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Figure 1: The illustrative examples for two proposed techniques: Back-imagination and Back-speech.

As shown in Figure 1, we present illustrative examples to facilitate a better understanding of two
proposed techniques: Back-imagination and Back-speech.

2 Datasets

Tiny ImageNet [Le and Yang, 2015] serves as a compact version of the comprehensive ImageNet
dataset. It comprises 100,000 images spanning 200 classes, with 500 images per class, and these
images are downsized to 64×64 pixels. Each class is furnished with 500 training images, 50 validation
images, and 50 test images.

The Stanford Sentiment Treebank-2 (SST-2) [Socher et al., 2013] is a sentiment classification dataset
populated with movie reviews gathered from Rotten Tomatoes, paired with their corresponding binary
labels. The dataset is partitioned into training, validation, and testing sets, comprising 67,349, 872,
and 1,821 instances, respectively.

Given the scarcity of datasets for understanding natural language in visual scenes, we introduce a
novel textual entailment dataset, named Textual Natural Contextual Classification (TNCC). This
dataset is formulated on the foundation of Crisscrossed Captions [Parekh et al., 2020], an image
captioning dataset supplied with human-rated semantic similarity ratings on a continuous scale from
0 to 5. We tailor the dataset to suit a binary classification task. Specifically, sentence pairs with
annotation scores exceeding 4 are categorized as positive (entailment), whereas pairs with scores
less than 1 are marked as negative (non-entailment). The TNCC dataset is partitioned into training,
validation, and testing sets, containing 3,600, 1,200, and 1,560 instances, respectively. This dataset
will be made available alongside our source codes.

3 Configurations

In this work, we employ a uniform experimental configuration for both textual entailment and sen-
timent classification tasks. We adopt BERT-BASE [Devlin et al., 2018], a model pretrained using
Masked Language Modeling (MLM), as our primary experiment subject. For each individual down-
stream classification experiment, the classification model is initialized with the pretrained parameters
from the BERT-BASE model. The classifier component, comprising of two fully connected layers
that deduce class labels from the output embeddings generated by the transformer architectures, is
randomly initialized. During the training phase, we leverage the Adam optimization algorithm with a
learning rate set at 5e− 5, the first and second momentum terms, β1 and β2, are respectively set to
0.9 and 0.999. Additionally, we introduce an L2 weight decay of 0.01 to the model. We select a batch
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size of 2 for all trials. We save model checkpoints during training and ultimately employ the best
checkpoint—determined based on performance on the validation dataset—for testing. The results are
presented as classification accuracies on both datasets under investigation.

For the image classification task, we employ the ResNet18 [He et al., 2015] model, which is
considered more suitable for small datasets. We initialize all learnable layer parameters randomly.
During the training process, we employ the SGD optimizer with a learning rate of 0.1, momentum of
0.9, and a weight decay of 0.0001.

4 Human Evaluation on Augmented Samples

In response to your suggestion, we conducted a human evaluation on the sampled augmented data.
The results of the evaluation are as follows:

For the images generated using the back-captioning method:

• Label Invariance Score: 99.2%

For the sentences generated using the back-imagination method:

• Semantic Consistency Score: 98.8%

These high scores indicate that both methods performed exceptionally well in their respective
evaluations. The results affirm that Back-Modality preserves the essential characteristics of the
original data while introducing diversity, further validating our approach.

5 More Choices of Cross-Modal Generation Models

In our paper, for the Back-captioning with a 10-shot setting, we primarily used the OFA-large model,
which yielded a top-1 accuracy of 20.07%. To assess the impact of different model sizes on the
outcomes, we also conducted experiments with OFA-huge under the same conditions. The results
showed a significant improvement, with the top-1 accuracy reaching 22.12%.

6 Cost of Obtaining the Augmented Samples

Method Additional Computational Time
RandErasing 4 m 55 s
Puzzle Mix 1 h 29 m 25 s
Alignmixup 1 h 59 m 45 s
Back-captioning (our method) 11 h 35 m
Auto augment About 49 h

Table 1: The additional computational overhead of various augmentation methods compared to the
base model.

Table1 illustrates the additional computational overhead of various augmentation methods compared
to the base model on RTX A6000. The primary cost of our method is related to generating images
with the diffusion model, and the primary overhead of auto augment is associated with learning
augmentation policies. In terms of text augmentation, on the textual entailment task, our method,
back-imagination, took 4 hours 13 m 45 s, while the back-translation method took 5 h 38 m 12 s. On
the sentiment analysis task, back-speech took 35 m 27 s, whereas the back-translation method took 5
h 22 m 4 s.

7 Discussion About Real-World Applicability

While current multi-modal and cross-modal models have achieved impressive results and continue to
rapidly advance, it is worth noting that not all domains currently have easy access to open-source
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cross-modal models. This limitation can, to some extent, restrict the effectiveness of our method
in real-world applications. However, recent research has increasingly focused on the adaptability
of diffusion-based cross-modal models in domains with limited data. This research encompasses
areas such as few-shot [Giannone et al., 2022], one-shot [Wu et al., 2023], zero-shot [Li et al., 2023],
domain adaptation [Kim et al., 2023], and unsupervised domain adaptation [Benigmim et al., 2023].
These research directions will further expand the real-world applicability boundaries of our method.
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Figure 2: Effect of increasing original data.
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Figure 3: Effect of increasing augmentation multiple.
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8 Proportion and Size

We conducted an analysis of the proportion of augmented data and the augmentation size by sampling
a subset of the data. Figure 2 illustrates the variation in the model’s performance when increasing
the volume of original data while keeping the augmentation multiple at 5. From the curve in this
figure, it is evident that as the volume of original training data increases, augmented data continues to
provide benefits. However, these benefits exhibit diminishing returns as more original data is added.
Figure 3 addresses the aspect of extending data generation. It demonstrates that as the augmentation
size increases, the model’s performance improves. However, after a certain point, the gains tend to
plateau. We believe the primary reason for the phenomena observed in these two figures is that the
diversity introduced by augmented data leads to performance gains. However, this diversity may not
match the affinity of the original data, which can result in diminishing returns.
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