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Abstract

How can one publish a dataset with sensitive attributes in a way that both preserves
privacy and enables joins with other datasets on those same sensitive attributes?
This problem arises in many contexts, e.g., a hospital and an airline may want
to jointly determine whether people who take long-haul flights are more likely
to catch respiratory infections. If they join their data by a common keyed user
identifier such as email address, they can determine the answer, though it breaks
privacy. This paper shows how the hospital can generate a private sketch and
how the airline can privately join with the hospital’s sketch by email address.
The proposed solution satisfies pure differential privacy and gives approximate
answers to linear queries and optimization problems over those joins. Whereas
prior work such as secure function evaluation requires sender/receiver interaction,
a distinguishing characteristic of the proposed approach is that it is non-interactive.
Consequently, the sketch can be published to a repository for any organization to
join with, facilitating data discovery. The accuracy of the method is demonstrated
through both theoretical analysis and extensive empirical evidence.

1 Introduction

Given a sensitive dataset keyed by individual identities (which must never be revealed), how can
we publish a private version of it that can nonetheless be joined by identity to another dataset to
produce approximate answers to questions about the join? Can a sender publish this private version to
a repository so that receivers can both approximate joint distributions and train ML models, without
any interaction between the sender and the receiver?

There are inter-organizational scenarios where answering these questions is valuable. For example, a
healthcare provider may have clinical records keyed by patient email address and a private column
such as “has cancer”. A company wants to determine if employees who work near toxic waste sites
have a higher incidence of cancer. We show how two companies can privately join their data in
order to build such predictive models. With the rise of data marketplaces, it is more common for
organizations to seek to “decorate” their data by adding new columns from other organizations, while
preserving privacy. Intra-organizational scenarios also abound. Within a large organization, it is
common that data collected in one team is hidden from other teams. With a central repository, not
only is data discovery possible, but more private joins can be performed to assess predictive power.

The Repository Setting. A stylized view of the problem is shown in Fig. 1. One party, the sender S,
holds a dataset DS with two columns: a unique identifier to join on, and a value from a small finite
domain (in this case, has cancer encoded as ±1). S would like to share DS in a privacy-preserving
way with many other organizations without explicitly interacting with each one. To this end, S uploads
a private representation of DS to a public repository. Party R is one of many possible receivers,
and holds a dataset which has a column with unique identities to join on, and any number of other
columns, e.g., latitude and longitude of where their employees work. R’s goal is to perform a joint
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Figure 1: A stylized illustration of the Repository Problem. The sender S uploads a private count
sketch capturing people who do and do not have cancer. The receiver R uses the sketch to decorate
their data (work location) with a noisy version of S’s cancer column. Two noisy columns are
generated: one for cancer (+1) and another for not (−1). R can then build an ML model to predict if
employees who work near a toxic waste site are more likely to develop cancer.

computation – red box in Fig. 1. It involves the inner join that would normally include only people in
both datasets. But, for privacy, the receiver R does not know about the existence of Alice; and even
though David is not in S’s data, R still receives a label, which is noise. This paper studies how R can
learn functions over the inner join of R and S, e.g., does work location predict cancer positivity.

Problem statement Joint computation of linear queries and optimization are described in Subprob-
lems 1.2 and 1.3. The dataset representations should be compatible with both problems simultaneously.

Problem 1.1. Given a dataset DS with a unique identity column and one value column with a small
finite domain, publish to a repository a single differentially private representation of DS which can
be combined with any other dataset DR (so long as DR has a column of unique identities for joining)
to solve Subproblems 1.2 and 1.3.

A linear query involves applying some function f to each element in the join and outputting the sum.
Subproblem 1.2 (Linear Queries). Let f be a real-valued function. Define

SumOverJoinDR,DS
(f) =

∑
id∈ids(DR)∩ids(DS)

f(DR[id], DS [id])

where ids(D) is the set of identities that appear in D and D[id] is the value associated with id in D.
Given access to DR and a differentially private representation of DS , find an estimate ℓ̂ so that

Pr[|ℓ̂− SumOverJoinDR,DS
(f)| > µ] < δ

In an optimization query, the goal is to find a function f in a class of functions F that approximately
minimizes SumOverJoinDR,DS

(f). Supervised learning with a loss function is a special case.
Subproblem 1.3 (Optimization Queries). Given a class F of real-valued functions, let fopt =
argminf∈F SumOverJoinDR,DS

(f). Given access toDR and a differentially private representation
of DS , find a function f̂ such that

Pr[SumOverJoinDR,DS
(f̂)− SumOverJoinDR,DS

(fopt) > µ] < δ

Contributions. Problem 1.1 is solved by building upon work on private count sketches. This paper
makes the following contributions. (1) Method. We show how to apply the private count sketch to
enable a sender to share their data privately, enabling a receiver to approximately join it with their
own dataset on individual identifiers to estimate linear queries and learn functions.The identities of
the individuals in the sender’s data are not revealed. A distinguishing characteristic of the method is
that the algorithms are non-interactive, and hence are repository ready. (2) Analysis. A non-trivial
mathematical analysis in the form of theorems bounding the error. For linear queries, Problem 1.2,
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our main result is Thm. 5.1. For optimization queries, Problem 1.3, our main result is Thm. 6.4,
proved using a careful combination of tail bounds. (3) Experiments. (a) We conduct three sets of
experiments on public data to compare our solutions to exact answers obtained by joining the data
directly, with no privacy. With a reasonable privacy parameter (ε = 1) we acheive over 92% accuracy
on the EMNIST dataset, and applying logistic regression on the UCI Adult dataset, we lose less than
1% accuracy compared to training on the original data with no privacy. (b) We compare to related
methods. We adapt the protocol of Zhao et al. [39] to allow for joins and show that our approach is
more accurate. We also compare with the LabelDP [21] method on an already-joined dataset, and
show that our method performs competitively despite having the harder task of performing a private
non-interactive join.

2 Related Work

Privacy. Differential privacy [19, 18] is a widely used definition that intuitively guarantees that the
outcome of a mechanism is essentially unchanged whether an individual is or is not in the dataset. One
of the most commonly studied models of privacy in the literature is the curator model where a trusted
centralized repository holds all personal information. The role of the curator is to answer questions
about the data in a differentially private way. In the function release problem, the curator must release
a single piece of data which can be used to answer an unlimited number of queries [24, 2, 14].

In our case, party S plays the role of curator. The private representation they upload to the public
repository can be viewed as an example of function release. It does not depend on the structure of
R’s dataset or the particular function R aims to compute — S has no knowledge of the parties R who
might later download it. Therefore, we can view the sketch as a function accepting as “query” an
entire dataset DR together with the function to apply to the join.

Private Sketches. Sketching is a common technique used to summarize a dataset. The technique
most relevant to this paper is the Count Sketch [10] which we describe in more detail below. Other
influential sketching techniques include count min [16], tug of war [4], locality sensitive hashing [25]
and AMS [3]. Private variants of sketching have also been considered wherein, for example, the usual
sketch is computed and noise is added. Two examples include the private count sketch [6, 39] and the
private count min sketch [39]. Count sketch has been used to solve a wide variety of problems, e.g.,
estimate histograms, frequencies, quantiles or heavy hitters. We add to this list of uses the ability
to support data joins. Other examples of private sketch work include the Johnson-Lindenstrauss
transform [7] and the loglog sketch [12] — neither require additional noise for privacy. Private
locality sensitive hashing [15] has been considered in the context of private function release.

We are not aware of past work that uses the count sketch to privately join. Nevertheless, it is possible
to adapt prior private sketching work to our framework. However, since these solutions were not
designed with our application in mind, they do not perform as well – see the experiments in §7.2.

Local DP. [6] describes an approach in the local model, where each individual publishes their own
noisy data. If individual identities are discarded it precludes joins. If the central server in the
local model records individual identities, the identities cannnot be published without compromising
privacy. While our techniques are similar to past work in local differential privacy, there are important
differences: we apply them in the repository setting rather than a local DP setting (see Appendix H
for a comparison), the frequencies sketched are always 0 or 1 because unique identifiers are being
sketched, and our technique enables joins on those private identifiers. We optimize our use of count
sketches for this setting (especially in §6) and provide a novel experimental and theoretical analysis.

Vertically Partitioned Data. [17] study a scenario where a user interactively queries multiple
independent databases holding vertical partitions of a dataset. Other results include [30, 31, 33, 36].
Note that in our case, the protocol is non-interactive; each database has an identity column which
must be used to join the tables; the identities are private; and some identities may be present in one
database and not the other.

Secure Function Evaluation. In the cryptography community, there is extensive work showing how
two partiesA,B holding data xA, xB can jointly compute f(xA, xB) without leaking any information
beyond f(xA, xB) [37, 23]. For interactive, multi-party computation, cryptographic techniques are a
superior solution. However, this paper is on non-interactive solutions for the repository setting. More
comparison can be found in Appendix J.
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3 Preliminaries

Notation Z, N and R denote the sets of integers, nonnegative integers and reals. We let U be some
set of unique identifiers for people — e.g. strings representing name and address. For datasets D,D′,
the join D ▷◁ D′ is defined in Definition 3.1, and |D| ∈ N is the number of rows in D.

Datasets A dataset D ⊆ U ×X is a set of pairs (id ∈ U , x ∈ X); we call X its value domain
and its elements rows. In our problem there are two datasets: the sender’s (DS) and the receiver’s
(DR). The value domain of DS will always be X = {1..k} for some small k ∈ N, but there is no
restriction on the value domain of DR: X could be numbers, text, images, etc. We do not allow any
id ∈ U to appear more than once in the same dataset, so in particular there are no duplicate rows.

Joins When the same identity appears in two datasets, we want to combine the associated values.
Definition 3.1. The join of D ⊆ U × X and D′ ⊆ U × Y is a dataset D ▷◁ D′ ⊆ U × X × Y
defined by

(id, x, y) ∈ D ▷◁ D′ ⇐⇒ (id, x) ∈ D ∧ (id, y) ∈ D′

This an example of a natural join [13], using the identity column D and D′ have in common. Given
a function f : X × Y → R, we define the sum over the join:
Definition 3.2.

SumOverJoinD,D′(f) =
∑

(id,x,y)∈D▷◁D′

f(x, y)

(This is equivalent to the definition in Subproblem 1.2, but written in terms of D ▷◁ D′.)

Differential Privacy Let ε and δ be positive real numbers and M be a randomized algorithm. We
say thatM is (ε, δ)-differentially private [19] if for all S ⊆ Range(M) and for all pairs of datasetsD1

andD2 that differ in the addition or removal of one row, Pr(M(D1) ∈ S) ≤ eε Pr(M(D2) ∈ S)+δ,
where the probability is taken over the coin flips of M . In this work we will always set δ = 0; in this
case we say M is ε-differentially private; this is called pure differential privacy.

The two-sided geometric distribution The noise we add to ensure privacy will follow the two-sided
geometric distribution [22] (see notes in Appendix B.1):
Definition 3.3. The two-sided geometric distribution with parameter α, denoted TGeom(α), is a
distribution over Z with probability mass function Pr[Z = z] = 1−α

1+αα
|z|.

Private Count Sketches We use a simplified version of the count sketch [10] as a way to encode
a dataset D ⊆ U × {1..k}. It is parameterized by a number of buckets b and two hash functions
h : U × {1..k} → {1..b}, s : U × {1..k} → {−1,+1}.
Definition 3.4. Given b, h and s as above, the count sketch of a dataset D ⊆ U × {1..k} is a vector
CountSketchb,h,s(D) = (c1, . . . , cb) ∈ Zb, where cj =

∑
(id,y)∈D:h(id,y)=j s(id, y).

Adding noise makes a count sketch differentially private:
Definition 3.5. Given D, b, h and s as in Definition 3.4, and a privacy parameter ε > 0, the private
count sketch of D is a random vector PrivCountSketchb,h,s,ε(D) = CountSketchb,h,s(D) + Zε ∈
Zb where Zε is a vector of b independent samples from TGeom(e−ε) (Definition 3.3).

Since adding or removing a row from D causes CountSketchb,h,s(D) to move a distance of 1 in the
ℓ1 metric, we have [6, 39]:
Proposition 3.6. PrivCountSketchb,h,s,ε(D) is ε-differentially private.

It is common to repeat the count sketch with multiple independent hash functions to mitigate error
caused by hash collisions when there are fewer buckets than items (b < n). This is important when
the goal is to recover frequencies of repeated items while storing the sketch in as few bits as possible.
In contrast, our frequences are all 1 or 0 (present or not), and our goal is to estimate aggregates of
many such frequencies. We are not trying to compress a stream, so we take b ≈ n, at which point
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we find the error added by Zε dominates the error from hash collisions. We do not repeat the count
sketch because it would improve error only slightly (if at all), and because it would complicate our
analysis. In §7.2 we compare to a private sketching method that uses multiple hash functions and
Gaussian noise, and find it performs worse than Definition 3.5 for our purposes.

4 Method Overview

We begin with intuitive motivation for the method and then a provide an overview of the steps S and
R take to solve Problem 1.1. In §§5 and 6 we explain R’s computation in detail.

4.1 Intuition and alternative approaches

Here is a simplified version of our problem. Suppose parties S and R each have a set of individuals’
names DS , DR ⊆ U = {A..Z}∗. R wishes to estimate the number of names in common: |DS ∩DR|.
The names are sensitive and cannot be shared directly. Instead, S must publish a differentially private
representation C = Private(DS) without consulting R, and then R must compute their estimate
based on C and DR. This is a special case of Subproblem 1.2. Here are some possible approaches.

Secure function evaluation. In cryptography, this problem is called private set intersection cardinal-
ity [20, 26, 32]. Cryptographic solutions are well-studied, but require multiple rounds of interaction.
In our repository setting, party S publishes a single value Private(DS) and may not interact further.
See Appendix J for a discussion on this comparison.

Send the hashes. One might try choosing a secure hash function h : U → {0, 1}∗ and sending
Private(DS) = {h(x) : x ∈ DS}. The problem is that R would need to know h to compute
|DR ∩DS |. Knowing h would let them test individuals’ membership in DS , compromising privacy.

Dot product of noisy vectors. We can view the sets as vectors DS , DR ∈ {0, 1}U , with one bit for
every possible id ∈ U . Then DT

SDR = |DS ∩DR|. Party S can make their vector ε-differentially
private by adding noise: Private(DS) = DS + Zε, where Zε ∈ ZU is a vector of independent
samples from TGeom(e−ε). Party R can estimate |DR ∩DS | ≈ Private(DS)

TDR. The problem is
that U is too big — if identities are r-bit strings, then Private(DS) takes more than 2r bits to store.

Solution: Private count sketch. The solution we use is a modification of the previous one: S sends a
vector with noise added, but first reduces the dimension using a private count sketch.

4.2 Protocol

Our solution to Problem 1.1 has two steps: (1) S publishes a sketch and some parameters (Algorithm 1;
figure in Appendix A); (2) R downloads the sketch and runs Algorithm 2 (Subproblem 1.2, linear
queries) or Algorithm 3 (Subproblem 1.3, choosing the optimal function from a class).

Although the elements of DS are pairs (id, y) ∈ U × {1..k}, we treat them as opaque values for
the purpose of computing PrivCountSketchb,h,s,ε(DS) — so the domain of the hash functions
h, s is U × {1..k}. The time complexity of Sender is O(|DS |+ b), assuming that sampling from
TGeom(α) and computing the hash functions h and s all take constant time.

Algorithm 1 Sender

Let {1..k} be the range ofDS’s value column, i.e.DS ⊆ U×{1..k}.
1: Choose the privacy budget ε and the number of hash buckets b.
2: h, s← ChooseHashFunctions(b)
3: C ← PrivCountSketchb,h,s,ε(DS).
4: Publish C ∈ Zb and the parameters k, b, h, s, ε to a repository.

Choosing hash functions Building a sketch requires first choosing hash functions h, s with an
algorithm ChooseHashFunctions(b). This choice has no effect on privacy: even if ∀x, h(x) =
s(x) = 1, the private count sketch is differentially private. However, higher-quality hash functions
will give more accurate results. Thm. 6.4 assumes h and s are sampled uniformly from the set of all
functions; in practice, cryptographically secure hash functions should give the same guarantees.
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5 Linear queries

R can use Algorithm 2 to estimate SumOverJoinDR,DS
(f), given access to their own dataset

DR along with C = PrivCountSketchb,h,s,ε(DS) and the associated parameters k, b, h, s sent
by S. Its time complexity is O(k|DR| + b), assuming f(x, y) can be computed in constant time.
The computation QTC on lines 2–4 can be explained as follows. For every (id, x) ∈ DR and
y ∈ {1..k}, R multiplies q(id, x, y) = s(id, y) · f(x, y) by the entry at index h(id, y) in S’s sketch.
In expectation this equals f(x, y) if (id, y) ∈ DS and 0 otherwise. The sum of these values over
(id, x) ∈ DR, y ∈ {1..k} is QTC, and equals SumOverJoinDR,DS

(f) in expectation. Here the
expectation is taken over the output of ChooseHashFunctions and the TGeom(α) noise.

Algorithm 2 ReceiverLinearQueries

1: Download C = PrivCountSketchb,h,s,ε(DS) and the parameters k, b, h, s from the repository.
2: Set q(id, x, y) ∈ Rb to be s(id, y)f(x, y) at entry h(id, y) and 0 everywhere else.
3: Construct Q =

∑
(id,x)∈DR

∑k
y=1 q(id, x, y), the query vector.

4: Return QTC.

Theorem 5.1. For any datasets DR ⊆ U ×X,DS ⊆ U × {1..k}, function f : X × {1..K} → R,
privacy parameter ε > 0, number of hash buckets b, and accuracy parameter µ > 0, if h and
s are drawn from a mutually 4-way independent hash family, the following holds. Let M be an
upper bound on |f(x, y)|, k be the range of the value column of DS , n = |DR ▷◁ DS |, C =
PrivCountSketchb,h,s,ε(DS). Then

Pr

[
|QTC − SumOverJoinDR,DS

(f)|
n

> µ

]
≤ M2|DR|(k + 1)

µ2n2

(
2e−ε

(1− e−ε)2
+
|DS |
b2

)
The probability is taken over h, s and the noise added to PrivCountSketchb,h,s,ε(DS).

We defer the proof to Appendix C. According to the theorem, the size of the join should be sufficiently
large for it to be useful.

6 Optimization

Suppose R’s dataset has an id column and several feature columns, and S’s has an id column and a
label column. In this section we show how R can train a model to predict S’s labels from R’s features.
More generally, if R has a class of functions F which map X × Y → R, we show how R can select
f̂ ∈ F which is close to the optimal function fopt,

fopt := argmin
f∈F

SumOverJoinDR,DS
(f) = argmin

f∈F

∑
(id,x,y)∈DR▷◁DS

f(x, y)

in the sense that |SumOverJoinDR,DS
(f̂)− SumOverJoinDR,DS

(fopt)| is small.

For example, suppose DS has labels y ∈ {0, 1} and DR has feature vectors x ∈ Rd, and R would
like to train a logistic regression model on DR ▷◁ DS . Then R can take F = {ℓθ : θ ∈ Rd}, where
ℓθ is the logistic loss ℓθ(x, y) = y log(1 + e−θTx) + (1− y) log(1 + eθ

Tx).

In §§6.1 and 6.2 we show how to compute the estimate f̂ , assuming we already have a non-private
optimization algorithm that accepts weighted inputs. (For an alternative without weights, see Ap-
pendix E.) In §6.3 we analyze the loss in accuracy due to privacy.

6.1 Evaluating one function

Our optimization method is based on a score ΦDR,C(f) for individual functions f ∈ F , which R
computes based on their dataset DR and the sketch C sent by S. The score is a proxy for the true
objective SumOverJoinDR,DS

(f). It is less sensitive to noise and hash collisions than the estimate
QTC from §5. The cost is that ΦDR,C(f) does not actually approximate SumOverJoinDR,DS

(f).
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Instead, the two have a linear relationship: ΦDR,C(f) ≈ β SumOverJoinDR,DS
(f) for a positive

number β = β(DR, DS , b, ε) which does not depend on f . (We prove this in the appendix in
Lemma D.3, as part of the proof of Thm. 6.4.) R does not know β, but does not need to: the
optimization method described in §6.2 boils down to computing argminf∈F ΦDR,C(f).

There are two differences between the score ΦDR,C(f) and the linear estimate QTC, developed
while proving Theorem 6.4. First, we clip coordinates of the sketch C to be between −1 and 1.
Definition 6.1. For x ∈ R, clip(x) is 1 or -1 if x ≥ 1 or x ≤ −1; otherwise clip(x) = x. The
clipped version of a vector C ∈ Rb is a vector with clipped entries: clip(C)i = clip(Ci).

(Since our sketches have integer coordinates, clip(x) equals the sign sgn(x) ∈ {−1, 0, 1}. In §7.2 we
try a sketch with non-integer coordinates.) Second, when h hashes more than one row (id, x) ∈ DR

to the same coordinate of C, we reweight the terms corresponding to those rows.
Definition 6.2. The score of f ∈ F is defined as follows. Let NR(a) be the number of possible pairs
(id, y) where id appears in DR, y is any value in {1..k}, and h(id, y) = a:

ΦDR,C(f) :=
∑

(id,x)∈DR

k∑
y=1

s(id, y) clip(C)h(id,y)f(x, y)
NR(h(id, y))

6.2 Performing the optimization

Here we show how R can compute the estimate f̂ ∈ F , given their own dataset DR, the parameters
k, b, h, s, ε, and C = PrivCountSketchb,h,s,ε(DS) downloaded from the repository. In short, our
method is simply to find the function f ∈ F that minimizes the score defined in the previous section:

Definition 6.3. The estimated optimal function in F is f̂ := argminf∈F ΦDR,C(f).

If F is a small finite set, this definition directly leads to an algorithm: R computes ΦDR,C(f) for
every f ∈ F and chooses the argmin directly. For larger Fs we will assume R has an algorithm
WeightedOpt to find the optimal f on a weighted dataset. A weighted dataset D̃ is a collection of
(w, x, y) triples where w ∈ R is called the weight and (x, y) is a valid input to functions in F . To be
precise, WeightedOpt minimizes

SumOverDatasetD̃(f) :=
∑

(wid,y,x,y)∈D̃

wid,yf(x, y)

Many algorithms for training machine learning models admit a weight associated with each training
example; such an algorithm could play the role of WeightedOpt. R can now find the optimal function
by implementing Algorithm 3. The time complexity of this algorithm is O(k|DR|) +W (k|DR|),
where W (n) is the run-time complexity of WeightedOpt on a dataset with n elements.

By Definitions 6.2 and 6.3, the output of WeightedOpt is identical to the estimated optimal function
f̂ . The question of whether f̂ is any good is addressed in §6.3.

Algorithm 3 ReceiverOptimize

1: Download C = PrivCountSketchb,h,s,ε(DS) and the parameters k, b, h, s.
2: wid,y ← s(id, y) clip(Ch(id,y))/NR(h(id, y) for y = 1, . . . , k

3: Construct D̃ = D̃(b, h, s,DR, C) by creating (wid,y, x, y) for each element (id, x) ∈ DR and
y ∈ {1..k}. //note : |D̃| = k|DR|

4: Return WeightedOpt(D̃,F)

6.3 Analysis

Here we analyze the accuracy of our method in the context of learning a classifier. We state and prove
a more general result in Appendix D, and prove the below results in Appendices D.2 and D.3.

We bound the classification error of a model trained using our method on features from DR and
binary labels from DS (so k = 2). Let F be a set of classifiers f : X → {0, 1}, and for f ∈ F let
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Lf ∈ N be the number of classifications errors on DR ▷◁ DS . To apply Algorithm 3, we convert this
to an equivalent problem: let G be the set of corresponding error functions ef (x, y) = |f(x)− y| for
f ∈ F , so Lf = SumOverJoinDR,DS

(ef ). Then we can ask Algorithm 3 to find the best ef ∈ G,
which corresponds to the best classifier f .

Theorem 6.4. For any datasetsDR ⊆ U×X,DS×U×{1..k}, function class F , privacy parameter
ε > 0, number of hash buckets b and accuracy parameter µ > 0, if h and s are drawn uniformly
at random from the set of all2 functions U × {1..k} → {1..b}, the following holds. Let fopt be the
classifier that minimizes Lf , and let f̂ be the classifier corresponding to the function ef̂ output by
Algorithm 3. Let d be the VC dimension of F , n = |DR ▷◁ DS |, and

ϕ =
|DR|
n

ψ =
|DS |
n
− 1 WR = min

{
1,

b

5k|DR|

}
WS = min

{
1

4
, ε,

1

14

√
b

|DS |

}
Then

Pr

[
Lf̂ − Lfopt

n
> µ

]
≤ exp

(
−Ω

(
WRWS

ϕ+ ψ
µ2n− d log n

))
For reference, we define VC dimension in Appendix B.4. Adding assumptions can simplify the
bound. This corollary highlights the dependence on the privacy parameter ε:

Corollary 6.5. Assume DR and DS have the same set of identities, so the join is “perfect” in the
sense that |DR| = |DS | = |DR ▷◁ DS |. Let n = |DR ▷◁ DS | and let d be the VC dimension of F .
Assume also that b = Ω(n). Let fopt be the classifier that minimizes Lf , and let f̂ be the classifier
corresponding to the function ef̂ output by Algorithm 3. Then for any µ > 0,

Pr

[
Lf̂ − Lfopt

n
> µ

]
≤ exp(−Ω(µ2nε− d log n))

7 Experiments

The goal of the experiments is to evaluate the accuracy of our solutions and quantify the effect of
noise and join size on downstream tasks. To simulate parties S and R, for each dataset, we add a
unique id to each row, then split its columns into DR with all of the features and DS with labels.
In §7.1 we learn a function that, given features x, predicts labels y ∈ {1..k} using Algorithm 3 and
a private count sketch. In Appendix F we estimate a joint distribution using Algorithm 2. In both
cases, we find that the test error drops as we increase ε (meaning the privacy requirement is relaxed)
or the sketch dimension, or as the join size increases (DR, DS have more ids in common). In §7.2
we compare our results with the private linear queries protocol of Zhao et al. [39]. We also conduct
experiments with multi-way joins and with non-unique identifiers in Appendix I.

Datasets. Two datasets are used in the experiments. (1) UC Irvine Adult dataset [1]. We predict if
income is greater than 50K based on categorical features such as age, workclass and education. (2)
Extended MNIST, for which we predict labels based on images of handwritten digits.

7.1 Optimization: Prediction Findings

We evaluate our method with two machine learning tasks: logistic regression on the UCI Adult
dataset, and a neural net for Extended MNIST. We capped the cross-entropy loss by replacing
predicted probabilities ŷ with max{ŷ, 10−4}. This is necessary since Algorithm 3 can produce
negative weights, which would lead to divergence in the optimization if loss were not bounded.

In each case, we conduct several experiments varying the privacy parameter3 ε and the sketch
dimension b. All accuracy numbers are measured on the test set directly, with no simulated join. The
right halves of Figs. 2 and 3 show the results, with different lines for different sketch dimensions b. A
dashed line shows the test accuracy of a model trained directly on the training set, without privacy.

2In practice, cryptographically secure hash functions should give the same guarantees.
3Ponomareva et al. [29, §5.2.1] suggest ε ≤ 1 gives a “strong” privacy guarantee and ε < 10 is “reasonable”.
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Figure 2: Test accuracy of logistic regression on the UCI Adult salary prediction task (§7.1).

Figure 3: Test accuracy of a deep neural net on the Extended MNIST dataset (§7.1).

Imperfect joins, where DR has some IDs not present in DS , are simulated by randomly removing
most of the rows in the training set, and then adding some back only to DR. The left halves of Figs. 2
and 3 show the results. The performance drops as this fraction increases, which is expected since
unmatched rows in DR are assigned random labels that add noise to the training. In practice, party
R would benefit by filtering DR to contain only identities likely to be in DS , e.g., if DS contains
people in Ohio, R should also filter DR to Ohio. Note that on the right panel of Fig. 3, when ε = 1,
the test accuracy is around 92%, however, on the left panel of Fig. 3, the performance drops to 80%
for ε = 1. This is due to the smaller training set size (240K on the right vs 20K on the left).

We also train a neural net on the EMNIST bymerge dataset consisting of 760K images of handwritten
digits and uppercase and lowercase letters, with 47 classes. We conduct this experiment to investigate
the effects of large label domain sizes, i.e., large k. Fig. 4, shows test accuracy as a function of the
number of labels. For each run, we randomly chose out of 47 classes, and applied our method with
ε = 1. The figure shows that, as expected, the performance degrades significantly as k increases, but
the method is still viable with k = 45. Note that in this experiment, the size of the dataset, and thus
the join size, changes as we change k.

Our results are consistent with the dependence of Thm. D.2 on the parameters ε, b, and ϕ =
|DR|/|DR ▷◁ DS |: test accuracy improves as ε or b increase, or |DR|/|DR ▷◁ DS | or k decrease.
Training details can be found in Appendix G.

7.2 Comparison with other methods

To our knowledge, there is no past work on non-interactive private joins in the repository setting.
However, one can replace our simplified private count sketch (Definition 3.5) with other private
sketches. To this end, we incorporate Zhao et al’s [39] private linear sketches into our method.
Party S generates a sketch of (id, value) pairs as before, but builds the sketch using Algorithms 1
and 3 from Zhao et al. instead of our Definition 3.5. Then, line 2 of Algorithm 3 is replaced with
LinearSketchQuery from Zhao et al.s’ Algorithm 2: wid,y ← clip(LinearSketchQuery(id, y)).

The EMNIST experiment is run with different combinations of Zhao et al.’s parameters γ, β, ρ. Their
protocol satisfies ρ-zCDP; we use Proposition 1.4 of [8] to compare our results by equating ρ = 1

2ε
2.

The number of hash buckets b is related to γ as b = 1/γ and the number of hash functions (one for
us) is given by log(2/β).
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Figure 4: Test accuracy as the domain size of the labels, k, increases.

Figure 5: Comparisons with other baselines. The definition of neighboring datasets is different for
LabelDP and ours: 2εours ≈ εtheirs, roughly. We have taken this into account in the right panel.

Zhao et al. describe two sketch implementations, Count-Min and CountSketch. Count-Min sketch
is a random classifier on EMNIST for ε ≲ 10, possibly because Count-Min is designed to avoid
underestimating frequencies, whereas in our case it is more important to be correct on average.
CountSketch leads to better results, Fig. 5. For β = 0.3, there is one hash function, as with our
method, and the remaining differences between the two methods is the kind of added noise (Gaussian
vs two-sided geometric), and that LinearSketchQuery omits the denominator N(h(id, y)) on Line 2
of our Algorithm 3. Our method provides better results, especially for smaller ε.

The accuracy of the model is roughly proportional to the number of correct vs. incorrect labels
reconstructed in the join. For the corresponding values of ε and (ρ, β, γ) in the two methods, the
number of incorrect labels reconstructed is fewer for the two sided geometric noise than Gaussian.
Gaussian noise has thinner tails which is helpful for reducing the probability of large error values but
not helpful in our application where queries are in any case clipped to the range [−1, 1].
We also compare with LabelDP [21], which is a Local DP protocol that protects the labels. LabelDP
is not designed to perform joins, and so we run it without splitting the training set. Results are shown
in the right panel of Fig. 5. The definition of “neighbouring datasets” differs in the two settings: we
use the “add/remove” definition where a single row is added or removed, but in LabelDP’s definition,
a single value is changed. To account for this, we double the privacy budget for LabelDP, so for
example at ε = 1 on the x-axis, we actually give LabelDP a privacy budget of ε = 2.

The LabelDP method benefits from not needing to perform a join, and so we expect it to perform
better than our method, where the parties must join using a non-interactive protocol. We were
surprised to see our method perform better for small ε, and do not understand why this happens.

Future Work. This work focused on when the sender has a single private label column. To broaden
applicability, data with multiple columns and data of different types, such as real-valued or text,
deserve consideration. New privacy challenges arise in the streaming setting where organizations
continuously receive new data and discard outdated data.
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Appendices
A Illustration of Algorithm 1

Figure 6 provides a visual depiction of the private count sketch that the sender uploads to the public
repository. The noise values Zε are sampled from TGeom(e−ε) (Def. 3.3). For example, if we
choose ε = 1 (which gives a “strong” privacy guarantee [29, §5.2.1]), then the variance of each Zε is
about 1.84.

Figure 6: Visual depiction of Algorithm 1

B Some Useful Definitions and Theorems

B.1 More on the two-sided geometric distribution

We repeat the definition for convenience:

Definition 3.3. The two-sided geometric distribution with parameter α, denoted TGeom(α), is a
distribution over Z with probability mass function Pr[Z = z] = 1−α

1+αα
|z|.

TGeom(α) is the same distribution as the difference between two independent geometric random
variables, Geom(p = 1− α). This fact can be verified directly from the probability mass functions,
and it provides a convenient way to sample from the distribution when using a library that provides
the geometric distribution. From this it immediately follows that the expectation and variance of
TGeom(α) are given by:

Lemma B.1. For Z ∼ TGeom(α), E[Z] = 0 and Var[Z] = 2α
(1−α)2 .

B.2 Mutually independent hash families

Definition B.2. A distribution H over pairs of hash functions h : U → {1..b}, s : U → {−1, 1} is
a mutually k-way independent hash family iff for any fixed distinct inputs x1, . . . , xk and outputs
y1, . . . , yk ∈ {1..b} and z1, . . . , zk ∈ {−1, 1},

Pr[∀i ∈ {1..k} h(xi) = yi ∧ s(xi) = zi] =

(
1

2b

)k

In other words, the outputs h(x1), . . . , h(xk), s(x1), . . . , s(xk) are distributed uniformly over
{1..b}k × {−1, 1}k.
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B.3 McDiarmid’s Inequality

Theorem B.3 (McDiarmid’s Inequality). Let f : X1 × · · · × Xn → R have the property that for
every index i ∈ {1..n} and every pair of sequences x⃗, y⃗ ∈ X1 × · · · × Xn that differ only in the i-th
coordinate, |f(x⃗)− f(y⃗)| ≤ ci. Then if X1 ∼ X1, . . . , Xn ∼ Xn are independent random variables,
then for any µ ≥ 0,

Pr[|f(X1, . . . , Xn)−E[f(X1, . . . , Xn)]| ≥ µ] ≤ 2 exp

(
− 2µ2∑n

i=1 ci

)
B.4 Measuring the complexity of a function class

When analyzing an optimization algorithm, it is useful to have a measure of the complexity of a class
of functions. One such measure is the uniform covering number.
Definition B.4 (Covering number in Rn [5]). An ℓ∞ µ-cover of a set S ⊆ Rn is a set C ⊆ S such
that ∀x ∈ S ∃c ∈ C |x− c|∞ < µ. The ℓ∞ µ-covering number of S, denoted N (µ, S, ℓ∞), is the
cardinality of the smallest such C.
Definition B.5 (Uniform covering number of a function class [5]). Given a function f : X → R and
a sequence x⃗ = (x1, . . . , xn) ∈ Xn, the restriction of f to x⃗ is

f |x⃗ = (f(x1), . . . , f(xn)) ∈ Rn

The restriction of a class of functions F is the set of restrictions of the functions in it:

F|x⃗ = {f |x⃗ : f ∈ F}

The uniform covering number N∞(µ,F , n) is the largest covering number of any restriction F|x⃗ to
a length-n sequence:

N∞(µ,F , n) = max
x⃗∈Xn

N (µ,F|x⃗, ℓ∞)

The Vapnik-Chervonenkis dimension or VC-dimension is another measure of complexity that applies
to boolean-valued functions. In the case of boolean-valued functions, the uniform covering number is
called the growth function:
Definition B.6 (Growth function [5]). Let F be a class of functions f : X → {0, 1}. The growth
function of F is a function ΠF : N→ N defined by ΠF (m) = N∞( 12 ,F ,m).

( 12 could be replaced by any number less than 1.) Note that ΠF (m) ≤ 2m since there are only 2m

possible restrictions f |x⃗ for a length-m sequence x⃗.
Definition B.7 (VC Dimension [5]). Let F be a class of functions f : X → {0, 1}. The VC
dimension of F , denoted VCdim(F), is the largest d such that ΠF (d) = 2d.

The VC dimension summarizes the behaviour of the growth function in a way captured by the
following lemma:
Lemma B.8 (Theorem 3.7 of [5]). Let F be a class of boolean-valued functions with VC dimension
d. Then for any m ≥ 1, ΠF (m) ≤ md + 1.

We will make use of a simple connection between the complexity of a collection of classifiers f and
of the corresponding set of error functions ef :
Lemma B.9. Let F be a class of functions f : X → {0, 1}. For f ∈ F define ef : X × {0, 1} →
{0, 1} by ef (x, y) = |f(x)− y|, and let G = {ef : f ∈ F}. Then

VCdim(G) = VCdim(F)

Proof. Let dG = VCdim(G) and dF = VCdim(F).
First we’ll show dG ≥ VCdim(G). Unpacking the definitions of VC dimension and growth function,
we see there is x⃗ = (x1, . . . , xdF ) ∈ XdF such that F|x⃗ includes every one of the 2dF sequences
in {0, 1}dF . Let z⃗ = ((x1, 0), . . . , (xdF , 0)). Observe that for any f ∈ F , f |x⃗ = ef |z⃗ ∈ {0, 1}dF .
Therefore Gz⃗ includes all 2dF sequences, and so VCdim(G) ≥ dF .
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To show dG ≥ VCdim(G), note there is some z⃗ = ((x1, y1), . . . , (xdG , ydG )) ∈ (X × {0, 1}dG such
that G|z⃗ includes every sequence in {0, 1}dG . Let x⃗ = (x1, . . . , xdG ) ∈ XdG . Given a sequence
s ∈ {0, 1}xdG , we would like to show s ∈ F|x⃗. Indeed, define the sequence s′ ∈ {0, 1}xdG by
s′i = |si− yi|, and let ef be a function in G (corresponding to some f ∈ F such that ef |z⃗ = s′. Then
for any i ∈ {1..dG}, f(xi) = |ef (xi) − yi| = |s′i − yi| = si, and so f |x⃗ = s. We were able to do
this for an arbitrary s, so Fx⃗ includes all 2dG sequences, so VCdim(F) ≥ dG .

C Linear Queries: Proof of Theorem 5.1

We prove Thm. 5.1, repeated here for convenience:
Theorem 5.1. For any datasets DR ⊆ U ×X,DS ⊆ U × {1..k}, function f : X × {1..K} → R,
privacy parameter ε > 0, number of hash buckets b, and accuracy parameter µ > 0, if h and
s are drawn from a mutually 4-way independent hash family, the following holds. Let M be an
upper bound on |f(x, y)|, k be the range of the value column of DS , n = |DR ▷◁ DS |, C =
PrivCountSketchb,h,s,ε(DS). Then

Pr

[
|QTC − SumOverJoinDR,DS

(f)|
n

> µ

]
≤ M2|DR|(k + 1)

µ2n2

(
2e−ε

(1− e−ε)2
+
|DS |
b2

)
The probability is taken over h, s and the noise added to PrivCountSketchb,h,s,ε(DS).

The proof follows by applying Chebyshev’s inequality to the following lemma:
Lemma C.1. If h and s are drawn from a mutually 4-way independent hash family (Definition B.2),
then

E[QTC] = SumOverJoinDR,DS
(f)

and

Var[QTC] ≤ |f |2∞|DR|(k + 1)

(
2e−ε

(1− e−ε)2
+
|DS |
b2

)
where k is the number of possible values allowed in S’s value column, |f |∞ = supx,y f(x, y),
C = PrivCountSketchb,h,s,ε(DS), and the randomness is over the choice of h and s and the noise
from TGeom(e−ε) that was added to C.

Proof. We write C = Z +
∑

(id,y)∈DS
C(id, y) where C(id, y) is a vector with s(id, y) at co-

ordinate h(id, y) and 0 everywhere else, and Z is a vector of independent TGeom(e−ε) random
variables.

For every id, x, y, we have
q(id, x, y)TC(id, y) = f(x, y) (1)

On the other hand, if (id, y′) ̸= (id′, y) then E[q(id, x, y′)TC(id′, y)] = 0. This follows from the
facts that s is independent of h and that s is two-way independent and so E[s(id, y′)s(id′, y)] = 0.
Finally, E[q(id, x, y)TZ] is zero, since Z is independent of Q and has expectation zero. So:

E[QTC] =E


 ∑

(id,x)∈DR

k∑
y′=1

q(id, x, y′)

T

·

Z +
∑

(id′,y)∈DS

C(id′, y)




=
∑

(id,x)∈DR

k∑
y′=1

∑
(id′,y)∈DS

E[q(id, x, y′)TC(id′, y)]

=
∑

(id,x,y)∈DR▷◁DS

f(x, y)

=SumOverJoinDR,DS
(f)

Moving on to the variance, we have

Var[QTC] =E[(QTC − SumOverJoinDR,DS
(f))2]

=E[(A+B − SumOverJoinDR,DS
(f))2]
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where A =
∑

(id,x)∈DR

∑k
y=1 q(id, x, y)

TZ and

B =
∑

(id,x)∈DR

k∑
y′=1

∑
(id′,y)∈DS

q(id, x, y′)TC(id′, y)

Using (1) can write

B − SumOverJoinDR,DS
(f) =

∑
(id,x)∈DR

k∑
y′=1

∑
(id′,y)∈DS

[(id, y′) ̸= (id′, y)]q(id, x, y′)TC(id′, y)

=
∑

(id,x)∈DR

k∑
y′=1

∑
(id′,y)∈DS

[(id, y′) ̸= (id′, y)][h(id, y′) = h(id′, y)]·
s(id, y′)s(id′, y)f(x, y) (2)

where [(id, y′) ̸= (id′, y)] denotes a function which is 0 whenever id = id′ and y′ = y and 1
otherwise, and similarly [h(id, y′) = h(id′, y)] is 1 when the hashes are equal. We write,

Var[QTC] =E[A2] + 2E[A(B − SumOverJoinDR,DS
(f))] +E[(B − SumOverJoinDR,DS

(f))2]

and compute each term separately.

E[A2] =
∑

(id,x)∈DR

k∑
y=1

f(x, y)2
2e−ε

(1− e−ε)2
≤ 2k|DR|e−ε|f |2∞

(1− e−ε)2
(3)

Note that cross terms in A2 are zero in expectation because each includes a product s(id, y)s(id′, y′)
where (id, y) ̸= (id′, y′). The variance of the two-sided geometric distribution comes from
Lemma B.1. We have

2E[A(B − SumOverJoinDR,DS
(f))] = 0 (4)

since (referring to (2)) each term includes a product of distinct ID-y pairs s(id, y)s(id′, y′)s(id′′, y′′)
or s(id, y)s(id′, y′)2 which are both 0 in expectation since s is 3-way independent. Finally, looking
at (2), we see

E[(B − SumOverJoinDR,DS
(f))2] =

∑
(id,x)∈DR

y′∈{1..k}
(id′,y)∈DS

(id′′,x′)∈DR

y′′′∈{1..k}
(id′′′,y′′)∈DS

C ·D · f(x, y) · f(x′, y′′)

where C = [(id, y′) ̸= (id′, y)][(id′′, y′′′) ̸= (id′′′, y′′)] Pr[h(id, y′) = h(id′, y) ∧ h(id′′, y′′′) =
h(id′′′, y′′)] and

D = E[s(id, y′)s(id′, y)s(id′′, y′′′)s(id′′′, y′′)]

Since s is 4-way independent, D is 1 when every pair in {(id, y′), (id′, y), (id′′, y′′′), (id′′′, y′′)}
appears at least twice, and 0 otherwise. So, C · D is 1/b2 when either (id, y′) = (id′′, y′′′) ̸=
(id′, y) = (id′′′, y′′) or (id, y′) = (id′′′, y′′) ̸= (id′, y) = (id′′, y′′′) and 0 otherwise, so

E[(B − SumOverJoinDR,DS
(f))2] =

1

b2

∑
(id,x)∈DR

y′∈{1..k}
(id′,y)∈DS

[(id, y′) ̸= (id’, y)]f(x, y)2

+
1

b2

∑
(id,x,y)∈DR▷◁DS

(id′,x′,y′)∈DR▷◁DS

[(id, y′) ̸= (id′, y)]f(x, y)f(x′, y′)

≤ 1

b2
(k|DR||DS |+ |DR ▷◁ DS |2)|f |2∞ (5)
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Combining (3), (4) and (5) gives:

Var[QTC] ≤|f |2∞
(
2ke−ε|DR|
(1− e−ε)2

+
1

b2
(k|DR||DS |+ |DR ▷◁ DS |2)

)
≤|f |2∞|DR|(k + 1)

(
2e−ε

(1− e−ε)2
+
|DS |
b2

)
where for the last inequality we use the fact that |DR ▷◁ DS | ≤ min{|DR|, |DS |} since by assump-
tion identities are unique.

D Optimization: Proof and generalization of Theorem 6.4 (Optimization)

Here we state and prove Thm. D.2, a generalization of Thm. 6.4. For the proof of Thm. 6.4 itself, see
Section D.2.

Our general optimization theorem states that our optimization method, Algorithm 3 from §6, produces
close-to-optimal results under certain conditions. Specifically, we show that the estimated optimal
function f̂ , which we define in Definition 6.3 and show how to compute in §6.2, has a value close
to the true optimum fopt = argminf∈F SumOverJoinDR,DS

(f). Our bound on the accuracy of f̂
given in Thm. D.2 depends on a quality score (Definition D.1) and the uniform covering number of
the function class.
Definition D.1. The quality rating κ(DR, DS , k, b, ε) > 0 depends on a pair of datasetsDR ⊆ U×X
and DS ⊆ U × {1..k}, an integer b > 0 (number of hash buckets) and a real number ε > 0 (privacy
parameter), and is defined as:

κ(DR, DS , k, b, ε) =
|DR ▷◁ DS |WRWS

kϕ+ ψ

where

ϕ =
|DR|

|DR ▷◁ DS |
ψ =

|DS |
|DR ▷◁ DS |

− 1

WR = min

{
1,

b

5k|DR|

}
WS = min

{
1

4
, ε,

1

14

√
b

|DS |

}
Theorem D.2 (Generalization of Thm. 6.4). Fix a pair of datasets DR, DS , parameters b (number of
hash buckets) and ε > 0, a bound M > 0, a class F of functions f : X × Y → [−M,M ], and an
error parameter µ > 0. Let C = PrivCountSketchb,h,s,ε(DS) be the sketch sent by S, and

fopt = argmin
f∈F

SumOverJoinDR,DS
(f)

f̂ = argmin
f∈F

ΦDR,C(f)

That is, fopt and f̂ are the true optimal function and the function returned by Algorithm 3, respectively.
Then

Pr

[
SumOverJoinDR,DS

(f̂)

|DR ▷◁ DS |
>

SumOverJoinDR,DS
(fopt)

|DR ▷◁ DS |
+ µ

]

≤(c+ 1) exp

(
−Ω

(
µ2 κ(DR, DS , k, b, ε)

M2

))
where c is the uniform covering number

c = N∞

(
µWRWS

72kϕ
,F , |DR ▷◁ DS |

)
and κ, ϕ,WR,WS are given in Definition D.1.

For reference, we define N∞ in Appendix B.4. We prove Thm. D.2 through a careful combination of
tail bounds. It has similarities to classic machine learning results relating empirical loss to expected
loss on an underlying distribution, but note that we instead relate two empirical values: the sum of a
function over a true join, versus what we recover from the sketch.
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D.1 Proof of Theorem D.2

Central to the proof is the following bound on the error in the score of a single function:

Lemma D.3. Fix a pair of datasets DR, DS , parameters b (number of hash buckets) and ε > 0,
and a bound M > 0. Then there is a real number β = β(DR, DS , b, ε) ≥ 1

18WRWS , where WR

and WS are as in Definition D.1, such that for every function f : X × Y → [−M,M ], the value
β−1 ΦDR,C(f) approximates SumOverJoinDR,DS

(f) in the following sense.

Let the hash functions h : U → {1..b} and s : U → {−1, 1} be sampled uniformly at random, and
let C = PrivCountSketchb,h,s,ε(DS). Then for every µ > 0,

Pr

[
|β−1 ΦDR,C(f)− SumOverJoinDR,DS

(f)|
|DR ▷◁ DS |

≥ µ
]

≤4 exp
(
−µ

2 κ(DR, DS , k, b, ε)

720M2

)
We first show how to prove Thm. D.2 from Lemma D.3, and then prove Lemma D.3 in §D.1.1.

Proof of Thm. D.2 from Lemma D.3. The proof can be summarized as a chain of two approximate
equalities and one inequality:

SumOverJoinDR,DS
(f̂) ≈ β−1 ΦDR,C(f̂) ≤ β−1 ΦDR,C(fopt)

≈ SumOverJoinDR,DS
(fopt)

where each of the≈ is proved by Lemma D.3, and the≤ follows by the definition of f̂ . Unfortunately,
since f̂ depends on some randomness (the noise added for privacy, and the hash functions), we
cannot directly prove the first ≈ through an application of Lemma D.3, and so we first find a cover of
functions, and apply the Lemma to each function in the cover.

Let J ⊆ X × Y be the inner join DR ▷◁ DS excluding the id column. Let V ⊆ R|J| be a set of size
c which is an ℓ∞ µWRWS

72kϕ -cover of F|J .

For any f, f ′ ∈ F satisfying the “closeness” condition guaranteed by the cover; that is, as long as

∀(x, y) ∈ J |f(x, y)− f ′(x, y)| < µ

4kϕ

is true, we have

|SumOverJoinDR,DS
(f)− SumOverJoinDR,DS

(f ′)| ≤
∑

(id,x,y)∈DR▷◁DS

|f(x, y)− f ′(x, y)|

≤|DR ▷◁ DS |
µWRWS

72kϕ

≤µ
4
|DR ▷◁ DS | (6)

and similarly, from Definition 6.2 and the triangle inequality, together with Lemma D.8 (which says
β ≥ 1

18WRWS),

|β−1 ΦDR,C(f)− β−1 ΦDR,C(f
′)| ≤β−1

∑
(id,x)∈DR

k∑
y=1

1

NR(h(id, y))
·

|s(id, y) clip(C)h(id,y)(f(x, y)− f ′(x, y))|

≤ 18

WRWS
k|DR|

µWRWS

72kϕ

=
µ

4
|DR ▷◁ DS | (7)

(For the last step, recall ϕ = |DR|
|DR▷◁DS | .)
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Let E be the event that every function in V , as well as fopt, has its value approximated by β−1 times
its score within µ

4 :

E =

{
∀f ∈ V ∪ {fopt}

∣∣∣∣ ∣∣∣∣SumOverJoinDR,DS
(f)

|DR ▷◁ DS |
− β−1 ΦDR,C(f)

|DR ▷◁ DS |

∣∣∣∣ < µ

4

}
By combining Lemma D.3 (with µ

4 in the place of µ) with a union bound over every f ∈ V ∪ {fopt},

Pr[Ec] ≤4(|V |+ 1) exp

(
−µ

2 κ(DR, DS , k, b, ε)

11520M2

)
Assume E holds and let f̂ ′ be a function in V which is close to f̂ ; that is, ∀(x, y) ∈ J |f̂(x, y) −
f̂ ′(x, y)| < µ

4kϕ . Then, using (6) and (7), and the fact that by definition ΦDR,C(f̂) ≤ ΦDR,C(fopt):

SumOverJoinDR,DS
(f̂)

|DR ▷◁ DS |
≤SumOverJoinDR,DS

(f̂ ′)

|DR ▷◁ DS |
+
µ

4

≤β
−1 ΦDR,C(f̂

′)

|DR ▷◁ DS |
+ 2

µ

4

≤β
−1 ΦDR,C(f̂)

|DR ▷◁ DS |
+ 3

µ

4

≤β
−1 ΦDR,C(fopt)

|DR ▷◁ DS |
+ 3

µ

4

≤SumOverJoinDR,DS
(fopt)

|DR ▷◁ DS |
+ 4

µ

4

D.1.1 Proof of Lemma D.3

Restated for convenience:

Lemma D.3. Fix a pair of datasets DR, DS , parameters b (number of hash buckets) and ε > 0,
and a bound M > 0. Then there is a real number β = β(DR, DS , b, ε) ≥ 1

18WRWS , where WR

and WS are as in Definition D.1, such that for every function f : X × Y → [−M,M ], the value
β−1 ΦDR,C(f) approximates SumOverJoinDR,DS

(f) in the following sense.

Let the hash functions h : U → {1..b} and s : U → {−1, 1} be sampled uniformly at random, and
let C = PrivCountSketchb,h,s,ε(DS). Then for every µ > 0,

Pr

[
|β−1 ΦDR,C(f)− SumOverJoinDR,DS

(f)|
|DR ▷◁ DS |

≥ µ
]

≤4 exp
(
−µ

2 κ(DR, DS , k, b, ε)

720M2

)
To prove Lemma D.3, we begin by describing the factor β in (Definition D.7) and bounding it
(Lemma D.8). Next, we show ΦDR,C(f) has the correct value in expectation (Lemma D.9), and
finally we complete the proof using a combination of tail bounds.

A technical lemma:

Lemma D.4. For any two nondecreasing sequences a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn,

n∑
i=1

aibi ≥
1

n

(
n∑

i=1

ai

)(
n∑

i=1

bi

)

Proof. First, we rewrite each side of the inequality:
n∑

i=1

aibi =
1

2n

n∑
i=1

n∑
j=1

(aibi + ajbj)
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and
1

n

(
n∑

i=1

ai

)(
n∑

i=1

bi

)
=

1

2n

n∑
i=1

n∑
j=1

(aibj + ajbi)

It suffices to show that each term in the first sum is greater than or equal to the corresponding term in
the second sum. To see this, note that

(aibi + ajbj)− (aibj + ajbi) = (ai − aj)(bi − bj)
and ai − aj and bi − bj are either both nonnegative or both nonpositive, depending on whether
i ≤ j.

Lemma D.5. Let X = Z +
∑n

i=1 Si where Z, S1, . . . , Sn are independent random variables, and
Z ∼ TGeom(e−ε) for some ε > 0 and each Si is drawn from the uniform distribution on {−1, 1}.
Then

E[clip(X)] = 0

and

E[clip(X + 1)] > min

{
ε

3
,

1

6⌈
√
n⌉+ 6

}
Proof. The distribution of X is symmetric around 0: Pr[X = x] = Pr[X = −x] for any x. Thus,
Pr[X ≤ −1] = Pr[X ≥ 1], so E[clip(X)] = Pr[X ≥ 1]− Pr[X ≤ 1] = 0.

It remains to bound E[clip(X + 1)], which equals Pr[X ≥ 0]− Pr[X ≤ −2]. Once again using the
symmetry of X , we see Pr[X ≤ −2] = Pr[X ≥ 2], and so

E[clip(X + 1)] = Pr[X ≥ 0]− Pr[X ≥ 2] = Pr[X ∈ {0, 1}]

To avoid some repetition, let T =
∑n

i=1 Si. Since T has the same parity as n, we’ll pay some
attention to parities in what follows. Let n = 2k + r where r ∈ {0, 1} is n’s parity. Then

Pr[X ∈ {0, 1}] =
∞∑

z=−∞
Pr [T = 2z + r] Pr[Z − 2z − r ∈ {0, 1}]

≥
z0∑

z=−z0−r

Pr [T = 2z + r] Pr[Z − 2z − r ∈ {0, 1}]

where z0 will be chosen later. For an integer z, let az = Pr[T = 2z + r] and bz = Pr[Z − 2z − r ∈
{0, 1}], so

E[clip(X + 1)] = Pr[X ∈ {0, 1}] ≥
z0∑

z=−z0

azbz

Consider the sequence z = 0,−1, 1,−2, 2,−3, 3, . . .: that is 0 and then−i, i for each positive integer
i. Both (az) and (bz) are nondecreasing with respect to this order:

a0 ≥ a−1 ≥ a1 ≥ a−2 ≥ a2 ≥ · · ·
and

b0 ≥ b−1 ≥ b1 ≥ b−2 ≥ b2 ≥ · · ·
This nondecreasing property of (az) follows because (T + n)/2 is a binomial random variable with
mean n/2, and so its probability mass falls away monotonically from the mode(s) at (T + n)/2 =
⌊n/2⌋, ⌈n/2⌉, that is, T = −r, r. The nondecreasing property for (bz) follows from the fact that the
probability mass of Z falls away monotonically from the mode at Z = 0.

Using the above order, we may apply Lemma D.4 to the sequences (az), (bz), to get:

E[clip(X + 1)] =

z0∑
z=−z0−r

azbz

≥ 1

2z0 + r + 1

(
z0∑

z=−z0−r

az

)(
z0∑

z=−z0−r

bz

)

=
1

2z0 + r + 1
AB
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where A = Pr[T ∈ [−2z0−r, 2z0+r]], B = Pr[Z ∈ [−2z0−r, 2z0+r+1]]. From the probability
mass function of TGeom(e−ε) we directly compute B = 1− e−(2z0+r+1)ε. We apply Hoeffding’s
inequality to see

A > 1− 2 exp

(
− (2z0 + r)2

2n

)
Taking z0 = ⌈

√
n⌉ gives A > 1− 2e−2 and B = 1− e−(2⌈

√
n⌉+r+1)ε. If 2⌈

√
n⌉+ r + 1 ≥ ε, then

B ≥ 1− e−1, so we have

E[clip(X + 1)] >
(1− 2e−2)(1− e−1)

2⌈
√
n⌉+ r + 1

≥ 1

6⌈
√
n⌉+ 6

Otherwise (2⌈
√
n⌉+r+1 < ε) we use the fact that for x < 0, ex < 1+x+ x2

2 to getB > Cε− 1
2C

2ε2

where C = 2⌈
√
n⌉+ r + 1 < ε, and so

E[clip(X + 1)] >
1

C
(1− 2e−2)(Cε− 1

2C
2ε2)

=(1− 2e−2)(1− 1
2Cε)ε

> 1
3ε

Lemma D.6. If X is a binomially-distributed random variable X ∼ Binom(n, p) then

Pr[X ≥ max{5np, 1}] < 1

3

Proof. Let P = Pr[X ≥ max{5np, 1}] = min{Pr[X ≥ 5np],Pr[X ≥ 1]}.
If np < 1

3 , then using Markov’s inequality,

P ≤ Pr[X ≥ 1] ≤ E[X] = np <
1

3

Otherwise (np ≥ 1
3 ), we apply the Chernoff bound in the following form:

Pr[X > (1 + δ)E[X]] <

(
eδ

(1 + δ)1+δ

)E[X]

taking δ = 4 to get

P ≤ Pr[X ≥ 5np] <

(
e4

55

)np

≤
(
e4

55

) 1
3

<
1

3

Definition D.7. Given datasets DR, DS and parameters b, ε, we define

β(DR, DS , b, ε) =
E[ΦDR,C(1)]

SumOverJoinDR,DS
(1)

where 1 is the constant function 1(x, y) = 1, and the expectation is taken over the random
choice of hash functions h, s and the noise from TGeom(e−ε) that party S added to C. (Note
that SumOverJoinDR,DS

(1) = |DR ▷◁ DS |.)
Lemma D.8. β(DR, DS , b, ε) ≥ 1

18WRWS where WR and WS are as in Definition D.1.

Proof. For any id ∈ U and i ∈ {1..k}, define

T (DR, C, id, i) :=
1

NR(h(id, i))
s(id, i) clip(C)h(id,i)

So that

β(DR, DS , b, ε) =
E[ΦDR,C(1)]

|DR ▷◁ DS |

=
1

|DR ▷◁ DS |
∑

(id,x)∈DR

k∑
i=1

E[T (DR, C, id, i)]
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It suffices to show that for every (id, x) ∈ DR and i ∈ {1..k}, if (id, yi) ∈ DS , then

E[T (DR, C, id, i)] ≥
1

18
WRWS (8)

and otherwise E[T (DR, C, id, i)] = 0.

Suppose (id, yi) ̸∈ DS . Then s(id, i) is independent of C and NR(h(id, i)), and so the probability
distribution of T (DR, C, id, i) is symmetric about 0, so E[T (DR, C, id, i)] = 0 as required.

Now suppose (id, yi) ∈ DS . Let NR = NR(h(id, i)) and define NS to be the number of rows
(id′, yi′) ∈ DS such that h(id′, i′) = h(id, i). Note NR ≥ 1 because (id, x) ∈ DR, and NS ≥ 1
because(id, yi) ∈ DS . Then

E[T (DR, C, id, i)] =
|DR|∑
nR=1

|DS |∑
nS=1

Pr[NR = nR ∧NS = nS ]EnR,nS

where
EnR,nS

= E[T (DR, C, id, i)|NR = nR ∧NS = nS ]

Conditioned on a particular value NS = nS ≥ 1, s(id, i)Ch(id,i) is distributed as

1 + Z +

nS−1∑
j=1

Sj

where Z ∼ TGeom(e−ε) is the noise party S added to C for privacy, and S1, . . . , SNS−1 are
independent uniform samples from {−1, 1}, each having the value s(id, i)s(id′, i′) for some other
(id′, i′) ∈ DS for which h(id′, i′) = h(id, i). So, by Lemma D.5,

EnR,nS
>

1

nR
min

{
ε

3
,

1

6⌈
√
nS − 1⌉+ 6

}
(9)

In particular, EnR,nS
≥ 0, so in our effort to lower bound E[T (DR, C, id, i)], we are free to focus

our attention on a subset of the terms:

E[T (DR, C, id, i)] ≥
⌊BR⌋∑
nR=1

⌊BS⌋∑
nS=1

Pr[NR = nR ∧NS = nS ]EnR,nS

≥Pr[NR ≤ BR ∧NS ≤ BS ]Emin

where we choose

BR = min

{
|DR|, 1 + max

{
5k|DR|

b
, 1

}}
BS = min

{
|DS |, 1 + max

{
5|DS |
b

, 1

}}
and Emin is the minimum value of EnR,nS

over all nR ≤ BR, nS ≤ BS .

Recall that to complete our proof it suffices to prove (8). For this, it suffices to show that

Pr[NR ≤ BR ∧NS ≤ BS ] ≥
1

3
(10)

and
Emin ≥

1

6
WRWS (11)

(10) follows from Lemma D.6 since NR − 1 ∼ Binom(n = k|DR| − 1, p = 1
b ) and NS − 1 ∼

Binom(n = |DS | − 1, p = 1
b ).

It remains to prove (11).
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From (9) we have

Emin ≥
1

⌊BR⌋
min

{
ε

3
,

1

6⌈
√
⌊BS⌋ − 1⌉+ 6

}
By considering the cases 5k|DR|

b ≥ 1, 5k|DR|
b ≤ 1 separately it can be seen that 1

⌊BR⌋ ≥
min{ 12 ,

b
10k|DR|} =

1
2WR. It remains only to be shown that

min

{
ε

3
,

1

6⌈
√
⌊BS⌋ − 1⌉+ 6

}
≥ 1

3
WS

We consider two cases. If 5|DS |
b ≤ 1, then BS = 2 and

min

{
ε

3
,

1

6⌈
√
⌊BS⌋ − 1⌉+ 6

}
= min

{
ε

3
,
1

12

}
Otherwise ( 5|DS |

b > 1) we have BS = 1 + 5|DS |
b > 2, and so

min

{
ε

3
,

1

6⌈
√
⌊BS⌋ − 1⌉+ 6

}
≥min


ε

3
,

1

6

⌈√
5|DS |

b

⌉
+ 6


≥min

ε

3
,

1

18
√

5|DS |
b


≥min

{
ε

3
,
1

42

√
b

|DS |

}
In both cases, we find

min

{
ε

3
,

1

6⌈
√
⌊BS⌋ − 1⌉+ 6

}
≥min

{
1

12
,
ε

3
,
1

42

√
b

|DS |

}
=

1

3
WS

as required.

Lemma D.9. For any datasets DR, DS and parameters b, ε, for uniformly random functions h :
U → {1..b} and s : U → {−1, 1},

E[ΦDR,C(f)] = β(DR, DS , b, ε) SumOverJoinDR,DS
(f)

where C = PrivCountSketchb,h,s,ε(DS).

Proof.

E[ΦDR,C(f)] =
∑

(id,x)∈DR

k∑
i=1

f(x, yi)E

[
1

NR(h(id, i))
s(id, i) clip(C)h(id,i)

]

=
∑

(id,x)∈DR

k∑
i=1

f(x, yi)E[T (DR, C, id, i)]

with T as defined in the proof of Lemma D.8. As observed in that proof, when (id, yi) ̸∈ DS we
have E[T (DR, C, id, i] = 0, and so,

E[ΦDR,C(f)] =
∑

(id,x,yi)∈DR▷◁DS

f(x, yi)E[T (DR, C, id, i)] (12)

By the definition of β,∑
(id,x,yi)∈DR▷◁DS

E[T (DR, C, id, i)] = β(DR, DS , b, ε)|DR ▷◁ DS | (13)
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Now, observe that T (DR, C, id, i) has exactly the same distribution for every (id, x, yi) ∈ DR ▷◁

DS : it is distributed as 1
NR

(1 + Z +
∑NS

i=1 Si) as described in the proof of Lemma D.8, where the
random variables NR and NS are counts of hash collisions with (id, i). So, E[T (DR, C, id, i)]
has the same value for any (id, x, yi) ∈ DR ▷◁ DS . From (13) we see that value is exactly
β(DR, DS , b, ε), and so from (12) we have

E[ΦDR,C(f)] =
∑

(id,x,yi)∈DR▷◁DS

f(x, yi)β(DR, DS , b, ε)

=β(DR, DS , b, ε) SumOverJoinDR,DS
(f)

Proof of Lemma D.3. We begin with an account of the randomness affecting ΦDR,C(f), as being
in three parts: hash values h(id, i) ∈ {1..b}, hash values s(id, i) ∈ {−1, 1}, and the noise values
Z ∼ TGeom(e−ε) that were added by party S to each coordinate of the private count sketch C. We
define a sequence of random variables representing each of these parts.

Let id1, id2, . . . , id|DR| ∈ U be the identities that appear in DR. Let s = |DS | − |DR ▷◁ DS |
(the number of identities that appear in DS but not DR) and let (id′1, yi1), . . . , (id

′
n, yis) ∈ DS be

the entries in DS which do not participate in the join DR ▷◁ DS . We define the following random
variables:

• Hi,j := h(idi, j) ∼ Unif({1..b}), for i = 1, . . . , |DR| and j ∈ {1..k};

• Si,j := s(idi, j) ∼ Unif({−1, 1}), for i = 1, . . . , |DR| and j ∈ {1..k};

• H ′
i := h(id′j , ij) ∼ Unif({1..b}) for j = 1, . . . , s;

• S′
i := s(id′j , ij) ∼ Unif({−1, 1}) for j = 1, . . . , s; and

• Zi ∼ TGeom(e−ε) for i ∈ {1..b}.

We will complete the proof in two steps: first, we use Hoeffding’s inequality to deal with the variables
Zi, and then we use McDiarmid’s inequality to deal with the other four kinds of random variable
(H,S,H ′, S′). The value C, defined next, connects the two steps together.

Let A be the expected value of ΦDR,C(f) with respect to the random variables Zi:

A = EZ1,...,Zb
[ΦDR,C(f)]

Note that A is a random variable still depending on the values Hi,j , Si,j , H
′
i, S

′
i, and

E[A] = E[ΦDR,C(f)

We have

Pr

[
|β−1 ΦDR,C(f)− SumOverJoinDR,DS

(f)|
|DR ▷◁ DS |

≥ µ
]

=Pr[|ΦDR,C(f)− β SumOverJoinDR,DS
(f)| ≥ βµ|DR ▷◁ DS |]

≤Pr[|ΦDR,C(f)−A| ≥ βµ|DR▷◁DS |
2 ]︸ ︷︷ ︸

(∗)

+ Pr[|A− β SumOverJoinDR,DS
(f)| ≥ βµ|DR▷◁DS |

2 ]︸ ︷︷ ︸
(#)

We’ll begin with (∗). The probability is taken over the choice of h, s and Z, but we will look at the
worst-case hash functions h and s:

(∗) ≤ max
h0,s0

Pr[|ΦDR,C(f)−A| > βµ|DR▷◁DS |
2 |h = h0, s = s0]

For fixed functions h0, s0, we can write

ΦDR,C(f) =

b∑
a=1

Xa
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where Xa = 0 when NR(a) = 0 and otherwise

Xa =
clip(C)a
NR(a)

∑
(id,x)∈DR

k∑
i=1

[h(id, i) = a]s(id, i)f(x, yi)

Here, [h(id, i) = a] is the indicator with value 1 if h(id, i) = a and 0 otherwise. Xa is bounded
between −M and M , since NR(a) equals the number of terms in the sum for which [h(id, i) =
a] = 1. Therefore, changing the value of one variable Za while leaving the others the same changes
the corresponding Xa by at most 2M . Now, ΦDR,C(f) depends on at most k|DR| random variables
Za, namely the ones for which at least one pair (id, i) hashes to a for some id ∈ DR. We apply
Hoeffding’s inequality to get:

(∗) ≤ 2 exp

(
−β

2µ2|DR ▷◁ DS |2

8k|DR|M2

)
To bound (#) we use McDiarmid’s inequality (Thm. B.3). We will view A as being a function of the
random variables (Hi,j)i,j , (Si,j)i,j , (H

′
i)i, (S

′
i)i, described above and call this function r:

r((Hi,j)i,j , (Si,j)i,j , (H
′
i)i, (S

′
i)i) := A = EZ1,...,Zb

[ΦDR,C(f)]

Changing the value of one hash value Hi,j or H ′
i affects at most two of the variables Xa, and so

changes (#) by at most 4M . Changing the value of one hash value Si,j or S′
i affects at most one of

the variables Xa, and so changes (#) by at most 2M . Summing up the squares of these difference
values, we get (42 + 22)(k|DR|+ s)M2 = 20M2, so applying Thm. B.3, we have:

(#) ≤ 2 exp

(
− β

2µ2|DR ▷◁ DS |2

40(k|DR|+ s)M2

)
Combining these bounds with Lemma D.8, we have

(∗) + (#) ≤4 exp
(
− β

2µ2|DR ▷◁ DS |2

40(k|DR|+ s)M2

)
≤4 exp

(
−WRWSµ

2|DR ▷◁ DS |
720(kϕ+ ψ)M2

)
as required.

D.2 Proof of Theorem 6.4

We prove Thm. 6.4, repeated here for convenience. Recall that F is a set of classifiers, and for a
function f ∈ F , f : X → {0, 1}, we define the corresponding error function ef (x, y) = |f(x)− y|;
for the full context, see §6.3.
Theorem 6.4. For any datasetsDR ⊆ U×X,DS×U×{1..k}, function class F , privacy parameter
ε > 0, number of hash buckets b and accuracy parameter µ > 0, if h and s are drawn uniformly
at random from the set of all4 functions U × {1..k} → {1..b}, the following holds. Let fopt be the
classifier that minimizes Lf , and let f̂ be the classifier corresponding to the function ef̂ output by
Algorithm 3. Let d be the VC dimension of F , n = |DR ▷◁ DS |, and

ϕ =
|DR|
n

ψ =
|DS |
n
− 1 WR = min

{
1,

b

5k|DR|

}
WS = min

{
1

4
, ε,

1

14

√
b

|DS |

}
Then

Pr

[
Lf̂ − Lfopt

n
> µ

]
≤ exp

(
−Ω

(
WRWS

ϕ+ ψ
µ2n− d log n

))
We prove the theorem by combining Thm. D.2 with a standard result relating covering number to VC
dimension (Lemma B.8), as well as Lemma B.9 to relate the VC dimension of F to that of the class
G of error functions ef .

4In practice, cryptographically secure hash functions should give the same guarantees.
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Proof. Taking M = 1, Thm. D.2 (applied using the function class G = {ef | f ∈ F}) says:

Pr

[
SumOverJoinDR,DS

(ef̂ )

n
>

SumOverJoinDR,DS
(efopt)

n
+ µ

]
≤(c+ 1) exp(−Ω(µ2 κ(DR, DS , k, b, ε)))

Where c is the uniform covering number

c := N∞

(
µWRWS

72kϕ
,G, n

)
For any f ∈ F , we have SumOverJoinDR,DS

(ef ) = Lf , so we can rewrite that as:

Pr

[
Lf̂ − Lfopt

n
> µ

]
≤ (c+ 1) exp(−Ω(µ2 κ(DR, DS , k, b, ε)))

All that remains is to bound the uniform covering number c. Note that the range of functions in G is
{0, 1}, and the ℓ∞ distance between points in {0, 1}n is always 1. An examination of Definitions
B.4 and B.5 then shows:

• If µWRWS

72kϕ ≥ 1 then c ≤ 1.

• If µWRWS

72kϕ < 1 then for any y⃗ ∈ (X × {0, 1})n we have N (µWRWS

72kϕ , y⃗, ℓ∞) = |Gy⃗|, and
so c = maxy⃗∈(X×{0,1})n |Gy⃗| = ΠG(n).

So:
c ≤ΠG(n)

Apply Lemma B.8.

≤nVCdim(G) + 1

Apply Lemma B.9 (recall d = VCdim(F)).
=nd + 1

So:

Pr

[
Lf̂ − Lfopt

n
> µ

]
≤(nd + 2) exp(−Ω(µ2 κ(DR, DS , k, b, ε)))

= exp(−Ω(µ2 κ(DR, DS , k, b, ε)− d log n))

D.3 Proof of Corollary 6.5

We prove Cor. 6.5, repeated here for convenience:
Corollary 6.5. Assume DR and DS have the same set of identities, so the join is “perfect” in the
sense that |DR| = |DS | = |DR ▷◁ DS |. Let n = |DR ▷◁ DS | and let d be the VC dimension of F .
Assume also that b = Ω(n). Let fopt be the classifier that minimizes Lf , and let f̂ be the classifier
corresponding to the function ef̂ output by Algorithm 3. Then for any µ > 0,

Pr

[
Lf̂ − Lfopt

n
> µ

]
≤ exp(−Ω(µ2nε− d log n))

Proof. By Thm. 6.4, it suffices to show
WRWS

ϕ+ ψ
= Ω(ε) (14)

Where WR,WS , ϕ, ψ are given in the theorem statement. Indeed, since by assumption |DR| =
|DS | = n, we have

ϕ = 1, ψ = 0

and since by assumption b = Ω(n) = Ω(|DR|) = Ω(|DS |), we have
WR = Ω(1),WS = Ω(ε)

and (14) follows.
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E Training a binary classifier with a difference sketch

If R wishes to train a binary classification model to predict labels in {−1, 1} that appear in DS ,
the approach described in this section might give better results than the one described in §6.2.
The reconstructed dataset it produces does not have weights, so will work with a broader class of
optimization algorithms. Also, the lack of negative weights avoids a problem with unbounded loss
functions: since the approach in §6.2 can produce a dataset with negative weights, if the loss function
is not bounded above, then the training loss may not be bounded below, causing the optimization
algorithm to diverge.

Instead of the usual private count sketch, S will send a difference sketch C = DSb,h,s,ε(DS) defined
as follows to R, along with the parameters b, h, s, ε.

Definition E.1. The difference sketch DSb,h,s,ε(DS) ∈ Zb is only defined when Y = {−1, 1}
(so k = 2). It equals PrivCountSketchb,h,s,ε(ids(DS , 1)− ids(DS ,−1)), where ids(DS , y) is the
collection of identities associated with y in DS . As usual, the four parameters b, h, s, ε should be
published along with DSb,h,s,ε(DS).

Based on this and DR, party R builds a dataset D = D(b, h, s,DR, C) which is similar to the one
described in §6.2, but does not have weights:

Definition E.2. To construct D = D(b, h, s,DR, C), for each element (id, x) ∈ DR, R checks
whether s(id)Ch(id) is positive, negative, or zero. If it is positive or negative, R adds the element
(x, 1) or (x,−1) to D, respectively, and if it is zero, R does not add anything to D (we say (id, x) is
dropped).

One justification for using the difference sketch is that as b→∞ (so there are no hash collisions) and
ε→∞ (so no noise is added for privacy), D(b, h, s,DR, C) approaches the true join DR ▷◁ DS (but
without an id column). Besides avoiding negative weights, an advantage of using a difference sketch
instead of an ordinary private count sketch is that each time R processes an element (id, x) ∈ DR,
only one noise sample perturbs the result (the noise that was added to Ch(id)), whereas with an
ordinary private count sketch, two noise samples would affect the answer (the noise values added to
Ch(id,1) and Ch(id,2)).

In our experiments, we found the approach from §6.2 sufficient. We leave the application of difference
sketches to future work.

F Experiments with linear queries

We consider the question of how accurately we can estimate a joint distribution using linear queries.
Suppose R has a categorical feature race that takes values such as white, asian-pac islander and etc.,
and S has label income ≤50K or >50K. In Table 1, we show the true counts of the actual number of
people who fall into the combination of race and income, e.g., the fraction of asian pacific islanders
who make less than 50K. We use the training set of 32,562 rows of the UCI Adult dataset in this
experiment.

Below the true counts in the table are counts estimated by noisy sketches. The estimated count for the
above example can be obtained by a linear query for which f(x, y) = 1 for y = 0 and x = asian-pac
islander. Recall that y ∈ {1..k}, and for this example k = 2 with y = 0 and y = 1 corresponding to
≤50K or >50K respectively.

For this experiment, we set ε = 1 and the sketch dimension is set to 500K. In the event a linear query
produces a negative answer or 0, we change it 1 to avoid negative fractions. In order to compute the
error of the distribution, we compute the average of the absolute difference between the true fraction
who make less than 50K for each value of x and the estimated fraction. Note that a linear query that
involves a smaller number of people is more likely to misestimated, e.g., American Indian/Eskimo.
Conversely, linear queries that involve a larger number of people are better estimated. We expect this
outcome. Even if one party held all of the data, i.e., no joins, but we wanted a differentially private
answer the TGeom(e−ε) noise drowns out the signal for a small number of people.

Next, we fix the sketch dimension to 500K and vary the differential privacy parameter ε in the
top panel of Fig. 7. Note how the error drops with increasing ε as expected. We also repeat this
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S:Income R: White R: Asian-Pac R: Amer-Indian R: Other R: Black
. Islander Eskimo

True counts ≤ 50K 20699 763 275 246 2737
>50K 7117 276 36 25 387

True fraction < 50K 0.74 0.73 0.88 0.91 0.88
Estimated counts ≤ 50K 20307.0 774.0 307.0 201.0 2787.0

>50K 7308.0 297.0 36.0 22.0 478.0
Estimated fraction < 50K 0.74 0.72 0.90 0.90 0.85

Table 1: Estimating the joint distribution when R holds a feature “race” and S holds income >50K. S
publishes a noisy sketch of their data and R downloads the noisy sketch along with the parameters
k, b, h, s, ε. R’s goal is to estimate the joint distribution, e.g., what fraction of the Asian-pacific
islander population makes less than 50K. The true counts and fraction are shown in the top half of
the table. The estimated counts are shown in the bottom half. The average error across all feature
categories is 0.01. In this table, ϵ = 1 and the sketch dimension is 500K.

experiment for other categorical variables such as sex, education, marital-status and etc. Note the
feature with the highest average error: native-country. This is because there are some categories in
this feature, e.g., Holland, with just a few people in the dataset.

In Fig. 7(b), we fix ε = 1.0 and show the effect of the sketch dimension on average error. As expected,
error drops with increasing sketch dimension.

Figure 7: (a) The average error in estimating the joint distribution declines as ε rises. (b) The average
error fluctuates with sketch dimension less than 10K, but above 10K is relatively flat. Note that the
feature workclass has a large number of buckets with a few people.

G Training details

G.1 UCI Adult Dataset

R has the features race, education, etc, and S has the label income ≤50K or >50K. R would like
to predict the label column given the feature columns. We one-hot encode the categorical columns
for every feature and implement logistic regression in PyTorch with full batch gradient descent for
1K epochs with a learning rate of 1× 10−3. The dataset has 48,845 rows split into a training set of
32,562 rows and a test set of 16,283 rows. S creates a sketch for rows belonging to the train set; the
test set is only used to evaluate the model.

G.2 Extended MNIST

EMNIST is an extension of the widely used MNIST dataset of handwritten characters. We use the
240K (40K) images of digits to train (test) our protocol. The images are 28x28 pixels with labels “0”
through “9”. The sender S generates a private count sketch of the (id, label) pairs and the receiver R
possesses the feature vectors. R would like to learn to predict labels given features.

Stochastic gradient descent plays the role of WeightedOpt, and the function f(x, y) is modelled
by a fully connected neural net with cross-entropy loss with input features x and output labels
y. The neural net has 5 hidden layers with dropout, batch norm, residual connections and ReLU
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activations for a total of 1M parameters. In the non-private setting, we train it using the Adam
optimizer and a learning rate of 10−4, batch size of 128 and obtain a test accuracy of 98.04%. In the
presence of privacy, we conduct experiments to quantify the change in accuracy as we vary d, ε and
|DR|/|DR ▷◁ DS |. We use AdamW with a learning rate of 1× 10−5 and a batch size of 2048 for
200 epochs.

For the experiment involving different k in Fig. 4, we use the EMNIST bymerge dataset of 760K
images. We train a ResNet of 11M parameters, using AdamW with a batch size of 1024 and learning
rate of 1× 10−6 for 25 epochs. For each experiment, we randomly sample k classes from a total of
47 different classes, and train the model from scratch.

H Comparison to local differential privacy

The repository setting explored in this work is similar in some ways to local differential privacy,
also called randomized response [19]. In the local model, individuals perturb their responses before
releasing them, so that their privacy is preserved even if the server gathering responses is untrusted.

Definition H.1 (Local differential privacy). Let ε be a positive real number. A mechanism M is
ε-locally differentially private if it consists of applying some randomized algorithmA to each element
of the input and publishing the results:

M(x1, . . . , xn) = (A(x1), . . . , A(xn))

and that algorithm A satisfies, for any two possible private values x, x′ ∈ X and any S ⊆ Range(A):

Pr[A(x) ∈ S]
Pr[A(x′) ∈ S]

≤ eε

For example, suppose we wish to estimate the fraction of people who have cancer, with X =
{−1,+1}, where +1 means an individual has cancer. The algorithm A could randomly flip an
individual’s answer with probability 1/(1 + eε):

A(x) =

{
x, with probability eε/(1 + eε)

−x, with probability 1/(1 + eε)

and, after gathering the responses, an appropriate correction could be applied to the fraction of +1
responses to compensate for the flipped answers.

By contrast, in the repository model, illustrated in Fig. 1, each party holds a dataset of many
individuals’ responses keyed by unique and sensitive identifiers which must not be revealed. The
challenge is for one party to release a representation of their entire dataset which is differentially
private which another party can combine with their dataset to approximate the result of joining on
the private identifiers. This is an instance of function release in the curator model; the definition of
“differentially private” in Section 3 replaces Definition H.1.

H.1 Is it possible to join on individual identifiers in the local setting?

Ye et al. [38] show how (key, value) pairs can be released in the local model. However, their approach
only works well with keys that appear many times, so it is not a feasible way to join on identifiers
which appear at most once each.

A naïve way to adapt our approach to the local model is illustrated in Fig. 8. Each individual holding
a pair (idi, yi) could release a private count sketch ci = PrivCountSketchb,h,s,ε({(id, y)}) ∈ Zb

of just their own data. The sender could then publish the sum C =
∑nS

i=1 ci ∈ Zb of these individual
responses, instead of PrivCountSketchb,h,s,ε(DS). The problem with this method is that each
coordinate of C has nS independent noise values Zε ∼ TGeom(e−ε) added to it, compared to just
one in the repository setting. This makes it impractical to recover any useful information from C.

Although this example shows the settings are different, there may be better ways to solve this problem
in the local setting. Moreover, techniques from the local differential privacy literature may be useful,
when appropriately adapted to the repository setting.
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Figure 8: One interpretation of local DP in the joinable setting is that each party individually publishes
a locally private sketch of their data – denoted by a “1” in a green circle. Next the public repository
receives each locally private sketch and sums them up to create one sketch, denoted with “2” In the
green circle. Note that the noise in the ensuing summed sketch is now a function of the number of
users in the database. As the number of users in the database grows, the noise drowns out the signal.
The centralized setting requires less noise. (There may be other ways of interpreting local DP in the
joinable setting, this is only one interpretation.)

I Multi-way joins and non-unique identifiers

In this appendix, we conduct some experiments to study multi-way joins and the effects of having
non-unique identifiers.

I.1 Multi-way joins

In the repository setting the receiver party can in principle join with as many senders as it wants. In
§§4–6, we studied the case where the receiver joins with the dataset of one sender. Here we study the
case of two senders for the Adult UCI dataset.

As before, we simulate the join setting by adding a unique id to each row of the dataset and split its
columns. The receiver has education, one sender has relationship and the other sender has income.
The receiver trains a logistic regression model using education and relationship as features to predict
income (more or less than 50K). The test accuracy for different values of ε is shown in blue on the
right side of Fig. 9. Note that the ε value is per sketch, so the total privacy cost of the three-way join
(blue line) is 2ε. For comparison, the red line shows test accuracy if the receiver does a two-way join
using only the income sketch, so their model’s only feature is education. The difference between the
red and blue lines shows that for sufficiently high ε the receiver is able to make use of the three-way
join.

I.2 Non-unique identifiers

We also analyse the case where the identifier is not unique. There are many practical reasons to
consider such a scenario. For instance if two datasets are being joined on legal name, there will
be several rows that correspond to different persons but have the same legal name. Our sketch
(Definition 3.5) is well-defined even if values in the id column (legal name here) are repeated.
However, our Theorems 5.1 and 6.4 no longer apply when identities are not unique, and it is possible
to construct adversarial examples where false matches steer Algorithms 2 or 3 in the wrong direction.
Finding a better solution is a great direction for future work.

In Fig. 10, we show the performance of our method on the EMNIST dataset. We first add a unique
identity to the digits (240K examples), and create sender and receiver datasets with labels and images
respectively. Then we add extra rows to DS which duplicate the identities of existing rows, but with
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Figure 9: Test accuracy of logistic regression on the UCI Adult salary prediction task (§7.1) for a
three-way join. The receiver R joins his features education, with relationship and income. R then
learns a logistic regression model to predict income from relationship and education. The ε value is
per-sketch, so the total privacy budget for a 3-way join (blue line) is 2ε.

Figure 10: Test accuracy on EMNIST image classification task (§7.1) with non-unique identifiers.
The x-axis refers to the number of times an identifier appears in DS .

random labels, and apply our method with ε = 1. At x = 1 no new rows are added and at x = 8 each
identity appears an average of 8 times in DS , once with the true label and 7 times with random labels.
We left DR unchanged. This simulates a situation where “pseudo” identifiers may be repeated but
are independent of the data. The test accuracy on the y-axis shows that our method is robust and
gives useful results even when the randomly-labelled false matches significantly outnumber the true
matches.

Note that assuming duplicate rows have random labels is a strong assumption. Again consider the
use case where legal name is the identifier, and the receiver has the features of a biomedical dataset.
Different people with the same legal name might have non-trivial correlations. For instance, if a
particular legal name is predominant amongst males, certain biological features will be correlated
amongst the duplicate rows having that legal name. Although, it is possible that this correlation might
benefit our method.

J Comparison with secure function evaluation

Secure function evaluation (SFE) protocols are cryptographic protocols for two parties holding values
xA and xB to jointly compute a function f(xA, xB) with neither party learning anything other than
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the value of the function [37, 23]. If xA and xB are sets with f(xA, xB) = xA∩xB then the problem
is called private set intersection (PSI), and if f(xA, xB) = |xA ∩ xB | then it is called private set
intersection cardinality (PSI-CA). These problems can be generalized to joining datasets to answer
linear queries or solve optimization problems. Unfortunately, implementations require multiple
rounds of communication, and we are unaware of a protocol that would allow efficient large neural
network training [35, 9, 11, 28, 27, 34]. PSI is an active area of research, and we expect future
developments to increase efficiency. There are some qualitative differences between our method and
PSI(-CA):

• Interaction: Our method requires no interaction. With PSI, two parties mutually agree to
estimate the intersection of their inputs. With our method parties do not have to pre-agree
on a joint function, and can use the same sketch to estimate joint distributions or train neural
networks using stochastic gradient descent.

• Exact vs. Approximate Answers: While the generality of our sketch implies that more
functions can be estimated without interaction, this flexibility comes at the cost of more
noise and therefore lower accuracy than SFE, which can either give exact answers or add
just enough noise to satisfy DP.

• Simple Implementation: SFE protocols can be quite complex to implement. This paper
proposes a simple implementation with two hash functions and some noise.

• Data Discovery in the Wild: We are targeting a data repository of one-time sketches
enabling data discovery in the wild. The proposed method lowers the barrier to private joins.
Data repositories such as UCI ML repository and MIMIC (healthcare data) presently, rightly,
conceal information about individuals making it challenging to join.

A sketch-based public repository enables fast and easy data discovery.
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