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Abstract

We introduce Back-Modality, a novel data augmentation schema predicated on
modal transformation. Data from an initial modality undergo a transformation to
an intermediate modality, followed by a reverse transformation. This framework
serves dual roles. On one hand, it operates as a general data augmentation strategy.
On the other hand, it allows for other augmentation techniques, suitable for the
intermediate modality, to enhance the initial modality. For instance, data augmenta-
tion methods applicable to pure text can be employed to augment images, thereby
facilitating the cross-modality of data augmentation techniques. To validate the
viability and efficacy of our framework, we proffer three instantiations of Back-
Modality: back-captioning, back-imagination, and back-speech. Comprehensive
evaluations across tasks such as image classification, sentiment classification, and
textual entailment demonstrate that our methods consistently enhance performance
under data-scarce circumstances.

1 Introduction

Neural network-based deep learning models are often prone to overfitting, resulting in a loss of gener-
alization capability due to the limited size of training data. To mitigate this issue, data augmentation
techniques are routinely employed to generate an augmented pool of training samples. The recent
past has seen significant strides in the application of data augmentation within diverse fields such
as speech [Ko et al., 2015, Park et al., 2019], computer vision [Simard et al., 1996, Shorten and
Khoshgoftaar, 2019, Szegedy et al., 2014], and natural language processing [Sennrich et al., 2016,
Wei and Zou, 2019]. Nevertheless, most of these data augmentation algorithms are tailored for a
specific modality.

Concomitant with the swift advancement of cross-modal methodologies, various dual cross-modal
models, such as text-to-image generation and image captioning, have demonstrated impressive
performance. This progress catalyzes our development of a novel paradigm for data augmentation:
Back-Modality, a comprehensive data augmentation framework predicated on modal transformation.
Data in the initial modality are transformed to an intermediate modality and subsequently reversed
back. Theoretically, the initial and intermediate modalities can represent any modality, including
but not limited to text, image, audio, and video. Our framework retains its universality, contingent
on the availability of corresponding dual cross-modal models to execute the modal transformation.
Leveraging pretrained cross-modal models, our method is capable of generating a wide array of
high-quality and diverse data. A comparison illustrating the breadth and quality of the generated data
is provided in Figure 1.

Simultaneously, our framework enables the augmentation method intended for the intermediate
modality to benefit the initial modality. For instance, data augmentation methods designed for pure
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Figure 1: Comparative evaluation of images generated by our data augmentation method and other
approaches. Capitalizing on the inherent capability of pretrained cross-modal models, our method
excels in generating a broad range of high-quality and diverse images.

text can be leveraged to augment images, fostering cross-modality of data augmentation techniques.
In essence, our framework facilitates partial decoupling of data augmentation methods from specific
modalities. Moreover, our framework broadens the application landscape of cross-modal models.
Given that our methodology obviates the need to access model weights or undergo further fine-tuning,
it can be seen as an application variant of Cross-Modal-Models-as-a-Service (CMMaaS).

To substantiate the feasibility and efficacy of our framework, we present three instantiations of
Back-Modality: back-captioning, back-imagination, and back-speech. For back-captioning, the
initial modality is an image, and we utilize an image-caption model to generate captions for each
image. Subsequently, data augmentation methods designed for text are employed to augment these
captions. Finally, a text-to-image model is invoked to generate variant images, which are then used
as augmented samples. For back-imagination and back-speech, the initial modality is text, and the
intermediate modality is image and speech, respectively.

Systematic evaluations across various tasks including image classification, sentiment classification,
and textual entailment demonstrate that our methods can consistently improve performance, particu-
larly under data-scarce conditions. Upon further analysis and comprehensive case studies, it has been
observed that the data generated via our method typically exhibit increased diversity.

Our principal contributions and discoveries can be summarized as follows:

• We introduce Back-Modality, a modality-agnostic data augmentation framework predicated
on modal transformation. Within this framework, data in the initial modality undergo
transformation to an intermediate modality and subsequently reverse back.

• Our framework enables the cross-modality of data augmentation methods. For instance,
data augmentation techniques developed for pure text can be deployed to augment images.

• Our approach extends the application realms of cross-modal models. Our methodology
eliminates the need to access model weights or conduct further fine-tuning, hence it can be
perceived as a variant of the Cross-Modal-Models-as-a-Service (CMMaaS) application.

• Experiments on a variety of tasks and datasets substantiate that our methods can consistently
enhance performance, particularly in data-scarce scenarios. Further analysis reveals that
data generated by our method typically exhibits a higher degree of diversity.

2 Method

2.1 Framework

Back-Modality presents a comprehensive, modality-agnostic data augmentation framework predicated
on modal transformation. As shown in Figure 2, A symbolizes the initial modality, and B signifies the
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Figure 2: Back-Modality constitutes a universal data augmentation framework premised on modal
transformation. A represents the initial modality, and B denotes the intermediate modality. The
framework integrates two types of dual cross-modal tasks: F : A 7→ B and G : B 7→ A. H signifies
the data augmentation methods applicable to the intermediate modality B.

intermediate modality. The framework incorporates two types of dual cross-modal tasks: F : A 7→ B
and G : B 7→ A. Here, H denotes the augmentation methods applied to modality B.

Let X denote a sampled data point in the initial modality A, and Xaug represents the augmented
samples of X . Our framework can be succinctly expressed as:

Xaug = G(H(F (X))) (1)

Theoretically, A and B can represent any modality, such as text, image, audio, video, and so forth.
Moreover, A and B can also be the same modality. For instance, back-translation augmentation
methods can be perceived as a special case of our framework, where A and B are both text in different
languages, and H is omitted. Essentially, our framework retains its universality, contingent upon the
availability of corresponding dual models.

Within our framework, H can assist in augmenting data in modality A by augmenting data in the
intermediate modality B. This implies that the augmentation method suitable for a specific modality
can be transferred to other modalities via our framework. More formally, let us consider a scenario
where F and G are fixed, with YF,G denoting the corresponding framework. Here, H is treated as a
variable. Consequently, the augmented samples Xaug can be viewed as a function of X and H .

Xaug = YF,G(H,X) (2)

Given a specific X , varying H can yield a diverse set of augmented samples Xaug. In essence, our
framework facilitates partial decoupling of data augmentation methods from specific modalities.

2.2 Instantiations

In order to demonstrate the feasibility and efficacy of Back-Modality, we introduce three instantiations
of this framework: back-captioning, back-imagination, and back-speech. These methods encompass
three prevalent modalities: text, image, and speech.

Back-captioning In the proposed method, we define A as image modality and B as text modality.
Here, F represents the task of image captioning, while G represents the task of generating images
from text. H corresponds to the process of textual data augmentation.

Back-captioning, as a concept, can be deconstructed into a trifecta of augmentation methodologies:
multi-captioning, caption augmentation, and multi-imagination. It is observed that various observers
usually generate captions for the same image that, while being semantically analogous, exhibit subtle
variances in detail. This phenomenon mirrors the capability of most image captioning models to
generate multiple unique captions for a single image, a process we refer to as multi-captioning.
Given a caption sentence, several text augmentation techniques can be employed to produce multiple
related sentences, a process we term as caption augmentation. For a given sentence, the images that
different individuals visualize generally share similarities, yet present unique details. We refer to
this phenomenon as multi-imagination. A diffusion-based model, employing various random seeds,
can effectively simulate this process. Given an image captioning model that generates l captions
for each image, a caption augmentation process that generates m sentences for each caption, and
a text-to-image model that generates n images for each sentence, the maximum total number of
generated augmented sentences per original sentence amounts to l ∗m ∗ n. This obviously represents
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a highly efficient data augmentation approach. In practical implementation, we conduct uniform
sampling at random on these augmented data to obtain the final augmentation dataset.

Back-speech In this proposed approach, we designate modality A as text, while B pertains to the
audio modality. Here, F corresponds to the task of text-to-speech generation, and G denotes the
automatic speech recognition task. The text-to-speech model is designed to generate one audio file
for each input sentence. Following this, audio data augmentation techniques, such as pitch shifting,
denoted by H , are applied to these audio files to produce augmented sound files. Subsequently, the
automatic speech recognition model translates these augmented sound files back into text, thereby
generating augmented sentences.

The notion of back-speech can be elucidated by the following observation: the sentence articulated
by an intermediary often bears slight deviations from the original sentence. This is due to the fact that
different individuals may have distinct pronunciations for the same sentence, influenced by factors
such as speech rate, pitch, or regional accents. To simulate these variations, we employ augmentation
techniques within the audio modality. As a consequence, in the resultant output, some words may be
substituted by their homophones. Given that most homonyms bear morphological similarities, with
only minor differences at the subword level, this transformation can be viewed as a form of subword
regularization facilitated by the audio modality.

Back-imagination Back-imagination can be construed as the inverse operation of back-captioning.
In this approach, we assign modality A to text, while B corresponds to the image modality. Here,
F represents the task of generating images from text, and G signifies the image captioning task.
Similarly, back-imagination amalgamates three types of augmentation techniques: multi-captioning,
image augmentation, and multi-imagination.

Method Back-captioning Back-speech Back-imagination
F OFA fast-speech2 stable-diffusion v2
G stable-diffusion v2 wav2vec2 OFA
H augmentation with GPT pitch shifting/time stretching -

Task image classifaction sentiment classification textual entailment
Dataset Tiny ImageNet SST-2 TNCC

Table 1: Statistics of configurations. "augmentation with GPT" means that we employ GPT model
to augment captions. The symbol "-" indicates that we do not apply image augmentation in the
process of back-imagination. Tiny ImageNet [Le and Yang, 2015] is an image classification dataset,
SST-2 [Socher et al., 2013] is employed for sentiment classification, and TNCC, a textual entailment
dataset, is based on Crisscrossed Captions [Parekh et al., 2020]. For further details, please refer to the
appendix.

3 Experiments

In this section, we initially delineate the tasks, datasets, and models employed in our research.
Subsequently, we assess the efficacy of back-captioning, back-speech and back-imagination in
data-scarce scenarios, spanning a diverse range of tasks and datasets. Finally, we investigate the
intrinsic mechanisms underlying the effectiveness of our proposed method from three perspectives:
(1) conducting a quantitative analysis on the diversity and affinity of the generated samples, (2)
performing ablation experiments to evaluate the contribution of individual components within the
method, and (3) scrutinizing the differences between the original and augmented samples at an
instance level and providing an in-depth analysis of the transformation effectuated by the augmentation
process.

3.1 Baseline and Comparison

We use the performance of the base model, devoid of any data augmentation, as a baseline to evaluate
the effectiveness of our augmentation method in enhancing model performance. For the image
classification task, we employ the Resnet-18 model [He et al., 2015]. We use BERT [Devlin et al.,

4



2018] for sentiment classification and textual entailment tasks. To further substantiate the efficacy of
our methods, we compare them against several other data augmentation strategies. For the image
classification task, we consider four renowned methods: Random Erasing [Zhong et al., 2020],
Autoaugment [Cubuk et al., 2019], Alignmixup [Venkataramanan et al., 2022], and Puzzle Mix [Kim
et al., 2020]. For the sentiment classification and textual entailment tasks, we opt for the most popular
task-agnostic data augmentation methods for comparison, as per Longpre et al. [2020], Yoo et al.
[2021], including EDA [Wei and Zou, 2019] and Back-translation [Sennrich et al., 2016, Fadaee et al.,
2017, Edunov et al., 2018, Ng et al., 2019]. We employ the large pre-trained EN-DE and DE-EN
translation models [Ng et al., 2019, Yoo et al., 2021] for back-translation, which have a size order of
magnitude comparable to the cross-model models used by Back-Modality methods, making them
a robust baseline. In addition, we also consider some task-specific data augmentation methods for
reference, including TMix [Chen et al., 2020], SSMix [Yoon et al., 2021], and Treemix [Zhang et al.,
2022].

3.2 Datasets and Configurations

Datasets Tiny ImageNet [Le and Yang, 2015] and the Stanford Sentiment Treebank-2 (SST-2)
[Socher et al., 2013] are widely used datasets. Given the scarcity of datasets for understanding natural
language in visual scenes, we introduce a novel textual entailment dataset, named Textual Natural
Contextual Classification (TNCC). And detailed descriptions can be found in the appendix.

Data-scarce scenarios To showcase our approach, we conduct experiments on artificially data-
scarce tasks by sub-sampling the training set. For image classification, sentiment classification,
and textual entailment tasks, we perform a class-balanced sub-sample on the training set and we
denote the number of data samples for each class in the downsampled dataset as "shot," before any
data augmentation is applied. We adhere to statistical rigor in our experiments by executing the
sub-samples to 5 different data seeds. Concurrently, for each sub-sample, we train all models using 5
different random seeds. We report the statistical mean for all results. All experiments were conducted
using PyTorch and executed on RTX 6000 GPUs and the Atlas computing cluster.

Configurations Table 1 provides a comprehensive view of the configurations used in our experi-
ments. Unless explicitly stated otherwise, all pretrained models utilized in our research are obtained
from the Huggingface Transformers library2 [Wolf et al., 2019]. The code used to generate augmented
samples and the TNCC dataset are both accessible3. The default augmentation size used in our studies,
which includes both our method and the comparison method, is set to 5. As an illustration, in our
experiments with Back-captioning, when we have l = n = m = 2, we create 8 augmentations
for each image (2x2x2), and then, we randomly select 5 of these augmentations to form the final
augmented dataset. For back-captioning, we utilize gpt-3.5-turbo 4, augmenting captions using the
following prompt: "Maintain the nouns in the following sentence intact and generate semantically
diverse sentences." For the process of back-imagination, we consciously exclude image augmentation
in our experiments. One reason is that images produced via certain augmentation techniques, such as
random erasing [Zhong et al., 2020] and cutout [DeVries and Taylor, 2017], often present a substantial
challenge to image captioning models. On the other hand, the combination of multi-imagination and
multi-captioning appears to be sufficient to yield satisfactory results.

Detailed Strategies In our experimental process, we observed that simply constructing a pipeline
does not necessarily ensure the quality of the augmented data. Consequently, we have devised several
strategies aimed at minimizing the production of low-quality or even inaccurate augmented data.

In the case of back-captioning, while the model possesses the capacity to generate highly relevant
image descriptions, when deployed for specific tasks such as image classification, more nuanced
categories are often required. However, the model sometimes falls short in providing these nuanced
labels within the generated descriptions. For instance, when given an image of a ‘Persian cat’, the
model tends to generate descriptions mentioning ‘cat’ rather than the more specific ‘Persian cat’.
Several image captioning models, such as the OFA [Wang et al., 2022] model, have the capability to
generate image captions conditional on both a text prompt and an image. To address this issue, we

2https://github.com/huggingface/transformers
3https://github.com/zhilizju/Back-Modality
4https://platform.openai.com/docs/models/gpt-3-5
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Method Shot
1 3 7 10

Base-model 2.40 5.19 8.64 11.75
Random Erasing 2.61 5.77 9.11 12.59

Auto augment 3.41 6.35 9.84 13.23
Alignmixup 4.42 8.19 11.78 14.34
Puzzle Mix 4.48 10.26 12.52 15.66

Back-captioning 10.67 14.55 16.13 20.07

Table 2: The top-1 accuracy metric for back-captioning on the Tiny ImageNet dataset is displayed
above. The overall accuracy is low, primarily because the model is trained from scratch using scarce
data. "Shot" is used to indicate the quantity of images per label.

Method Shot
1 2 5 10

Base-model 61.18 72.47 81.30 84.57
EDA 61.04 73.89 83.61 85.71

Back-translation 62.35 74.07 84.30 85.28
TMix 60.11 71.54 82.77 84.60
SSMix 62.32 74.47 82.89 85.32

Treemix 62.88 73.27 85.15 87.41
Back-imagination 69.20 79.62 88.41 89.14

Table 3: The accuracy of the back-imagination method on the TNCC dataset is indicated above.
"Shot" signifies the quantity of sentence pairs corresponding to each label.

explicitly inject the image labels into the text prompts, which leads to the generation of descriptions
that incorporate these finer-grained labels.

During the back-imagination process, there are occasions when the text-to-image model generates
black and white images. This can lead to subsequent image captioning models generating sentences
like "A black and white photo of," which are clearly inappropriate for augmentation samples. Conse-
quently, if the back-imagination process yields a black and white image, we directly discard it and
proceed with a resampling operation. As for back-speech, if the sentences generated have an edit
distance from the original sentence that exceeds 20% of the entire sentence length, we discard those
sentences as well.

3.3 Results

Tables 2, 3, and Table 4, respectively, display the statistical average accuracy values on the Tiny
ImageNet, TNCC, and SST-2 datasets. We carried out hypothesis testing on the results across all
tasks, with all p-values falling below 0.05. This suggests that our findings are statistically significant.
Our back-captioning, back-imagination, and back-speech methods consistently outperform both the
base model and other data augmentation methods. This indicates that in data-scarce scenarios, data
augmentation based on modal transformation can offer significant performance improvements. In
particular, the results of back-imagination demonstrate that our architecture alone, even without the
inclusion of additional data augmentation methods (H), is capable of generating effective augmented
data.

3.4 Ablation

Table 5 shows the ablation studies of back-captioning, back-imagination and back-speech. The
individual components of our framework make significant contributions to the overall performance of
the model. In particular, augmentation with GPT, pitch shifting and time stretching all improve the
model performance, which strongly supports the notion that our framework effectively accomplishes
the cross-modality of data augmentation approaches.
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Method Shot
1 2 3 5 10

Base-model 51.46 52.31 54.42 57.88 61.10
EDA 50.35 52.17 54.87 58.32 61.72

Back-translation 51.30 52.09 55.84 57.69 61.94
TMix 49.71 51.59 54.18 57.62 61.31
SSMix 51.01 52.26 55.32 58.11 61.92

Treemix 51.35 52.18 55.81 58.73 62.37
Back-speech 52.13 52.78 56.11 59.03 63.21

Table 4: The accuracy of the back-speech on the SST-2 dataset is provided above."Shot" refers to the
count of sentences associated with each label.

Dataset Method Score

Tiny ImageNet

Base-model 11.75
+Back-captioning 20.07
w/o multi-captioning 17.21
w/o augmentation with GPT 18.49
w/o multi-imagination 18.92

TNCC

Base-model 81.30
+Back-imagination 88.41
w/o multi-imagination 84.71
w/o multi-captioning 86.52

STS2

Base-model 57.88
+Back-speech 59.03
w/o pitch shifting 58.45
w/o time stretching 58.60

Table 5: Ablation studies. We report the accuracy of shot 10 for back-captioning, shot 5 for both
back-imagination and back-speech. Multi-captioning: generate multiple captions for each image.
Multi-imagination: generate multiple images for each sentence. Augmentation with GPT: augment
captions with GPT model. Pitch shifting and time stretching are different augmentation methods used
for speech.

3.5 Diversity and Affinity

Following the methodology outlined by Gontijo-Lopes et al. [2020], we further analyze our augmen-
tation methods based on two key dimensions: Diversity and Affinity. Diversity is designed to quantify
the notion that augmentations can prevent model overfitting by increasing the number of samples in
the training set. As a metric of diversity, Gontijo-Lopes et al. [2020] employ the final training loss of
a model trained with a given augmentation. The larger the loss function, the better the diversity of the
augmented dataset. Affinity, on the other hand, quantifies how augmentation shifts data with respect
to the decision boundary of the clean baseline model. Affinity is defined as the difference between
the validation accuracy of a model trained on clean data and tested on clean data, and the accuracy of
the same model when tested on an augmented validation set. Table 6 indicates that while ensuring
comparable affinity metrics, our method consistently presents higher diversity metrics compared to
other augmentation methods.

3.6 Case Study

Figure 1 showcases the images generated by our data augmentation method alongside other ap-
proaches. Upon further analysis, we have uncovered advantages in the back-captioning method that
many traditional augmentation algorithms lack. As illustrated in Figure 3, we have listed several
typical data augmentation patterns found in the back-captioning method:

1. Luminance Modulation: This involves altering the image’s brightness by either decreasing
or increasing it.

7



Dataset Method Diversity Affinity

Tiny imagenet

Base-model 1.594 0
Random Erasing 1.621 -5.44

Auto augment 1.615 -5.24
Back-captioning 1.723 -6.04

TNCC

Base-model 0.0279 0
EDA 0.0343 -1.14

Back-translation 0.0301 -0.91
Back-imagination 0.0677 -0.82

SST-2

Base-model 0.0089 0
EDA 0.0126 -7.57

Back-translation 0.0104 -6.88
Back-speech 0.0154 -7.93

Table 6: Statistics of diversity and affinity. The former measures the variety of outcomes, with
higher values indicating increased diversity and thus considered favorable. The latter quantifies how
augmentation shifts data with respect to the decision boundary of the clean baseline model, where a
value closer to 0 signifies greater affinity.

Luminance Modulation

goldfish 

cash machine

candle bathtub

school bus

tabby

lemon ice cream

Structural Preservation

Attribute Adjustment Entity Elimination

Figure 3: By comparing the original image with the augmented image using back-captioning method,
we find typical data augmentation patterns: Luminance Modulation: Adjusting the image brightness
either by decreasing or increasing it. Structural Preservation: Maintaining a high similarity of
the target structure while altering the background. Attribute Adjustment: Modifying the target’s
attributes such as size, thickness, and quantity. Entity Elimination: Removing non-target entities.

2. Structural Preservation: This technique focuses on preserving the primary subject’s
structure while making changes to the background elements.

3. Attribute Adjustment: Adjustments are made to the target’s attributes, such as size,
thickness, and quantity.

4. Entity Elimination: This technique involves the removal of non-target entities from the
image.

We also perform an extensive case study on back-imagination and back-speech. As depicted in Figure
4, we notice that augmented sentences, generated by different modal transformations, display unique
characteristics. Further analysis reveals three notable advantages of our methods:
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Some augmented cases of back-imagination:

(1) Add/ Remove detail
The black dog runs through the water . A black dog running through the water in a lake .   
A young man in a black and yellow jacket is gazing at something and smiling . A young man in a black and yellow jacket is smiling .

(2) Replace word by synonym/ hypernym/ hyponym
A woman is throwing a frisbee on a beach .   A woman is playing a frisbee on a beach .
A man is standing in front of a skyscraper .        A man standing in front of a building .
Two children sit on a small seesaw in the sand .        Two boys sit on a small seesaw in the sand .

(3) Reverse the order
A boy strolls by a pond in a park .        A  boy walks in a park near a pond.

(4) Change /blur the quantity
Three people are walking on a path in a meadow .      A group of people are walking on a path in a meadow .

(5) Tense variation
Two children sit on a small seesaw in the sand . Two children  is sitting on a small seesaw in the sand .

...

Some augmented cases of back-speech:

(1) Split /merge the words
That 's far too tragic to merit such superficial treatment . That is far too tragic to merit such superficial treatment .
Remains utterly satisfied to remain the same throughout . Remain sutterly satisfied to remain the same throughout .

(2). Remove word
He hoped there would be stew for dinner, turnips and carrots .       He hoped there would be stew for dinner, turnips .

(3) Replace word by homonym
This is a shot of cannery row in 1932 .        This is a shot of cannery row in nineteen thirty-two .  
Lend some dignity to a dumb story .        Lend some dignity to a dome story .
The year 's best and most unpredictable comedy . The nears best and most unpredictable comedy .

(4) Change punctuation
So, we have this ability as well . So we have this ability as well .

...

Figure 4: By comparing the original sentence with the augmented sentence, we can summarize
several types from the perspective of linguistics. It is obvious that the linguistic transformations of
our methods are diverse.

1. Leveraging cross-modal models, our back-imagination augmented sentences demonstrate
exceptional fluency, readability, and minimal spelling or grammar errors. Correspondingly,
the generated images consistently maintain a high level of quality.

2. Our approach introduces greater diversity in both augmented sentences and images. Notably,
augmentation types such as adding details are challenging to achieve using popular text
augmentation methods like EDA and back-translation.

3. Our method ensures better semantic consistency. For instance, while both EDA and our
method involve deletion operations, our approach selectively removes details. But EDA
performs random deletion, which increases the likelihood of altering the original semantics.
A thorough analysis of back-speech augmentation reveals that certain words in augmented
sentences are substituted with similar-sounding words, often sharing similar but not identical
subwords. Additionally, the augmentation process involves splitting and merging certain
words. Consequently, the augmentation of back-speech can be considered as a form of regu-
larization akin to techniques such as BPE-Dropout [Provilkov et al., 2020] and SwitchOut
[Wang et al., 2018].

4 Related Work

4.1 Data Augmentation

Data augmentation is widely utilized in various domains to address limited data scenarios, and it has
achieved significant success. In computer vision, basic image manipulations such as translation and
rotation can generate new samples [Ronneberger et al., 2015, Krizhevsky et al., 2017]. Techniques
like random erasing [Zhong et al., 2020] and cutting [Devries and Taylor, 2017] aid in improving
generalizability by occluding images. Pitch shifting and time stretching are popular methods in
speech processing [Salamon and Bello, 2016, Moreno-Barea et al., 2018]. Text augmentation methods
typically involve word-level text editing operations and sentence-level text generation.For word-level
text editing operations, word substitution is commonly employed, including techniques such as
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synonym replacement [Zhang et al., 2015], KNN replacement [Wang and Yang, 2015], Uniform
and TF-IDF replacement [Xie et al., 2020], Bi-RNN Contextual replacement [Kobayashi, 2018],
CBERT [Wu et al., 2019], and LAMBADA [Anaby-Tavor et al., 2019]. EDA [Wei and Zou, 2019]
comprehensively explores text editing operations, including synonym replacement, insertion, swap,
and deletion, for data augmentation. The popular text augmentation method based on generation is
back-translation [Sennrich et al., 2016, Fadaee et al., 2017, Edunov et al., 2018]. It is evident that
previous data augmentation methods have been primarily tailored for specific modalities.

4.2 Dual Cross-modal Tasks and Models

In recent years, large-scale pretrained foundation models have achieved remarkable success across a
spectrum of tasks. Contemporary research [Zeng et al., 2022, Wu et al., 2023a, Shen et al., 2023]
suggests the amalgamation of multiple large pretrained models for the execution of novel downstream
multimodal tasks. However, our approach diverges from the aforementioned studies, as we employ
dual cross-modal models to devise a fresh data augmentation paradigm. There exists a plenitude
of dual cross-modal tasks and pretrained models, such as text-to-image [Ho et al., 2020, Rombach
et al., 2022], image captioning [Wang et al., 2022, Li et al., 2022], text-to-video [Singer et al., 2022,
Hong et al., 2022], video captioning [Yan et al., 2022, Yamazaki et al., 2022], text-to-speech [Ren
et al., 2020], and automatic speech recognition [Baevski et al., 2020]. Dual Learning [He et al., 2016,
Xia et al., 2017, 2018] protocols train the models of two dual tasks in tandem, while consciously
leveraging the probabilistic correlation between them to regularize the training process. In contrast,
our methodology primarily centers on the usage of the large pretrained models of two dual tasks for
data augmentation, circumventing additional training.

5 Limitations

Compared to existing data augmentation techniques, Back-Modality typically requires additional
computational resources and inference time due to its reliance on large pretrained cross-modal
models. However, as advancements continue in the cross-modal field and efficient machine learning
methodologies are further employed, we anticipate the development of more efficient techniques. As
such, this limitation is expected to be progressively alleviated. Furthermore, while our framework
is inherently versatile, specific instances may require the design of corresponding strategies akin to
those discussed in Section 3.2, which ensure label invariance in the generated samples and maximize
their affinity with the original data.

6 Conclusion

In this work, we introduce a novel data augmentation framework, predicated on modal transformation,
and confirm its feasibility and effectiveness. We posit that as the field of cross-modal learning contin-
ues to evolve, modal transformation can present a fresh avenue for developing data augmentation
techniques. This emerging field presents a plethora of intriguing research questions that merit further
exploration. For instance, a comprehensive evaluation of our method across a broader spectrum of
tasks and modalities would be insightful. In addition, investigating the impact of fine-tuning the
cross-modal models on domain-specific datasets on the quality of the generated data could yield
meaningful insights.
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Appendix

7 Back-imagination and Back-speech

A black dog leaps over a log .
A black dog  leaps  over a log in the woods .

...
A black dog jumps over a log .

text to image  image caption 

Back-speech

Back-imagination

...

A black dog leaps over a log .
text to speech  speech  

augmentation 
... automatic speech

recognition  

A black dog leap over a log .
...

A black doll leaps over a log .

Figure 5: The illustrative examples for two proposed techniques: Back-imagination and Back-speech.

As shown in Figure 5, we present illustrative examples to facilitate a better understanding of two
proposed techniques: Back-imagination and Back-speech.

8 Datasets

Tiny ImageNet [Le and Yang, 2015] serves as a compact version of the comprehensive ImageNet
dataset. It comprises 100,000 images spanning 200 classes, with 500 images per class, and these
images are downsized to 64×64 pixels. Each class is furnished with 500 training images, 50 validation
images, and 50 test images.

The Stanford Sentiment Treebank-2 (SST-2) [Socher et al., 2013] is a sentiment classification dataset
populated with movie reviews gathered from Rotten Tomatoes, paired with their corresponding binary
labels. The dataset is partitioned into training, validation, and testing sets, comprising 67,349, 872,
and 1,821 instances, respectively.

Given the scarcity of datasets for understanding natural language in visual scenes, we introduce a
novel textual entailment dataset, named Textual Natural Contextual Classification (TNCC). This
dataset is formulated on the foundation of Crisscrossed Captions [Parekh et al., 2020], an image
captioning dataset supplied with human-rated semantic similarity ratings on a continuous scale from
0 to 5. We tailor the dataset to suit a binary classification task. Specifically, sentence pairs with
annotation scores exceeding 4 are categorized as positive (entailment), whereas pairs with scores
less than 1 are marked as negative (non-entailment). The TNCC dataset is partitioned into training,
validation, and testing sets, containing 3,600, 1,200, and 1,560 instances, respectively. This dataset
will be made available alongside our source codes.

9 Configurations

In this work, we employ a uniform experimental configuration for both textual entailment and sen-
timent classification tasks. We adopt BERT-BASE [Devlin et al., 2018], a model pretrained using
Masked Language Modeling (MLM), as our primary experiment subject. For each individual down-
stream classification experiment, the classification model is initialized with the pretrained parameters
from the BERT-BASE model. The classifier component, comprising of two fully connected layers
that deduce class labels from the output embeddings generated by the transformer architectures, is
randomly initialized. During the training phase, we leverage the Adam optimization algorithm with a
learning rate set at 5e− 5, the first and second momentum terms, β1 and β2, are respectively set to
0.9 and 0.999. Additionally, we introduce an L2 weight decay of 0.01 to the model. We select a batch
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size of 2 for all trials. We save model checkpoints during training and ultimately employ the best
checkpoint—determined based on performance on the validation dataset—for testing. The results are
presented as classification accuracies on both datasets under investigation.

For the image classification task, we employ the ResNet18 [He et al., 2015] model, which is
considered more suitable for small datasets. We initialize all learnable layer parameters randomly.
During the training process, we employ the SGD optimizer with a learning rate of 0.1, momentum of
0.9, and a weight decay of 0.0001.

10 Human Evaluation on Augmented Samples

In response to your suggestion, we conducted a human evaluation on the sampled augmented data.
The results of the evaluation are as follows:

For the images generated using the back-captioning method:

• Label Invariance Score: 99.2%

For the sentences generated using the back-imagination method:

• Semantic Consistency Score: 98.8%

These high scores indicate that both methods performed exceptionally well in their respective
evaluations. The results affirm that Back-Modality preserves the essential characteristics of the
original data while introducing diversity, further validating our approach.

11 More Choices of Cross-Modal Generation Models

In our paper, for the Back-captioning with a 10-shot setting, we primarily used the OFA-large model,
which yielded a top-1 accuracy of 20.07%. To assess the impact of different model sizes on the
outcomes, we also conducted experiments with OFA-huge under the same conditions. The results
showed a significant improvement, with the top-1 accuracy reaching 22.12%.

12 Cost of Obtaining the Augmented Samples

Method Additional Computational Time
RandErasing 4 m 55 s
Puzzle Mix 1 h 29 m 25 s
Alignmixup 1 h 59 m 45 s
Back-captioning (our method) 11 h 35 m
Auto augment About 49 h

Table 7: The additional computational overhead of various augmentation methods compared to the
base model.

Table7 illustrates the additional computational overhead of various augmentation methods compared
to the base model on RTX A6000. The primary cost of our method is related to generating images
with the diffusion model, and the primary overhead of auto augment is associated with learning
augmentation policies. In terms of text augmentation, on the textual entailment task, our method,
back-imagination, took 4 hours 13 m 45 s, while the back-translation method took 5 h 38 m 12 s. On
the sentiment analysis task, back-speech took 35 m 27 s, whereas the back-translation method took 5
h 22 m 4 s.

13 Discussion About Real-World Applicability

While current multi-modal and cross-modal models have achieved impressive results and continue to
rapidly advance, it is worth noting that not all domains currently have easy access to open-source
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cross-modal models. This limitation can, to some extent, restrict the effectiveness of our method in
real-world applications. However, recent research has increasingly focused on the adaptability of
diffusion-based cross-modal models in domains with limited data. This research encompasses areas
such as few-shot [Giannone et al., 2022], one-shot [Wu et al., 2023b], zero-shot [Li et al., 2023],
domain adaptation [Kim et al., 2023], and unsupervised domain adaptation [Benigmim et al., 2023].
These research directions will further expand the real-world applicability boundaries of our method.
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Figure 6: Effect of increasing original data.
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14 Proportion and Size

We conducted an analysis of the proportion of augmented data and the augmentation size by sampling
a subset of the data. Figure 6 illustrates the variation in the model’s performance when increasing
the volume of original data while keeping the augmentation multiple at 5. From the curve in this
figure, it is evident that as the volume of original training data increases, augmented data continues to
provide benefits. However, these benefits exhibit diminishing returns as more original data is added.
Figure 7 addresses the aspect of extending data generation. It demonstrates that as the augmentation
size increases, the model’s performance improves. However, after a certain point, the gains tend to
plateau. We believe the primary reason for the phenomena observed in these two figures is that the
diversity introduced by augmented data leads to performance gains. However, this diversity may not
match the affinity of the original data, which can result in diminishing returns.
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