
equal representation results, because test-time bias also exists due to imbalance in the test image set
used during retrieval. So motivated, we proposed Post-hoc Bias Mitigation (PBM), a straightforward
post-processing method that aims to directly alleviate test-time bias. Experiments on multiple datasets
show that our method can significantly reduce bias while maintaining satisfactory retrieval accuracy
at the same time.

Moreover, the potential impact of PBM extends far beyond the initial scope of text-based image
retrieval systems. The core concept of our methodology can be seamlessly adapted to a wide variety
of information retrieval systems, such as image-based text retrieval or query-by-example image
retrieval, as long as the demographic information of the test set is accessible or can be estimated,
e.g., via zero-shot inference. Overall, our approach is not limited to enhancing fairness in text-based
image retrieval, thus can be extended to a broad range of VL model applications.

Limitations

Some limitations of the proposed method are duly acknowledged. Firstly, the efficacy of our approach
is dependent upon the availability of a sufficient number of examples for each category (gender or
racial attribute) within the test image set. Our work currently does not consider any techniques,
such as using synthetic samples, to mitigate the issues arising from insufficient representations of
certain demographic groups. Secondly, the debiasing effect of PBM pertains to the predictability
and accessibility of demographic attributes. Attempts at debiasing religious representation, or other
socio-cultural factors or identities, in images or speech present significant challenges, because the
predicting or securing annotations regarding religious information, can be exceptionally difficult.
Thirdly, as we prioritize the “equal representation”, our retrieval results sacrifice recall performance
to ensure a retrieval bag that contains equal representations of each demographic group. This
compromises fairness towards content providers in the image retrieval process. From the standpoint
of content providers, fairness should imply that similar samples are treated similarly, regardless of
the demographic group membership of their provided samples. Lastly, our work assumes all queries
are neutral. We do not develop a technique to identify if a query is neutral or not, thereby limiting the
applicability of our method in hybrid text query retrieval where text query can be biased like in “Male
doctor”. It is important to note, however, that the above challenges are not unique to our method but
are a common issue encountered in other debiasing approaches. A more comprehensive discussion
on the limitations of our work is available in the SM.
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Appendix

A Impact of Demographic Group Classifier on Debiased Results

Table 3: Group sensitivities and sensitivity ratios (𝜌) for demographic attributes predicted by different
classifiers on Occupation 1 - Gender and Occupation 2 - Race.

Method
Gender Race

Male Sensitivity Female Sensitivity 𝜌 Light skin Sensitivity Dark skin Sensitivity 𝜌

PBM - Supervised Learning 0.97 0.88 1.10 0.93 0.84 1.11
PBM - Word Embedding 0.98 0.94 1.04 0.84 0.78 1.08
PBM - Zero-shot Prompt 0.98 0.97 1.01 0.88 0.81 1.09
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Figure 5: Relationship between the perfor-
mance of the demographic group classifier (F1-
score) and the retrieval bias (AbsBias@100)
when utilizing PBM.
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Figure 6: Relationship between the bias of the
demographic group classifier (ratio of male sen-
sitivity to female sensitivity) and the retrieval
bias (AbsBias@100) when utilizing PBM.

The demographic group classifier is an important module of our proposed method PBM. The
debiasing result is intricately linked to the demographic group classifier’s accuracy and prediction bias
towards different demographic groups. Figure 5 showcases the relationship between the demographic
group classifier’s performance and the ensuing retrieval bias, by artificially introducing noise to the
demographic group (logit) predictions via Gaussian noise with a standard deviation ranging from 0
(no noise) to 1. These results underscore that better group classifier performance yields lower bias,
that bias converges to that of the original CLIP as the group classifier gets worse, and importantly,
that the bias after PBM will be no worse than that of the original CLIP.

Further, Table 3 shows the individual demographic group sensitivities under three different scenarios,
from which we can see that the group classifier is i) able to achieve good classification sensitivity (no
lower than 0.81 and 0.90 in average), likely because demographic image attributes (gender and skin
tone) are typically captured in images, and ii) that different scenarios exhibit different degrees of bias
as measured by the group sensitivity ratio, which must be close to 1 for the model to be unbiased.
Table 3 reveals sensitivity discrepancies among different attributes. To delve deeper into the influence
of classifier bias on PBM outcomes, we present the retrieval bias as a function of the sensitivity ratio
in Figure 6. This is achieved by altering the gender classification threshold from 0 (maximizing male
sensitivity) to 1 (minimizing male sensitivity). From Figure 6, we can conclude that the classifier
bias does affect retrieval bias, however, only severely for more extreme sensitivity ratios, which is
fortunately not the case in our results as shown in Table 3.

B Bias-recall Trade-off Strategies

In Figure 4, we exhibit the bias-recall trade-off curves for MI-clip, Adversarial Training, and various
PBM methods. Here, we outline the missing details to achieve these trade-offs.

For adversarial learning, the trade-off is controlled by adjusting the adversarial loss weights between
0 and 1.0. In MI-clip, we modify the clipped dimensions from 10 to 500 (CLIP output dimension
is 512). Regarding PBM methods, a trade-off parameter is introduced via a stochastic variable 𝜃,
which denotes the likelihood of choosing a fair subset at any given time, instead of simply opting
for the image with the top similarity score. Each curve is plotted by interpolating 10 points of the
corresponding trade-off parameters.
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C Datasets

Occupation 1 (Kay et al., 2015) Occupation 1 comprises the top 100 Google Image Search results
for 45 gender-neutral occupation terms, such as “chef”, “librarian”, “primary school teacher”, etc.
Each image within this dataset is annotated with a crowd-sourced gender attribute (either Male or
Female) that characterizes the person depicted in the image. The entire Occupation 1 dataset is
exclusively utilized for evaluating gender debiasing effect, as shown in Table 1.

Occupation 2 (Celis and Keswani, 2020) Occupation 2 includes the top 100 Google Image Search
results for 96 occupations. Each image in the dataset comes annotated with a gender attribute
and a race attribute (represented by skin-tone, namely, Fair Skin and Dark Skin). Notably, the
gender attribute and race attribute also include a N/A category, where the annotators have chosen the
option of “Not applicable” or “Cannot determine” for the gender or skin-tone depicted in the image.
Consequently, we treat the image labeled with N/A as a neutral example that does not contribute
to the bias of retrieval, since the user cannot perceive gender or racial information from the image.
Different from Occupation 1, gender attributes in Occupation 2 are categorized as {Male, Female,
N/A}, while race attributes are classified as {Fair Skin, Dark Skin, N/A}. The enitre Occupation 2
dataset is only used for evaluation on mitigating gender and race bias, as the results shown in Table 1.

MS-COCO (Lin et al., 2014) The first large-scale image-text dataset is MS-COCO captions dataset,
which is partitioned into 113,287 training images, 5,000 validation images, and 5,000 test images.
Each image is accompanied by five corresponding captions. Our experimental setup aligns with
the methodology detailed by Wang et al. (2021a). Only the first caption of each image is used
for evaluation. Further, they ensure all captions are gender-neutral by identifying and replacing or
removing gender-specific words with corresponding neutral terms, with the help of predefined word
banks (Zhao et al., 2017; Hendricks et al., 2018).

Flickr30k (Plummer et al., 2015) The second large-scale image-text dataset employed in our
experiment is Flickr30K, which contains 31,000 images obtained from Flickr. Adhering to the
partitioning scheme presented in Plummer et al. (2015), we allocate 1,000 images each for validation
and testing, with the remaining images designated for training. We obtain the ground truth of gender
attributes of images in Flickr30k in the same way as MS-COCO (Wang et al., 2021a), as we detect the
gender-specific words in the caption to determine the gender attributes of its corresponding image.

D Baseline Models

Random Select To simulate an ideal scenario, where image features bear no dependency to gender
(and race) attributes, for a neutral query 𝑐, we randomly select 𝐾 candidates from the true relevant
image set 𝑉∗𝑐 , with replacement . As for each query 𝑐, the size of the relevant image set |𝑉∗𝑐 | is at most
100. Using sampling with replacement simulate the situation that the gender attribute distribution is
fixed, and irrelevant to retrieval algorithm. We report AbsBias@𝐾 for reference. The Recall@𝐾 is
omitted since the value is meaningless, as we only sample from the true relevant image set 𝑉∗𝑐 .

CLIP (Radford et al., 2021) We consider OpenAI’s CLIP ViT-B/16 (Radford et al., 2021) as the
VL model for all debiasing methods. Specifically, the image encoder 𝑓𝜙 (·) is a Vision Transformer
(ViT) (Dosovitskiy et al., 2020) comprising 12 transformer blocks of width 768, with 12 self-attention
heads in each block. ViT processes images of size 224 × 224 by dividing them into 16 × 16 patches
and outputs 512-dimensional image features by linear projection. The text encoder 𝑓𝜓 (·) is a standard
text transformer (Vaswani et al., 2017) with masked self-attention, consisting of 12 transformer blocks
of width 512 and 8 self-attention heads in each block, with a linear projection layer at the end as well.
The CLIP ViT-B/16 model is loaded with pre-trained weights provided by OpenAI (Radford et al.,
2021). All the following debiasing methods use this pre-trained CLIP ViT-B/16.

MI-clip (Wang et al., 2021a) MI-clip (Wang et al., 2021a) clips the fixed number of output
dimensions of the image encoder in CLIP to reduce the mutual information between image features
and demographic attribute distribution. For MI-clip in Table 1, we clip 312 dimensions of output
image features. These 312 dimensions were chosen by examining the reduction in bias and while
maintaining retrieval performance. We also show a trade-off between bias reduction and retrieval
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performance of MI-clip with the number of clipped dimensions from 100 to 500 on the Occupation 1
dataset in Figure 4.

Adversarial Training (Edwards and Storkey, 2015) For adversarial training, we use the same
minimax problem setup as in (Edwards and Storkey, 2015). The encoder is the original CLIP image
encoder. The decoder is realized by a ViT with 8 vision transformer blocks, and the adversarial
predictor is a 3-layer MLP. Training employs the same loss function in Edwards and Storkey (2015),
where the final loss is the sum of the cost of reconstructing 𝑣 from 𝑓𝜙 (𝑣), a measure of dependence
between 𝑓𝜙 (𝑣) and 𝑔(𝑣) and the error of target task (i.e., image-text aligning loss LNT-Xent (Radford
et al., 2021)). We assign different weights to the loss of dependence measuring loss, in order to
demonstrate the trade-off between bias reduction and retrieval performance. We report the adversarial
learning results when the weight of measuring dependence loss is 0.7, and the weights for the other
two losses are both 0.15. Additional weight combinations were considered and shown in Figure 4.

Debias Prompt (Berg et al., 2022) The Debias Prompt method (Berg et al., 2022) also leverages
an adversarial learning framework. However, instead of just fine-tuning the image and text encoders,
they also prepended zero-initialized learnable prompts before inputting query tokens. Considering
that their debias-prompt model is already debiased for gender and race attributes, we directly
evaluate their pre-trained model (sourced from their github repository https://github.com/
oxai/debias-vision-lang) on the Occupation 1 and Occupation 2 datasets.

CLIP-FairExpec (Mehrotra and Celis, 2021) We tailor FairExpec (not originally proposed for
TBIR) to our task by integrating it with CLIP and our proposed gender predictor �̂�(·). We refer to
this adaptation as CLIP-FairExpec in our experiments.

Using binary gender as an example for simplicity, our CLIP-FairExpec treats the image-text similarity
output as the utility score for each image. Then, the objective of the optimization is to maximize
the total similarity scores for selecting 𝐾 images corresponding to a query 𝑐. The noise estimate 𝑞
in the original FairExpec is derived from the probability output of our attribute predictor �̂�(𝑣). We
use the probability output from the attribute predictor �̂�(𝑣) as the noise estimate 𝑞. Also, there is a
constraint on the sum of the noise estimates 𝑞 such that the sum is at least 𝐿 − 𝛿𝐾 and at most𝑈 − 𝛿𝐾 ,
where 𝐿 and𝑈 is the lower bound and upper bound for the sum of the noise estimate, respectively.
𝛿 ∈ (0, 1) is a noise tolerance level, that controls how much the constraints can be violated due to
the presence of noise. Since our fairness objective is equal representation for each gender attribute
class, we wish the sum of noise estimate for each class of gender attribute is equal. Hence, we
set the 𝐿 = 𝑈 = 𝐾/2. In order to force our model to prioritize minimizing bias over maintaining
performance, we choose a very small 𝛿 = 0.001. We select 𝐾 images fromV with respect to a neutral
query 𝑐 based on the above constrained optimization problem. Further, each selection is solved by
the GUROBI solver (Gurobi Optimization, LLC, 2023). Upon solving for all selections for queries in
C, we compute the AbsBias@𝐾 and Recall@𝐾 presented in Table 1.

SCAN (Lee et al., 2018) We consider the Stacked Cross Attention Network (SCAN) (Lee et al.,
2018) as an alternative VL model to CLIP. SCAN is a specialized in-domain training model, so it is
trained on the MS-COCO training dataset and tested on the MS-COCO test dataset. Similarly, for
the experiments with Flickr30k, the model is trained on the Flickr30k training set and then tested
on the Flickr30k test set. We use official implementation of SCAN from https://github.com/
kuanghuei/SCAN.

FairSample (Wang et al., 2021a) To mitigate bias during the training of SCAN, we implement the
FairSample approach as recommended by Wang et al. (2021a). We maintain the same hyperparameters
settings as Lee et al. (2018). To address the bias arising from the unbalanced gender distribution
within training batches, FairSample is proposed in the following way: for every positive image-text
pair (𝑣, 𝑐) within a training batch, we first identify if the query 𝑐 is gender-neutral or gender-specific.
If the training query 𝑐 is gender-neutral, a negative image is sampled from either the male or female
image sets, each with a probability of 1/2. However, if the query is gender-specific, we maintain the
original negative sampling strategy, thereby preserving the model’s ability to generalize effectively
on such queries.
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E Post-hoc Bias Mitigation (PBM)

E.1 Engineering Details

PBM - Supervised Classifier We can determine the gender attributes with a pre-trained image
classifier. Here, the image classifier is pre-trained on MS-COCO training set with gender attribute
annotations from Zhao et al. (2021). The image classifier is a 3-layer multi-layer perceptron (MLP) as
shown in Table 5, that takes the image representation from the original CLIP as input. We empirically
show that the image classifier can be highly accurate even using a light-weight classification MLP.
The F1-score for gender attribute prediction is 92.8%.

PBM - Zero-Shot Embedding We describe the first of the two types of zero-shot inference
described in Section 3.5. For zero-shot inference based on the embedding approach, we choose the
text embeddings for {“Unknown Gender”, “Man”, “Woman”} tokens to classify the gender attributes
of images, and {“Unknown Skin”, “Fair Skin”, “Dark Skin”} for categorizing race attributes. The
gender or race attribute of an image 𝑣 is determined by which text embedding has the maximum
similarity score to the image representation 𝑓𝜙 (𝑣).

PBM - Zero-Shot Prompt For the second zero-shot inference described in Section 3.5, namely,
the prompt method, we prepend adjectives to the text query 𝑐. We use {“”, “Male”, “Female”} for
gender attributes and {“”, “Fair-skinned”, “Dark-skinned”} for race attributes. The gender attributes
for each image retrieved by the query 𝑐 is determined by which prompted query has the maximum
similarity score to the image representation 𝑓𝜙 (𝑣).

PBM - Ground-Truth Attribute (Gender or Skin-tone) We use the annotations in the dataset as
the predicted attributes �̂�(𝑣) for reference. This shows the upper-bound performance of our method if
all gender predictions are correct (known).

E.2 Additional PBM Results

In Table 4, we showcase the results of applying PBM to CLIp models that has been debiased by other
approaches, such as MI-clip, Adversarial Learning, and Debias Prompt. When PBM is utilized in
conjunction with other debiasing strategies, it exhibits a unique bias-recall trade-off, thus catering to
a variety of application scenarios.

Table 4: Results of applying PBM - Supervised Learning on modified or fine-tuned CLIP.

Method Occupation 1 - Gender Occupation 2 - Race
AbsBias@100 (↓) Recall@100(↑) AbsBias@100(↓) Recall@100(↑)

PBM .1404 50.3 .0955 37.9
MI-clip - PBM .0780 42.1 .0737 29.1
Adversarial Training - PBM .1000 39.6 .0997 35.7
Debias Prompt - PBM .1711 52.1 .1035 40.6

F Neural Network Architectures

We summarize the details of the neural networks employed in our experiments in Table 5. For the
Image Encoder, the Patch Extraction (dimensions: 16,16) extracts 196 non-overlapping 16 × 16
patches from the 224×224 image. These extracted patches are subsequently flattened. The subsequent
Positional and Linear Embedding (768) maps these patch vectors onto a 768-dimensional space
and adds 2D positional embeddings of patches to the 768-dimensional vectors. Next, 12 Vision
Transformer Blocks (768, 12) processes the 768-dimensional embeddings. Each of these blocks
features 12 self-attention heads. Lastly, the output embedding is obtained from a unique classification
token ([CLS]) that we add to the input sequence of patch embeddings. The output from [CLS] Token
1 × 768 is then reduced from 768 dimensions to 512 dimensions using a Linear Projection (512).

Similarly in the Text Encoder, the initial phase involves Positional and Token Embedding (512). This
step maps each token in the input text onto a 512-dimensional vector space and integrates positional
embeddings into these vectors. Following this, the text encoder employs 12 Transformer Blocks
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Table 5: The architecture of each component of CLIP and the MLP used in our experiments.

ImageEncoder(·)
Layer Type

1 Patch Extraction(16, 16)
2 Positional and Linear Embedding(768)

4 - 15 Vision Transformer Blocks(768, 12)
16 [CLS] Token 1 × 768
17 Linear Projection (512)

TextEncoder(·)
Layer Type

1 Positional and Token Embedding (512)
2 - 13 Transformer Blocks (512, 8)

14 [CLS] Token 1 × 512
15 Linear Projection (512)

MLP(·)
Layer Type

1 fc-512 + BatchNorm + ReLU()
2 fc-512 + BatchNorm + ReLU()
3 fc-512 + BatchNorm + ReLU()
4 fc-n_class + Softmax()

(512, 8) to process these 512-dimensional embeddings. Each of these blocks contains 8 self-attention
heads. Finally, the output embedding is derived from [CLS] Token 1 × 512. The subsequent Linear
Projection (512) then maps the extracted text representation onto the multi-modal embedding space
that aligns with the image embeddings.

G Computation Resources

All of our experiments ran on one NVIDIA TITAN Xp 12GB GPU with CUDA version 11.5.

H Code and Data Availability

Occupation 1 dataset is available at https://github.com/mjskay/gender-in-image-search.

Occupation 2 dataset can be downloaded from https://drive.google.com/drive/folders/
1j9I5ESc-7NRCZ-zSD0C6LHjeNp42RjkJ.

MS-COCO dataset can be access through https://cocodataset.org/#home, and its
crowd-sourced gender/racial annotations from https://princetonvisualai.github.io/
imagecaptioning-bias/.

Flickr30k dataset can be access via https://shannon.cs.illinois.edu/DenotationGraph/.
And the gender word banks to identify the gender attributes of Flickr30k’s images is avaliable in the
Appendix of the paper by Wang et al. (2021a).

I Broader Impact

The recent years constituting what can be called the model architecture unifying era, witnessed a
seismic shift from small task-specific models to foundation models containing billions of parameters,
with numerous applications deployed based on such large models. However, as artificial intelligence
(AI) systems become more prevalent, the challenging question of fairness becomes more urgent. The
concept of fairness in machine learning revolves around creating algorithms and models that DO
NOT discriminate against certain groups based on gender, race, socioeconomic status, or any other
potentially biasing factors. As machine learning algorithms are increasingly used in decision-making
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processes, from job applications, college admissions, to criminal justice and healthcare, subsets of the
population who represent minorities may see unfavoring model performance compared to individuals
in majority groups. Therefore it is imperative to develop unbiased machine learning systems such that
decisions are made fairly and equitably. Our study concerning fair image retrieval, among many other
fairness research works, can be used to inform policymakers about the potential risks and benefits of
AI systems, potentially enacting new laws and regulations to ensure that these systems are utilized
responsibly and ethically.

Specifically, the biased performance of a model is possibly caused by statistical skewness both in
the training and testing sets. Existing methods mainly focus on enforcing independence between the
model’s output and sensitive attributes during training. However, much less effort has been made
to mitigate bias during test-time, a potentially vital component of the debiasing procedure. Many
machine learning systems are deployed in a setting where the biased testing set is almost guaranteed,
and as such, may suffer from fairness concerns. Importantly, PBM is able to dissociate the ranking
similarity from sensitive/protected attributes (e.g., gender) thus reducing bias, meaning that image
candidates share an equal chance to be retrieved even in an unbalanced testing set. We do not claim
that PBM guarantees fairness, and there is always the risk that it may be misinterpreted or exploited,
but we hope that PBM encourages a more inclusive approach to AI development.
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