
Appendix382

A Additional Experiments3
383

A.1 Experiments on the ETT datasets384

In the main body, we present a comparison of the benchmark methods on the ETTm2 dataset. In this385

section, we extend our analysis to the remaining three ETT datasets, namely ETTh1, ETTh2, and386

ETTm1, as summarized in Table 7. Our experimental results reveal that Basisformer outperforms all387

other methods in terms of MSE and MAE. Specifically, Basisformer demonstrates a superior average388

MSE reduction of 1.32% , 6.74% and 9.23% when compared to FiLM, Fedformer and DLinear,389

respectively.390

Table 7: Multivariate results for the remaining three ETT datasets using an input length of I = 96 (or I = 36
for the illness dataset) and output lengths of O ∈ {96, 192, 336, 720} (or O ∈ {24, 36, 48, 60} for the illness
dataset). In all experiments, lower MSE values indicate better model performance, and we present the best
results in boldface.

Models Fedformer Autoformer N-HiTS FiLM Dlinear Informer Basisformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.376 0.419 0.449 0.459 0.419 0.413 0.388 0.401 0.386 0.400 0.865 0.713 0.394 0.411
192 0.420 0.448 0.500 0.482 0.468 0.443 0.443 0.439 0.437 0.432 1.008 0.792 0.442 0.437
336 0.459 0.465 0.521 0.496 0.551 0.489 0.484 0.461 0.481 0.459 1.107 0.809 0.473 0.451
720 0.506 0.507 0.514 0.512 0.669 0.559 0.525 0.519 0.519 0.516 1.181 0.865 0.460 0.465

ETTh2

96 0.358 0.397 0.346 0.388 0.374 0.383 0.292 0.341 0.333 0.387 3.755 1.525 0.312 0.356
192 0.429 0.439 0.456 0.452 0.476 0.446 0.378 0.396 0.477 0.476 5.602 1.931 0.382 0.401
336 0.496 0.487 0.482 0.486 0.472 0.446 0.426 0.438 0.594 0.541 4.721 1.835 0.418 0.431
720 0.463 0.474 0.515 0.511 0.932 0.636 0.443 0.455 0.831 0.657 3.647 1.625 0.418 0.438

ETTm1

96 0.379 0.419 0.505 0.475 0.324 0.349 0.357 0.373 0.345 0.372 0.672 0.571 0.342 0.374
192 0.426 0.441 0.553 0.496 0.376 0.379 0.387 0.385 0.380 0.389 0.795 0.669 0.380 0.392
336 0.445 0.459 0.621 0.537 0.409 0.405 0.420 0.407 0.413 0.413 1.212 0.871 0.420 0.418
720 0.543 0.490 0.671 0.561 0.472 0.443 0.478 0.439 0.474 0.453 1.166 0.823 0.492 0.458

A.2 Experimental results with longer length input setting391

Throughout our research, we maintain consistency in our experimental settings by fixing the input392

length to be 96 (with a reduced input length of 36 for the illness dataset), instead of using a longer393

length. The main rationale behind this decision is that, in practical scenarios where the model is394

deployed as an online service and tasked with predicting a long range of the future at a granular level395

of minutes or hours, collecting a lengthy history (i.e., spanning 720 timestamps) for a large number396

of time series in real-time can be quite challenging. Therefore, the adoption of an input length of 96397

proves to be more practical and feasible.398

Given that certain recent methods utilize longer input lengths to yield better performance, irrespective399

of the length, we present supplementary comparison outcomes with extended input lengths in Table400

8. Specifically, Fedformer, Autoformer, and TCN exhibit a decline in performance with an increase401

in input length, and hence, we retain their original outcomes at an input length of 96. In contrast,402

Dlinear employs an input length of 336 (104 for the illness dataset) by default, FiLM utilizes an input403

length that is at most four times of the output length, and N-HiTS adopts an input length that is five404

times of the output length. To enable a fair comparison, we standardize our input length for longer405

inputs to 192 (72 for the illness dataset).406

The experimental results yield several notable findings. Firstly, those methods that benefit from407

longer inputs, namely Dlinear, FiLM, and N-HiTS, exhibit a significant performance decline when408

the input length is reduced from longer settings to an input length of 96. Concretely, Dlinear, FiLM,409

and N-HiTS show performance declines of 25.82%, 19.48%, and 330.42%, respectively. Conversely,410

our approach maintains most of its performance with a slight deterioration of 6.23%, as evident in411

Table 1 and Table 8. Secondly, concerning longer inputs, our method surpasses recent approaches412

such as Dlinear, FiLM, and N-HiTS, with an average MSE performance improvement of 1.35%,413

0.63%, and 7.75%, respectively, and a corresponding evaluation MAE performance improvement of414

3.15%, 2.33%, and 4.06%, respectively. It is noteworthy that our approach requires an input length415

3All the six datasets can be downloaded from https://drive.google.com/drive/folders/
1ZOYpTUa82_jCcxIdTmyr0LXQfvaM9vIy?usp=sharing
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Table 8: Multivariate results for six datasets using a longer input length. Lower MSE indicate superior model
performance, and the best results are presented in boldface.

Models Fedformer Autoformer N-HiTS FiLM Dlinear TCN Basisformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETT

96 0.203 0.287 0.255 0.339 0.176 0.255 0.165 0.256 0.167 0.260 3.041 1.330 0.185 0.270
192 0.269 0.328 0.281 0.340 0.245 0.305 0.222 0.296 0.224 0.303 3.072 1.339 0.247 0.307
336 0.325 0.366 0.339 0.372 0.295 0.346 0.277 0.333 0.281 0.342 3.105 1.348 0.298 0.341
720 0.421 0.415 0.422 0.419 0.401 0.416 0.371 0.389 0.397 0.421 3.135 1.354 0.381 0.393

electricty

96 0.193 0.308 0.201 0.317 0.147 0.249 0.154 0.267 0.140 0.237 0.985 0.813 0.145 0.245
192 0.201 0.315 0.222 0.334 0.167 0.269 0.164 0.258 0.153 0.249 0.996 0.821 0.165 0.263
336 0.214 0.329 0.231 0.338 0.186 0.290 0.188 0.283 0.169 0.267 1.000 0.824 0.178 0.276
720 0.246 0.355 0.254 0.361 0.243 0.340 0.236 0.332 0.203 0.301 1.438 0.784 0.219 0.310

exchange

96 0.148 0.278 0.197 0.323 0.092 0.211 0.079 0.204 0.081 0.203 3.004 1.432 0.084 0.205
192 0.271 0.380 0.300 0.369 0.208 0.322 0.159 0.292 0.157 0.293 3.048 1.444 0.172 0.298
336 0.460 0.500 0.509 0.524 0.341 0.422 0.270 0.398 0.305 0.414 3.113 1.459 0.303 0.403
720 1.195 0.841 1.447 0.941 0.888 0.723 0.536 0.574 0.643 0.601 3.150 1.458 0.781 0.668

traffic

96 0.587 0.366 0.613 0.388 0.402 0.282 0.416 0.294 0.410 0.282 1.438 0.784 0.403 0.293
192 0.604 0.373 0.616 0.382 0.420 0.297 0.408 0.288 0.423 0.287 1.463 0.794 0.421 0.301
336 0.621 0.383 0.622 0.387 0.448 0.313 0.425 0.298 0.436 0.296 1.479 0.799 0.418 0.298
720 0.626 0.382 0.660 0.408 0.539 0.353 0.520 0.353 0.466 0.315 1.499 0.804 0.464 0.312

weather

96 0.217 0.296 0.266 0.336 0.158 0.195 0.199 0.262 0.176 0.237 0.615 0.589 0.168 0.215
192 0.276 0.336 0.307 0.367 0.211 0.247 0.228 0.288 0.220 0.282 0.629 0.600 0.213 0.257
336 0.339 0.380 0.359 0.395 0.274 0.300 0.267 0.323 0.265 0.319 0.639 0.608 0.263 0.292
720 0.403 0.428 0.419 0.428 0.351 0.353 0.319 0.361 0.323 0.362 0.639 0.610 0.343 0.346

illness

24 3.228 1.260 3.486 1.287 1.862 0.869 1.970 0.875 2.215 1.081 6.624 1.830 1.427 0.778
36 2.679 1.080 3.103 1.148 2.071 0.969 1.982 0.859 1.936 0.963 6.858 1.879 1.464 0.813
48 2.622 1.078 2.669 1.085 2.184 0.999 1.868 0.896 2.130 1.024 6.968 1.892 1.660 0.862
60 2.857 1.157 2.770 1.125 2.507 1.060 2.057 0.929 2.368 1.096 7.127 1.918 1.853 0.917

of 192 (72 for the illness dataset), which is at least 40% lower than the input length of the other416

three methods. Furthermore, for even longer input lengths, our model’s performance can be further417

enhanced, signifying that our approach can leverage limited data more efficiently.418

A.3 Additional abalation study419

Impact of the number of basis vectors: We present the performance of the proposed model under420

varying numbers of basis vectors N in Table 9, where N is set to 1, 5, 10, 15, and 20. The results421

demonstrate that the model’s performance remains stable over a wide range of N , indicating its ability422

to adaptively adjust to the number of basis vectors. Notably, when N increases beyond a certain423

threshold, some of the basis vectors may become redundant. To further explore this, we visualize424

a subset of the learned basis vectors when N = 20 in Figure 3. Interestingly, we observe a high425

cosine similarity of −0.93 between two of the bases, suggesting that some basis vectors may not be426

necessary for accurate prediction. Thus, in practical applications, we set N to 10 for all datasets to427

reduce computational complexity without compromising performance.428

Table 9: The impact of the number of bases N on the performance of the model. The electricity dataset is
employed in this experiment. We present the best results in boldface.

basis number 1 5 10 15 20

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.173 0.269 0.171 0.265 0.166 0.259 0.168 0.263 0.168 0.263
192 0.183 0.277 0.178 0.270 0.176 0.270 0.176 0.269 0.176 0.268
336 0.196 0.289 0.192 0.284 0.190 0.283 0.192 0.285 0.193 0.285
720 0.231 0.317 0.229 0.314 0.218 0.306 0.220 0.308 0.224 0.311
avg 0.196 0.288 0.192 0.283 0.187 0.279 0.189 0.281 0.190 0.282
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Figure 3: Two highly correlated basis vectors when the number of basis vectors N is large.
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Impact of the number of the BCAB layers: The ablation study on the number of BCABs is shown429

in Table 10. The findings indicate that stacking a certain number of BCAB modules can enhance the430

performance of the model. However, exceeding a certain threshold can lead to overfitting, resulting431

in a decline in performance. Hence, we recommend the use of two layers of BCABs in practical432

experiments to achieve optimal performance without overfitting the model.433

Table 10: The impact of the number of stacked BCAB on the performance of the model. The electricity dataset
is employed in this experiment. We present the best results in boldface.

BCAB number 1 2 3 4

Metric MSE MAE MSE MAE MSE MAE MSE MAE

96 0.166 0.260 0.166 0.259 0.168 0.263 0.171 0.266
192 0.176 0.270 0.176 0.268 0.176 0.269 0.179 0.272
336 0.187 0.280 0.190 0.283 0.190 0.283 0.191 0.284
720 0.228 0.313 0.218 0.306 0.234 0.319 0.237 0.319
avg 0.189 0.281 0.187 0.279 0.192 0.283 0.194 0.285

Impact of the bottleneck in the forecast module: The performance of the proposed model under434

varying bottleneck settings is presented in Table 11. The results demonstrate that employing a435

bottleneck architecture with a width of 48 can significantly reduce the number of model parameters436

without degrading the performance significantly, as opposed to not using a bottleneck architecture.437

Table 11: The impact of the MLP bottleneck in the forecast module. The electricity dataset is employed in this
experiment. Setting the bottleneck dimension to 96 is equivalent to not using a bottleneck since the input length
is 96. The best results are highlighted in bold. The second best is underlined.

bottleneck 96 48 32 24

Metric MSE MAE MSE MAE MSE MAE MSE MAE

96 0.163 0.257 0.166 0.259 0.172 0.267 0.172 0.269
192 0.172 0.265 0.176 0.268 0.182 0.273 0.186 0.279
336 0.186 0.279 0.190 0.283 0.194 0.286 0.197 0.289
720 0.217 0.305 0.218 0.306 0.230 0.316 0.233 0.317
avg 0.184 0.276 0.187 0.279 0.195 0.286 0.197 0.288

A.4 Sensitivity analysis of the weights for the losses in Eq.(9)438

Our model utilizes three distinct loss functions: the supervised MSE loss for prediction Lpred, the439

self-supervised InfoNCE loss for basis learning Lalign, and the smoothness loss for smoothing the440

basis over time Lalign. During training, we directly combine these loss functions as the model’s441

performance is not significantly impacted by the relative weights of the individual losses within442

a certain range. This assertion is supported by the performance evaluation presented in Figure 4,443

which investigates the impact of different weight combinations of the three loss functions. In our444

setting, we fix the weight of the predicted loss function to be 1, and then fix either the weight of the445

contrast loss function or the smoothness loss function to be 1, while the other one varies within the446

range of {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6}. To explore the inflection point of the effect, we take447

the middle point of two points and calculate a finer range again. Our results indicate that the contrast448

loss function is essentially stable between the weight range of 0.6-1.2, while the smoothness loss449

function is similarly stable between the weight range of 0.9-1.5.450

A.5 Uncertainty of the results451

To assess the stability of our proposed method, we performed 5 repeated experiments and calculated452

the standard deviations for all methods, as presented in Table 12. Notably, our method exhibits a453

relatively small variance within the table, indicating its high degree of stability.454

B Implementation Details455

The training and testing of BasisFormer are conducted on an NVIDIA GeForce RTX 3090 graphics456

card with 24268MB of VRAM. During the trainin process, we adopt the Adabelief optimizer [23] for457
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Figure 4: MSE for the testing data as a function of the weight for the smoothness (the red line) and the infoNCE
loss(the blue line).

Table 12: Results for 6 benchmark datasets with standard deviations in the brackets.
Models Fedformer Autoformer N-HiTS FiLM Dlinear TCN Basisformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T

96
0.203 0.287 0.255 0.339 0.192 0.265 0.183 0.266 0.193 0.292 3.041 1.330 0.184 0.266

(0.002) (0.001) (0.020) (0.020) (0.003) (0.002) (0.000) (0.000) (0.004) (0.006) (0.000) (0.000) (0.002) (0.002)

192 0.269 0.328 0.281 0.340 0.287 0.329 0.247 0.305 0.284 0.362 3.072 1.339 0.248 0.307
(0.006) (0.005) (0.027) (0.025) (0.004) (0.001) (0.000) (0.000) (0.016) (0.016) (0.002) (0.001) (0.004) (0.002)

336 0.325 0.366 0.339 0.372 0.389 0.389 0.309 0.343 0.369 0.554 3.105 1.348 0.321 0.355
(0.002) (0.003) (0.018) (0.015) (0.005) (0.003) (0.000) (0.000) (0.006) (0.002) (0.005) (0.003) (0.005) (0.004)

720 0.421 0.415 0.422 0.419 0.591 0.491 0.407 0.399 0.554 0.522 3.135 1.354 0.410 0.404
(0.018) (0.012) (0.015) (0.010) (0.011) (0.002) (0.001) (0.000) (0.037) (0.026) (0.021) (0.005) (0.007) (0.004)

el
ec

tr
ic

ty

96 0.193 0.308 0.201 0.317 1.748 1.020 0.199 0.276 0.199 0.284 0.985 0.813 0.165 0.259
(0.001) (0.001) (0.003) (0.004) (0.003) (0.001) (0.000) (0.001) (0.000) (0.000) (0.006) (0.004) (0.001) (0.001)

192 0.201 0.315 0.222 0.334 1.743 1.018 0.198 0.279 0.198 0.287 0.996 0.821 0.178 0.272
(0.005) (0.006) (0.003) (0.004) (0.008) (0.003) (0.000) (0.001) (0.000) (0.000) (0.008) (0.007) (0.001) (0.001)

336 0.214 0.329 0.231 0.338 1.677 1.000 0.217 0.301 0.210 0.302 1.000 0.824 0.189 0.282
(0.001) (0.002) (0.006) (0.004) (0.010) (0.003) (0.001) (0.001) (0.001) (0.001) (0.004) (0.003) (0.001) (0.001)

720 0.246 0.355 0.254 0.361 - - 0.280 0.358 0.245 0.335 1.438 0.784 0.223 0.311
(0.003) (0.003) (0.007) (0.008) - - (0.000) (0.000) (0.000) (0.000) (0.006) (0.003) (0.002) (0.001)

ex
ch

an
ge

96 0.148 0.278 0.197 0.323 1.685 1.049 0.083 0.201 0.088 0.218 3.004 1.432 0.085 0.205
(0.004) (0.004) (0.019) (0.012) (0.042) (0.017) (0.003) (0.003) (0.004) (0.005) (0.128) (0.070) (0.004) (0.005)

192 0.271 0.380 0.300 0.369 1.658 1.023 0.179 0.300 0.176 0.315 3.048 1.444 0.177 0.299
(0.012) (0.010) (0.020) (0.016) (0.015) (0.006) (0.003) (0.002) (0.005) (0.006) (0.020) (0.008) (0.005) (0.005)

336 0.460 0.500 0.509 0.524 1.566 0.988 0.337 0.416 0.313 0.427 3.113 1.459 0.336 0.421
(0.009) (0.007) (0.041) (0.016) (0.037) (0.015) (0.005) (0.003) (0.008) (0.006) (0.082) (0.021) (0.011) (0.007)

720 1.195 0.841 1.447 0.941 1.809 1.055 0.642 0.610 0.839 0.695 3.150 1.458 0.854 0.670
(0.042) (0.017) (0.084) (0.028) (0.052) (0.018) (0.040) (0.029) (0.027) (0.012) (0.237) (0.063) (0.024) (0.011)

tr
af

fic

96 0.587 0.366 0.613 0.388 2.138 1.026 0.652 0.395 0.650 0.396 1.438 0.784 0.444 0.315
(0.010) (0.008) (0.028) (0.012) (0.016) (0.006) (0.001) (0.003) (0.001) (0.001) (0.001) (0.001) (0.003) (0.003)

192 0.604 0.373 0.616 0.382 2.101 1.015 0.605 0.371 0.605 0.378 1.463 0.794 0.460 0.316
(0.012) (0.009) (0.042) (0.020) (0.015) (0.007) (0.001) (0.003) (0.002) (0.001) (0.032) (0.010) (0.004) (0.002)

336 0.621 0.383 0.622 0.387 - - 0.615 0.372 0.612 0.382 1.479 0.799 0.471 0.317
(0.008) (0.008) (0.009) (0.003) - - (0.001) (0.001) (0.003) (0.004) (0.003) (0.002) (0.005) (0.004)

720 0.626 0.382 0.660 0.408 - - 0.692 0.428 0.645 0.394 1.499 0.804 0.486 0.318
(0.004) (0.003) (0.025) (0.015) - - (0.000) (0.000) (0.001) (0.001) (0.010) (0.005) (0.005) (0.004)

w
ea

th
er

96 0.217 0.296 0.266 0.336 0.648 0.492 0.193 0.234 0.196 0.255 0.615 0.589 0.173 0.214
(0.018) (0.019) (0.007) (0.006) (0.001) (0.000) (0.002) (0.001) (0.001) (0.003) (0.002) (0.002) (0.003) (0.003)

192 0.276 0.336 0.307 0.367 0.616 0.479 0.238 0.270 0.237 0.296 0.629 0.600 0.223 0.257
(0.015) (0.017) (0.024) (0.022) (0.003) (0.001) (0.000) (0.001) (0.001) (0.002) (0.023) (0.009) (0.002) (0.001)

336 0.339 0.380 0.359 0.395 0.579 0.462 0.288 0.304 0.283 0.335 0.639 0.608 0.278 0.298
(0.014) (0.015) (0.035) (0.031) (0.002) (0.001) (0.001) (0.000) (0.002) (0.004) (0.050) (0.017) (0.001) (0.000)

720 0.403 0.428 0.419 0.428 0.541 0.447 0.358 0.350 0.343 0.383 0.639 0.610 0.355 0.347
(0.009) (0.008) (0.017) (0.014) (0.001) (0.000) (0.001) (0.000) (0.020) (0.020) (0.050) (0.018) (0.001) (0.001)

ill
ne

ss

24 3.228 1.260 3.486 1.287 3.297 1.679 2.198 0.911 2.398 1.040 6.624 1.830 1.550 0.814
(0.020) (0.009) (0.107) (0.018) (0.007) (0.000) (0.138) (0.058) (0.065) (0.032) (0.550) (0.094) (0.087) (0.024)

36 2.679 1.080 3.103 1.148 2.379 1.441 2.267 0.926 2.646 1.088 6.858 1.879 1.516 0.819
(0.018) (0.005) (0.139) (0.025) (0.136) (0.043) (0.077) (0.059) (0.137) (0.064) (0.216) (0.034) (0.130) (0.030)

48 2.622 1.078 2.669 1.085 3.341 1.751 2.348 0.989 2.614 1.086 6.968 1.892 1.877 0.907
(0.010) (0.002) (0.151) (0.037) (0.092) (0.030) (0.115) (0.037) (0.140) (0.049) (0.032) (0.008) (0.110) (0.032)

60
2.857 1.157 2.770 1.125 2.278 1.493 2.508 1.038 2.804 1.146 7.127 1.918 1.878 0.902

(0.011) (0.003) (0.085) (0.019) (0.187) (0.064) (0.130) (0.018) (0.049) (0.009) (0.134) (0.025) (0.098) (0.024)

Experiment with ‘-’ means it reported an out-of-memory error on a computer with 128G memory.
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Table 13: Comparison of computational complexity for different models.

Methods TIME MEMORY

Fedformer O(O) O(O)
Autoformer O(O logO) O(O logO)
N-HiTS O(O(1− rB)/(1− r) O(O(1− rB)/(1− r)
FiLM O(O) O(O)
Dlinear O(O) O(O)
TCN O(O) O(O)
LogTrans O(O logO) O(O2)
Reformer O(O logO) O(O logO)
Informer O(O logO) O(O logO)
Basisformer O(O) O(O)

optimization. We train the model for 30 epochs with the patience of 3 epochs. All experiments are458

averaged over 5 trials.459

To implement the multi-head mechanism, we calculate the multi-head attention for each CAB460

separately, and then restore it to the original dimension through multiplication, concatenation, and a461

linear layer. In the last layer of the network, a mapping layer was utilized to map it to H heads, and462

the dot product outputs the final coefficients.463

To promote the learning of bases and ensure consistency of time series across different dimensions,464

we normalized the time series during training and performed inverse normalization when outputting465

the results.466

For the other models compared in the table, we utilized their original code and conducted experiments467

by only varying the input length.468

C Analysis of the Limitations of BasisFormer469

BasisFormer demonstrates proficiency in learning effective representations and capturing the rela-470

tionship between bases and time series. However, this proficiency is contingent upon the multi-471

dimensional time series being on the same feature scale, which necessitates normalization of the472

time series during training and inverse normalization when outputting results. Despite this, the473

normalization and inverse normalization operations introduce changes to the original distribution of474

the time series, making it arduous to fit certain distributions. As such, future work could explore475

alternative approaches to training on datasets with considerably different feature scales, eliminating476

the need for normalization and inverse normalization. Possible avenues for investigation include477

identifying appropriate mathematical methods or neural network transformations to map data to a478

suitable and universal feature space.479

D Relation to Meta-learning480

From a meta-learning standpoint, the learnable basis in our model is tantamount to meta-knowledge481

for all time series within the same window. The coefficients, which are derived from the similarity482

between each time series and the foundation, represent distinctive knowledge for each time series.483

Consequently, our model can be perceived as a manifestation of meta-learning. Notwithstanding,484

we departed from conventional meta-learning approaches by forgoing a two-stage inner-outer loop485

optimization method, instead opting for an end-to-end training method.486

E Analysis of the Model Complexity487

Suppose that the input and output length in BasisFormer is I and O respectively when forecasting a488

single time series. Note that the time and space complexity of BasisFormer are of the same order.489

Therefore, we refer to both of them as complexity in the sequel.490

With regards to the coef module, the complexity is primarily determined by the cross-attention491

mechanism. Within our approach, BCAB utilizes attention on the channel dimension, and we492
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encode the time sequence dimension to a specified hidden length Dc ≪ O via a linear layer during493

computation. Consequently, the complexity of this module is O(N), where N is the number of bases494

- a fixed hyperparameter which is usually not large. In this step, we omit the number of BCAB stacks495

M , since M is also a fixed hyperparameter. As previously mentioned in Appendix A.3, to limit496

overfitting, M is typically set to 2.497

The prediction module incorporates two Multilayer Perceptron (MLP) networks, which are employed498

for separating and concatenating different heads. Both MLP networks have bottlenecks with constant499

values, and they carry a complexity of O(O). In terms of the aggregation of different base vectors,500

the complexity also is O(O). Therefore, the cumulative complexity of this module is O(O).501

In summary, the total complexity of our model is O(O). Table 13 provides a comparison of the502

computational complexity among different models, and BasisFormer achieves the lowest complexity503

among them.504
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