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Abstract

Counterfactual examples have proven to be valuable in the field of natural language
processing (NLP) for both evaluating and improving the robustness of language
models to spurious correlations in datasets. Despite their demonstrated utility
for NLP, multimodal counterfactual examples have been relatively unexplored
due to the difficulty of creating paired image-text data with minimal counter-
factual changes. To address this challenge, we introduce a scalable framework
for automatic generation of counterfactual examples using text-to-image diffu-
sion models. We use our framework to create COCO-Counterfactuals, a mul-
timodal counterfactual dataset of paired image and text captions based on the
MS-COCO dataset. We validate the quality of COCO-Counterfactuals through
human evaluations and show that existing multimodal models are challenged by
our counterfactual image-text pairs. Additionally, we demonstrate the usefulness
of COCO-Counterfactuals for improving out-of-domain generalization of multi-
modal vision-language models via training data augmentation. We make our code2

and the COCO-Counterfactuals dataset3 publicly available.

1 Introduction

While vision and language models have achieved remarkable performance improvements in recent
years, out-of-domain (OOD) generalization remains a challenge for even the best models, which
typically exhibit much lower performance in zero-shot evaluation settings than on withheld in-domain
test sets. This has often been attributed to spurious correlations between non-causal features and
labels in datasets which can be exploited during training as shortcuts to achieving artificially high
in-domain performance (Geirhos et al., 2020). For example, image recognition models often learn
to utilize spurious features in the backgrounds of images when trained for classification on datasets
such as ImageNet (Singla and Feizi, 2021; Xiao et al., 2020).

Augmenting training datasets with counterfactuals, which study the impact on a response variable
following a change to a causal feature, has been previously proposed as a strategy for countering
this effect in NLP models (Levesque et al., 2012; Kaushik et al., 2019). Motivated by concepts in
causal learning (Feder et al., 2022), these methods typically form counterfactual examples by making
minimal edits to an input text such that a corresponding label or attribute of the text (e.g., sentiment)

∗Equal contribution
2https://github.com/IntelLabs/multimodal_cognitive_ai/tree/main/COCO-Counterfactuals
3https://huggingface.co/datasets/Intel/COCO-Counterfactuals
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"Two men work in the kitchen of a
restaurant."

"Two men work in the kitchen of a
house."

"A large black ball sitting next to
a glass of milk."

"A large black ball sitting next to
a glass of water."

"A white dog sitting on a table
next to a paper."

"A white dog sitting on a table
next to a book."

"A meal of sandwiches, potatoes,
and Red Stripe beer."

"A meal of sandwiches, pizza, and
Red Stripe beer."

Figure 1: Examples of COCO-Counterfactuals, our minimal-edit counterfactuals dataset for images
with paired text captions.

is changed. Training models with counterfactual examples therefore provides a strong inductive
bias against learning spurious correlations in datasets, leading to greater robustness and improved
generalization on OOD data (Eisenstein, 2022; Vig et al., 2020) as well as enabling better domain
adaptation in low resource settings (Calderon et al., 2022).

Despite its success in the realm of NLP, the application of counterfactual data augmentation to
multimodal vision-language models has largely remained unexplored, mainly due to low-resource
settings involving multimodal data and challenges associated with creating paired counterfactual
examples spanning multiple modalities. For example, consider the task of creating counterfactual
examples for a multimodal dataset containing images with associated text captions. Creating a
counterfactual to a given image-text example requires not only minimally editing a casual feature in
the text caption, but also making a corresponding minimal edit to the image which ideally modifies
only the changed causal feature while preserving other spurious features from the original image.

Collecting such counterfactual examples from existing image datasets is infeasible due to the massive
variation in natural images that can accurately depict even identical text captions. While manual
creation of counterfactual examples by humans is an option that has been employed previously for
NLP (Kaushik et al., 2019; Gardner et al., 2020), this approach suffers from a lack of scalability
due to the high cost of human labor, which would be compounded even further for multimodal
counterfactuals due to the need for both text and image editing skills. Given these challenges, how
can paired image-text counterfactual examples be created at the scale needed for effective model
evaluation and data augmentation?

We address this problem by introducing a novel data generation pipeline for automatically creating
multimodal counterfactual examples using text-to-image diffusion models. Our approach minimally
edits captions from an existing image-text dataset and then leverages Stable Diffusion (Rombach
et al., 2021) with cross-attention control (Hertz et al., 2022) to generate pairs of images with minimal
differences (i.e., isolated to the counterfactual change). We employ our data generation pipeline
to create at scale COCO-Counterfactuals (Figure 1), a counterfactual variant of the MS-COCO
dataset (Lin et al., 2014).

We validate the quality of COCO-Counterfactuals using human evaluations and conduct zero-
shot experiments showing that state-of-the-art multimodal models are challenged by our generated
counterfactual examples. Our additional experiments show that training CLIP (Radford et al., 2021)
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on COCO-Counterfactuals improves its performance on multiple OOD datasets, including zero-shot
tasks not seen during training. We make COCO-Counterfactuals and the code for our counterfactual
data generation pipeline publicly available under the CC BY 4.0 License.

2 Related Work

2.1 Counterfactual Examples for NLP

Counterfactual data augmentation has been shown to improve the robustness of models across a
wide range of problem domains in NLP. Kaushik et al. (2019) demonstrated that human-authored
counterfactuals pose a significant challenge for existing models and that augmenting training datasets
with counterfactual examples improves sentiment analysis and Natural Language Inference classifiers.
Gardner et al. (2020) similarly used human experts to author minimally-edited contrast example sets
for 10 NLP datasets and showed that model performance evaluated on them drops substantially.

A number of approaches have been proposed to move beyond reliance on human authors towards
automated methods for generating counterfactual examples. Wang and Culotta (2021) and Yang et al.
(2021) automatically construct counterfactual examples by identifying and removing or replacing
potentially causal words. Howard et al. (2022) introduce a framework for generating looser coun-
terfactuals which allow larger edits of original examples, resulting in more natural and linguistic
counterfactual examples. Other semi-automated methods have been proposed to generate counter-
factual examples while still relying on human input or labeling (Wu et al., 2021). To the best of our
knowledge, none of these existing approaches for automatic counterfactual generation have been
extended to multimodal image-text datasets.

2.2 Image Benchmarks for Measuring Spurious Correlations

Several image datasets have been proposed as benchmarks for measuring the degree to which models
have learned to rely on spurious correlations during training. CelebA Hair Color (Liu et al., 2015) is
a binary image classification dataset that labels whether a person depicted has a blonde hair color,
which is spuriously correlated with gender. Sagawa et al. (2019) constructed the Waterbirds dataset
by cropping images of landbirds or seabirds onto land and sea backgrounds, resulting in a binary
classification task for bird type (i.e., landbird or seabird) in the presence of spurious correlations with
the background. Colored MNIST (Arjovsky et al., 2019) artificially imposes colors on the MNIST
handwritten digits dataset, where the color is spuriously correlated with the class label. Lynch et al.
(2023) uses text-to-image models to generate Spawrious, an image classification dataset of four dog
breeds spuriously correlated with six background locations. Unlike COCO-Counterfactuals, these
datasets are limited only to image classification over a small number of labels and are primarily suited
for evaluating model robustness as opposed to training data augmentation.

Thrush et al. (2022) introduced Winoground, an image-text dataset aimed at measuring visio-linguistic
compositionality. Given two images and two captions which have the same words but in different
order, the task is to correctly match each caption to its corresponding image. While their paired
image-text examples can be viewed as counterfactuals, they focus only on edits to word order and
rely on humans to create a dataset aimed specifically at evaluating compositionality. In contrast,
our method automatically generates counterfactual examples with word content changes while also
preserving non-causal spurious features across paired counterfactual images.

FOIL-COCO (Shekhar et al., 2017) contains ‘foil’ captions with a single change to the original
MS-COCO caption to invalidate it for the accompanying image. They show that vision and language
models struggle to correctly classify captions, detect the edited word, and correct the foiled caption.
Our image-text counterfactuals similarly create ‘foil’ captions to MS-COCO captions, but goes
further by also creating paired images which differ only according to how the caption was edited.

2.3 Data Augmentation with Synthetic Images Generated from Text-to-image Models

Motivated by recent advances in text-to-image diffusion models (Nichol et al., 2021; Rombach et al.,
2021; Saharia et al., 2022; Ramesh et al., 2022), data augmentation with synthetically-generated
images has emerged as a growing topic of interest. He et al. (2022) showed that images generated
by GLIDE (Nichol et al., 2021) for specific classes in image recognition datasets can be used for

3



training to improve performance on the corresponding image classification tasks. Trabucco et al.
(2023) perform image-to-image transformations for data augmentation using text-to-image diffusion
models, observing improvements in few-shot image classification performance. Vendrow et al. (2023)
represent class labels from image recognition datasets as custom tokens in the vocabulary of a text-to-
image diffusion model, enabling them to generate images of objects from the original dataset under
different domain shifts. While our data generation pipeline also leverages text-to-image diffusion
models, our approach differs from prior work in our focus on producing minimal changes to paired
image-text data in both the vision and language modalities.

3 COCO-Counterfactuals

We detail our data generation methodology for creating COCO-Counterfactuals (COCO-CFs), a
synthetic multimodal counterfactual dataset of paired image and text captions based on the MS-COCO
dataset (Lin et al., 2014). While we showcase our methodology by generating and releasing the
COCO-Counterfactuals dataset, our approach can be applied to automatically construct multimodal
counterfactuals for any dataset containing image captions.4

3.1 Creating Counterfactual Captions

Given an original image caption Co, our first task is to create a corresponding counterfactual caption
Cc which alters a subject of Co while preserving most of its original details. The altered subject
represents the changed causal feature in our counterfactual example while the remaining preserved
details from the original caption can be viewed as potentially spurious correlated features.

To alter a subject of Co, we first identify all nouns using NLTK (Bird et al., 2009) as candidate words
for substitution5 For each of the i ∈ {1, .., n} identified nouns, we create 10 candidate counterfactual
captions by replacing only the i-th noun in Co with the [MASK] token and retrieving the top-10
most probable replacements via masked language modeling (MLM)6. This produces a total of n× 10
candidate counterfactual captions, which we then filter to retain only those in which the substituted
word is also a noun.

Our aim is to substitute nouns with alternative words that represent different subjects, and yet
still maintain ontological similarity to the original noun. Hence, we use a pre-trained sentence
similarity model7 to measure the similarity between each candidate counterfactual caption and the
original caption Co, keeping only those candidates which have a sentence similarity within the range
(0.8, 0.91). Finally, we use GPT-2 to score the perplexity of all candidates which remain after filtering
and choose the candidate having the lowest perplexity as our counterfactual caption Cc.

3.2 Generating Counterfactual Images

After creating a counterfactual caption Cc, our next task is to generate synthetic images Iso and Isc
from the original caption Co and counterfactual caption Cc (respectively). Ideally we would like Iso
and Isc to differ only in terms of the noun which was replaced in Co to produce Cc, thereby enabling
the changed causal feature to be learned in the presence of other potentially spurious correlated
features (i.e., the unchanged details between Co and Cc). However, this is a challenge for existing
text-to-image generation models as minor changes to a text prompt can produce significantly different
images. For instance, prompting Stable Diffusion with the captions "A small child lounges with a
remote in his hand" and "A small child lounges with a toy in his hand" may produce images that differ
not only in the object that the child is holding, but also in other details such as his facial features, the
manner in which he is laying, the color of his clothes, and the image background.

To address this issue, Hertz et al. (2022) proposed a methodology called Prompt-to-Prompt which
injects cross-attention maps during the diffusion process to control the attention between certain
pixels and tokens of the prompt during denoising steps. This enables separate generations from

4Appendix B.1 details hyper-parameters and pre-trained models used to generate COCO-Counterfactuals.
5In this work, we focus on counterfactual captions that are derived from altering a noun from original captions.

We leave the investigation of altering words of other types such as verbs and adjectives for future work.
6We use RoBERTa-base for MLM
7https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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"A small child lounges with a
remote in his hand."

"A small child lounges with a toy
in his hand."

With Prompt-to-Prompt

"A small child lounges with a
remote in his hand."

"A small child lounges with a toy
in his hand."

Without Prompt-to-Prompt

Figure 2: Examples of COCO-Counterfactuals generated with Prompt-to-Prompt (left) and without
(right). Prompt-to-prompt enables us to extend the principle of minimal-edit text counterfactuals to
the visual domain, isolating image differences to only the changed causal feature.

text-to-image diffusion models to maintain many of the same image details while isolating their
differences according to how the text prompts differ. An example of counterfactual image-text pairs
(Co, I

s
o) and (Cc, I

s
c ) generated with and without prompt-to-prompt is shown in Figure 2, illustrating

how Prompt-to-Prompt enables the principle of minimal text edits for NLP counterfactuals to be
extended to image generation.

Brooks et al. (2023) noted that making different changes to images may require varying the parameter
p in Prompt-to-Prompt, which controls the number of denoising steps with shared attention weights.
For example, changes that require more substantial structural modifications to the image may
necessitate less overall similarity between the resulting images and thus fewer shared attention
weights. We therefore adopt their proposed approach of over-generating 100 image pairs with
Prompt-to-Prompt by randomly sampling values of the parameter p ∼ U(0.1, 0.9)8. The resulting
100 image pairs are filtered using CLIP (Radford et al., 2021) to ensure a minimum cosine similarity
of 0.2 between the encoding of each caption and its corresponding generated image, with the best
image pair (Iso , I

s
c ) chosen from those which remain according to the directional similarity in CLIP

space (Gal et al., 2022):

CLIPdir =
(ET (Cc)− ET (Co)) · (EI(I

s
c )− EI(I

s
o))

||ET (Cc)− ET (Co)|| ||EI(Isc )− EI(Iso)||
(1)

where ET and EI are CLIP’s text and image encoders (respectively). The CLIPdir metric mea-
sures the consistency in changes between the two images (Iso , I

s
c ) and their corresponding captions

(Co, Cc). Thus, selecting images with a higher CLIPdir improves the overall quality of our generated
counterfactuals via greater consistency between the alterations made in both modalities.

3.3 Generating COCO-Counterfactuals from MS-COCO

We apply our counterfactual caption and image generation pipeline described above to create the
COCO-Counterfactuals dataset. Specifically, we generate candidate counterfactual captions for
25,014 original MS-COCO captions910, keeping only the best candidate counterfactual for each origi-
nal caption that meets our filtering criteria. This produced a total of 24,508 original & counterfactual
caption pairs (Co, Cc) after filtering and selection. Our image over-generation pipeline produced 2.45
million candidate image pairs (Iso , I

s
c ) for these 24.5k caption pairs, of which 17,410 had at least one

generated image pair which met our filtering criteria. After selection according to the CLIPdir metric,
a total of 34,820 image-caption pairs remain, comprising our COCO-Counterfactuals dataset11.

8We use the implementation from Instruct-Pix2Pix (Brooks et al., 2023).
9We use the 5K validation split of the 2017 dataset from https://cocodataset.org/#download.

10While we use MS-COCO in this study as the source of our original captions, one advantage of our
counterfactual generation approach is that the input dataset itself does not require paired image and text data.

11While the MS-COCO 5K validation split has 25,014 captions, COCO-Counterfactuals includes only
17,410 of them due to our filtering criteria. Thus, for a fair comparison in our experiments, hereafter we refer to
this subset of the 5K validation split including only those 17,410 captions and their paired original images as the
MS-COCO dataset.
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Image set Correct Incorrect Neither Both

Generated from original caption 79.10% 8.16% 10.18% 2.56%
Generated from counterfactual caption 67.27% 18.43% 10.74% 3.56%
All images 73.18% 13.30% 10.46% 3.06%

Table 1: Human evaluation results for COCO-Counterfactuals

4 COCO-Counterfactuals Analysis

This section aims to show that, in addressing the challenges associated with low-resource settings
involving multimodal data (see Section 1), our proposed novel data generation pipeline can serve as
an efficient and scalable framework to automatically create high quality multimodal counterfactual
examples in COCO-Counterfactuals (COCO-CFs). Toward this goal, we first employ human evalu-
ation to analyze COCO-CFs. We then show that COCO-CFs can be used as a challenging dataset for
model evaluation on zero-shot image-text retrieval and image-text matching tasks.

4.1 Human Evaluation of COCO-Counterfactuals

We employ professional data annotators to conduct a human study on the quality of COCO-CFs.
For each of the 34,820 images in COCO-CFs, we have at least one annotator choose whether the
corresponding original or counterfactual caption best fits the image. Annotators can also choose “both”
if both captions describe the image equally well, or “neither” if neither caption accurately describes
the image. 10% of the images are labeled by 3 different individuals to estimate inter-annotator
agreement, with the remaining images each labeled by a single annotator (see Appendix B.2 for
additional details).

Table 1 provides the percentage of images from COCO-CFs which were matched to their correct
caption by the human annotators. We also report the percentage of incorrect matches (i.e., the
wrong caption was picked as best describing the image) as well as the percentage of “both” and
“neither” labels. Overall, 73% of images were correctly matched to their corresponding caption (see
Appendix A.3 for an analysis of incorrect matches). Images generated from the counterfactual caption
had a 10% greater incidence of incorrect caption selections than those generated from the original
caption. This could be due to the constraints imposed on the counterfactual image by Prompt-to-
Prompt (i.e., shared attention weights with the original image), which increases the likelihood that
the generated image lacks some of the details in its corresponding caption.

The Fleiss’ kappa coefficient for the 10% of images labeled by three annotators was 0.74, indicating
strong agreement among the annotators who participated in this study. Among those images which
had label disagreement, 47.4% of the labels were correct, 27.3% were incorrect, and 18.6% selected
“neither.” This suggests that many of the disagreements are associated with images for which the
correct caption choice is more ambiguous.

While we employed human annotators to validate the quality of COCO-Counterfactuals for this
analysis, our automated counterfactual generation approach does not require the use of human
annotators to produce a new dataset. Indeed, our experiments described subsequently in Section 5.1
show that COCO-Counterfactuals which were labeled as incorrect by humans have no negative
impact on training data augmentation.

4.2 COCO-Counterfactuals for Model Evaluation

Motivated by prior work which has proposed using counterfactuals as challenging test sets in NLP
(Kaushik et al., 2019; Gardner et al., 2020), we further investigate whether our COCO-CFs can serve
a similar purpose for state-of-the-art multimodal vision-language models such as CLIP, Flava (Singh
et al., 2022), BridgeTower (Xu et al., 2022) and ViLT (Kim et al., 2021) for the zero-shot image-text
retrieval and image-text matching tasks. We employed the HuggingFace implementations of these
model in our experiments (see Appendix A.6 for more detail).
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Text Retrieval Image Retrieval
HuggingFace Pre-trained Models Evaluated Dataset R@1 R@5 R@10 R@1 R@5 R@10

bridgetower-large-itm-mlm-itc COCO-CFs 21.72 (-51%) 46.94 (-35%) 58.65 (-29%) 17.93 (-47%) 38.94 (-35%) 49.95 (-30%)
human-evaluated COCO-CFs 26.36 (-41%) 54.1 (-25%) 66.13 (-20%) 21.44 (-37%) 45 (-25%) 56.39 (-21%)

flava-full COCO-CFs 21.28 (-57%) 46.64 (-41%) 58.87 (-34%) 37.76 (-16%) 66.15 (-12%) 75.83 (-10%)
human-evaluated COCO-CFs 26.1 (-47%) 54.23 (-31%) 66.83 (-25%) 43.4 (-3%) 72.35 (-3%) 81.44 (-4%)

Table 2: Image-text retrieval performance on COCO-CFs and human-evaluated COCO-CFs for
BridgeTower and Flava models. Largest drops of performance against the baseline are in boldface.
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BridgeTower

5 0 5 10 15 20

ViLT

ITM Score Difference

Random image retrieval (IRr)
Random text retrieval (TRr)

Counterfactual image retrieval (IRc)
Counterfactual text retrieval (TRc)

Figure 3: ITM score differences computed for existing multimodal models on COCO-
Counterfactuals dataset.

4.2.1 Zero-shot Image-text Retrieval

We evaluate the zero-shot image-text retrieval (ITR) performance of pre-trained Flava and
BridgeTower models on COCO-CFs as well as human-evaluated COCO-CFs, which consists of
only image-text pairs that were correctly matched in our human evaluation study (Section 4.1). Since
pre-trained CLIP was employed in our counterfactual image generation process (see Section 3.2),
it is not suitable for zero-shot ITR setting. Thus, we only report its evaluation in Appendix. A.6
for completeness. For baselines, we evaluate ITR performance of these models on the MS-COCO
dataset.

Table 2 reports ITR performance (i.e., Recall at 1, 5, and 10) on COCO-CFs and human-evaluated-
COCO-CFs for pre-trained BridgeTower and Flava models. The percentages enclosed within paren-
theses indicate the change in performance of a model on an evaluated dataset versus the performance
of that model on MS-COCO (baseline). We observe that the performance of BridgeTower and
Flava decreases significantly (up to 51% and 57%, respectively) compared to the baseline’s per-
formance on both COCO-CFs and human-evaluated-COCO-CFs. These results demonstrate that
COCO-Counterfactuals can serve as a challenging test set for SOTA multimodal vision-language
models.

4.2.2 Image-text Matching

Typically, during pre-training for image-text matching (ITM), multimodal models learn to differentiate
actual image-text pairs from alternative images or captions which are randomly sampled from a
dataset. By design, our COCO-CFs have the potential to make this task significantly more challenging
by requiring models to also differentiate between minimally-edited image or text candidates. We
measure the magnitude of this increased difficulty by comparing the difference in ITM scores between
actual image-text pairs and their corresponding counterfactual or randomly sampled alternatives.

Let (Co, Io) denote an original image-text pair from MS-COCO, Iso denote our synthetically-
generated image corresponding to Co, and (Cc, I

s
c ) denote our corresponding synthetically-generated

counterfactual image-text pair in COCO-Counterfactuals. We further denote (Cr, Ir) as a different
original image-text pair randomly sampled from MS-COCO such that Io ̸= Ir. For a given pre-trained
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multimodal model, we compute the following metrics using its ITM scoring function G:

IRr = G(Cr, Ir)− G(Cr, Io) IRc = G(Cc, I
s
c )− G(Cc, I

s
o)

TRr = G(Cr, Ir)− G(Co, Ir) TRc = G(Cc, I
s
c )− G(Co, I

s
c )

IRr and TRr scores can be viewed as measuring the confidence of a model’s image or text retrieval
(respectively) over two real image-text pairs from MS-COCO. Similarly, IRc and TRc scores measure
image or text retrieval confidence, but using matched image-text pairs from COCO-Counterfactuals
dataset. For all metrics, values greater than zero indicate that a model scores the correct image-text
pair as more similar than its random or counterfactual alternative. Larger positive values can be
viewed as indicating greater confidence in the model’s correct discernment between the alternatives.

Figure 3 plots the distribution of these four metrics for three pre-trained multimodal models: CLIP,
BridgeTower, and ViLT. All three models exhibit a significant negative distribution shift when
presented with counterfactual alternatives rather than random alternatives, demonstrating the in-
creased difficulty of COCO-Counterfactuals for existing models. A significant number of COCO-
Counterfactuals are also incorrectly scored (i.e., have ITM score difference less than zero) by all
three models. Even in cases where the counterfactual alternatives can be correctly discerned, we
posit that the much smaller values of IRc and TRc may improve the efficiency of training through the
increased difficulty of the ITM task.

4.2.3 Discussion

When used as a test set, COCO-Counterfactuals by design evaluate the robustness of models
to minimal changes in paired image-text data. Table 2 and Figure 3 show that existing models
perform significantly worse when evaluated on COCO-Counterfactuals. Additionally, we find that
training these same models on COCO-Counterfactuals produces an average relative improvement
of 24.3% in image-text retrieval performance on withheld counterfactual examples (see Table 5 of
Appendix A.1). These results point to the usefulness our dataset for evaluating and improving the
robustness of multimodal models to counterfactual changes.

5 COCO-Counterfactuals for Training Data Augmentation

This section aims to evaluate whether COCO-Counterfactuals can serve as an alternative to real
data for training data augmentation in low-resource scenarios. We train a fully unfrozen pre-trained
CLIP model with its contrastive loss using various combinations of real data from MS-COCO and
COCO-CFs datasets (see Appendix B.3 for additional training details). In order to investigate the
robustness of models trained on COCO-CFs, we evaluate them on OOD datasets for image-text
retrieval and image recognition. For baselines, we report the performance of pre-trained CLIP (i.e.,
without any additional training) as well as a CLIP model which has been additionally trained using
only real data from MS-COCO. We repeat each of our training experiments with 25 different random
seeds and report both the mean and standard deviation of performance measured across all random
seeds. We also validate the statistical significance of performance improvements obtained by models
trained on COCO-CFs using one-tailed t-tests.

5.1 Image-text Retrieval

To evaluate OOD performance on the image-text retrieval task that CLIP was trained for, we use the
1K test set of Flickr30k dataset (Young et al., 2014). Table 3 reports the zero-shot performance of
the baselines as well as CLIP trained with varying amounts of the original MS-COCO and COCO-
CFs datasets. We observe that all CLIP models trained with COCO-Counterfactuals outperform
pre-trained CLIP by an average of 5 points, based on the mean performance across text and image
retrieval settings. Additionally, our best model trained with 20,894 COCO-Counterfactuals provides
statistically significant improvements relative to training only on the real MS-COCO dataset across
all settings. We also found that COCO-Counterfactuals improve in-domain performance on the
MS-COCO test set, which we detail in Appendix A.5.

To investigate the potential impact of COCO-Counterfactuals which were labeled incorrectly by
human annotators, we repeated our training data augmentation experiments using only image-text
pairs which were correctly matched in our human evaluation study (Section 4.1). Overall, we found
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Text Retrieval Image Retrieval
Training dataset |Dtrain| % CFs R@1 R@5 R@10 R@1 R@5 R@10 Mean
None (pre-trained CLIP) 0 0% 67.1 89 93.8 69.4 90.6 94.9 84.13

MS-COCO 13,928 0% 77.900.4 93.790.2 97.110.1 75.140.4 93.720.2 96.690.2 89.060.1
MS-COCO + COCO-CFs 13,928 50% 76.660.5 94.530.3 96.840.2 75.750.4 93.600.2 96.960.2 89.050.1

MS-COCO + COCO-CFs 34,820 60% 78.280.4 94.720.3 97.270.2 76.130.5 93.850.2 96.910.2 89.530.2
MS-COCO + COCO-CFs 41,784 67% 77.750.5 94.510.3 97.030.2 76.380.3 94.010.2 96.790.2 89.410.1

Table 3: Image-text retrieval performance on the OOD Flickr30k 1K test set for pre-trained CLIP
and CLIP models trained on varying amounts of data from MS-COCO and COCO-CFs datasets.
|Dtrain| indicates the total number of image-text pairs used for training, while % CFs indicates the
percentage of those image-text pairs which were sampled from COCO-CFs. Results report mean over
25 different random seeds, with standard deviation as a subscript. Best results are in boldface. Results
which use COCO-CFs are underlined when a one-tailed t-test indicates that their improvement over
training only on MS-COCO is statistically significant (p ≤ 0.05)

Training dataset |Dtrain| % CFs CIFAR10 CIFAR100 Food101 Caltech101 Caltech256 ImageNet Mean
None (pre-trained CLIP) 0 0% 88.8 64.17 84.17 90.32 83.43 59.25 78.36

MS-COCO 13,928 0% 89.210.3 63.890.4 82.670.2 92.770.1 85.050.1 59.550.2 78.850.2
MS-COCO + COCO-CFs 13,928 50% 89.450.3 66.670.4 83.130.2 92.630.1 85.210.1 59.660.2 79.460.2

MS-COCO + COCO-CFs 34,820 60% 89.160.3 66.880.4 82.120.2 92.870.1 84.950.2 59.220.3 79.200.2
MS-COCO + COCO-CFs 41,784 67% 88.510.5 65.970.5 82.060.2 92.770.1 84.590.2 58.880.2 78.800.2

Table 4: Zero-shot classification accuracy of pre-trained CLIP and CLIP models trained on varying
amounts of data from MS-COCO and COCO-CFs datasets. All other settings are identical to Table 3.

that excluding these incorrectly-labeled COCO-Counterfactuals from training data augmentation had
a negligible impact on performance (see Appendix A.4). This suggests that training data augmentation
is robust to noise introduced by synthetic data, and that the 26.82% of incorrectly-labeled COCO-
Counterfactuals do not pose an issue for data augmentation applications. While certain use cases
which require a high degree of confidence in the accuracy of generated counterfactuals may benefit
from the use of human validation, we believe that these results demonstrate how our approach can be
used for fully automated training data augmentation without human annotation.

5.2 Image Recognition

Despite being trained for image-text retrieval, CLIP has exhibited impressive performance at zero-shot
image recognition. Using the same approach as Radford et al. (2021) for the image recognition task
(i.e., form a sentence “A photo of a {c}” for each class label c to obtain image-text matching scores),
we evaluate whether CLIP models trained on COCO-Counterfactuals exhibit competitive OOD
performance improvement to baselines’ performance in this zero-shot classification setting.

Using the same CLIP models trained on varying amounts of MS-COCO and COCO-CFs, Table 4
reports their zero-shot classification accuracy on six image recognition datasets. We observe that
training with an approximately 50-50 split of MS-COCO & COCO-CFs provides the best overall
performance, offering improvements over pre-trained CLIP (without any additional training) on all
datasets except Food101 and outperforming training with only MS-COCO on most datasets (see
Appendix A.2 for additional analysis of performance differences).

5.3 Discussion

Recent work investigating the suitability of synthetic training data for image recognition tasks has
found that synthetic image data is much less efficient than real data, requiring 5x more synthetic
training samples to achieve similar performance as models trained on real data (He et al., 2022). In
contrast, our results show that training data augmentation with COCO-Counterfactuals is at least as
efficient (Table 3) and sometimes more efficient (Table 4) than data augmentation with an identical
amount of real data (|Dtrain| = 13, 928). This finding suggests that our approach could be particularly
valuable in low-resource settings where paired image-text data is scarce.
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Consistent with prior work on training data augmentation with NLP counterfactuals (Howard et al.,
2022; Joshi and He, 2022), Tables 3 and 4 show that improvements in OOD performance with in-
creasing amounts of counterfactual examples reaches a saturation point, beyond which additional data
augmentation does not lead to further improvements. For image-text retrieval on Flickr30k (Table 3),
this saturation point is reached with a 40 / 60% mixture of MS-COCO / COCO-Counterfactuals in the
training dataset. In contrast, Table 4 shows that the saturation point for the OOD image recognition
datasets is reached with a 50 / 50% split based on the mean of the six datasets. These results suggest
that the optimal mixture of real examples and synthetically generated counterfactual examples may
differ depending on the evaluation task and dataset.

While training data augmentation with COCO-Counterfactuals produces statistically significant
performance improvements relative to training with only real data, the overall magnitude of these
improvements is limited and varies by evaluation setting. COCO-Counterfactuals produce the
largest improvements on zero-shot image recognition tasks, where its overall mean improvement
over pre-trained CLIP is twice as large as that achieved by training on an equivalent amount of real
data from MS-COCO. However, OOD generalization performance varies by dataset, which further
analysis suggests, is related to domain gaps between altered subjects in COCO-Counterfactuals and
the domain of the evaluation dataset (see Appendix A.2 for details).

6 Conclusion

We proposed an automated data generation methodology for creating counterfactual examples from
image-text pairs to address the challenge of low-resource settings involving multimodal data. This
approach was used to create COCO-Counterfactuals (COCO-CFs), a high-quality synthetic dataset
of paired image-text counterfactuals derived from MS-COCO captions. COCO-CFs are challenging
for existing pre-trained multimodal models and significantly increase the difficulty of the zero-shot
image-text retrieval and image-text matching tasks. Our experiments demonstrate that augmenting
training data with COCO-CFs improves OOD generalization on multiple downstream tasks.

In this work, we focused on the creation of task-agnostic counterfactual examples. A promising
direction for future research is the adaptation of our approach to produce task-specific counterfactuals.
For example, in the case of image recognition, the counterfactual changes could be limited to a targeted
label distribution to produce counterfactual examples more tailored to the end task. Alternatively,
task-specific model failures or spurious correlations could be diagnosed and used as a basis for
determining which counterfactual changes to consider when creating the counterfactual captions. We
believe that such approaches have the potential to produce counterfactuals which are more targeted
for improving specific model deficiencies.

Another opportunity for future work is larger-scale automatic generation of counterfactual examples to
enable full counterfactual pre-training of multimodal models. Additionally, we believe that extending
our image-text counterfactuals to the video domain could be a promising path towards improving
video transformers through counterfactual data augmentation.

Limitations & Ethical Concerns Motivated by the desire to produce minimal-edit counterfactuals,
we only considered changes to nouns. This is a common strategy for NLP counterfactuals (see
Appendix B.1.1 for discussion), but alternative generation strategies such as controlled text decoding
(Howard et al., 2022) could be used to enable a larger range of counterfactual changes, in addition to
alterations of adjectives or verbs. We leave investigation of these directions to future studies.

Due to a limited compute budget, we only explored generating COCO-Counterfactuals using Stable
Diffusion. Additionally, our training data augmentation experiments were limited to a single model
(CLIP). It is possible that other text-to-image generation models may exhibit better performance
for generating counterfactual image-text data. Additionally, the benefits of counterfactual data
augmentation may vary for different multimodal vision-language models.

Despite the impressive recent improvements in text-to-image generation capabilities, models such as
Stable Diffusion have well-known limitations that should be considered when utilizing datasets which
are derived from them (see Appendix C.5 for a detailed discussion). We do not foresee significant
risks of security threats or human rights violations in our work. However, the automated nature of
our image generation process may introduce the possibility of our COCO-Counterfactuals dataset
containing images that some individuals may consider inappropriate or offensive.
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Appendix

A Additional Experiments and Analysis

A.1 COCO-Counterfactuals Improve Model Robustness to Counterfactual Changes

By design, COCO-Counterfactuals may offer greater improvements to the robustness of models to
minimal or counterfactual changes in images. Such examples are unlikely to be present in the datasets
used previously to evaluate OOD generalization. Therefore, we also evaluate the performance of
models on a withheld test set of COCO-Counterfactuals to determine their image-text retrieval
capabilities on in-domain counterfactual examples. Specifically, we withhold 30% of the original-
counterfactual paired examples in COCO-Counterfactuals for testing and train the pre-trained CLIP,
BridgeTower, and Flava models on the remainder, with 56% of the total dataset used for training and
14% used as a development set.

Table 5 compares the performances of CLIP, BridgeTower, and Flava models trained on COCO-
Counterfactuals to those trained on an equivalent amount of real examples from MS-COCO and to
their pre-trained versions12. We observe that training on COCO-Counterfactuals results in a mean
improvement of 11.83, 21.55, and 11.47 relative to the pre-trained CLIP, BridgeTower, and Flava
models, respectively. This represents an average relative improvement of 24.3% for each model over
the performance of its pre-trained version. In addition, the CLIP, BridgeTower, and Flava models
that were trained on COCO-Counterfactuals achieve a mean absolute improvement of 6.06, 10.08,
and 5.28, respectively, relative to those that were trained on MS-COCO. The greater magnitude of
these performance gains relative to our OOD image-text retrieval evaluations (Table 3) suggests that
training on COCO-Counterfactuals improves model robustness to counterfactual changes, which
are not present in our (non-counterfactual) OOD evaluation datasets.

Text Retrieval Image Retrieval

Pre-trained Models Training dataset R@1 R@5 R@10 R@1 R@5 R@10 Mean

CLIP
None (pre-trained CLIP) 50.96 79.33 86.45 47.89 77.19 85.73 71.26

MS-COCO 57.17 84.23 90.66 55.45 84.00 90.65 77.03
COCO-CFs 65.03 90.26 94.99 64.09 89.52 94.62 83.09

BridgeTower
None (pre-trained BridgeTower) 35.26 65.31 76.73 28.77 56.63 68.46 55.19

MS-COCO 41.78 71.78 81.88 44.68 75.38 84.48 66.66
COCO-CFs 54.37 83.08 90.53 56.63 84.48 91.36 76.74

Flava
None (pre-trained Flava) 34.40 66.63 78.02 51.55 80.64 88.24 66.58

MS-COCO 46.70 76.36 85.68 52.55 81.08 88.43 71.80
COCO-CFs 54.39 83.35 90.27 57.97 85.11 91.38 77.08

Table 5: Image-text retrieval performance on a withheld COCO-CFs test set.

A.2 Analysis of Differences in OOD Generalization on Image Recognition Datasets

To better understand the differences in OOD generalization performance across datasets, we measured
the frequency in which the altered subjects used to produce COCO-Counterfactuals overlapped
with class labels. Specifically, we define the COCO-CFs Label Frequency for each image recognition
dataset as the total number of COCO-Counterfactuals in which one or more of the dataset’s labels
matched one of the two altered subjects used to produce the counterfactual pair.

Table 6 provides the COCO-CFs Label Frequency for each image recognition dataset along with
the change in OOD performance relative to pre-trained CLIP after training on various sizes of
COCO-CFs (see Appendix B.3.1 for a definition of dataset sizes). We observe that datasets having a
higher COCO-CFs Label Frequency generally achieve larger improvements in OOD generalization

12Note that the image-text retrieval performance of the three pre-trained models (CLIP, BridgeTower, and
Flava) on the in-domain COCO-Counterfactuals test set in Table 5 are higher than the respective values on the
entire COCO-Counterfactuals dataset provided in Tables 2 and 13. This is expected because the retrieval space
of the in-domain COCO-Counterfactuals test set is only 30% of the entire COCO-Counterfactuals dataset.
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IR Dataset COCO-CFs Label Frequency COCO-CFsbase ∆ COCO-CFsmedium ∆ COCO-CFsall ∆

CIFAR100 3446 2.50 2.63 1.80
Caltech101 354 2.31 2.55 2.45
Caltech256 744 1.78 1.52 1.16
CIFAR10 398 0.65 0.36 -0.29
ImageNet 887 0.41 -0.03 -0.37
Food101 28 -1.04 -2.05 -2.11

Table 6: Frequency of class label occurrence in COCO-CFs and absolute change (∆) in performance
relative to pre-trained CLIP after training on various sizes of COCO-CFs

Error category % present in sampled COCO-CFs

Failure to generate subject/object 27%
Failure to generate fine-grained details 23%
Hyponymy relationship between altered subjects 15%
Human annotation error 15%
Failure to accurately depict spatial relationships 7%
Failure to generate correct number of objects 6%
Both altered subjects are present in the image 4%
Failure to bind attribute 3%

Table 7: Image-text retrieval performance on the in-domain COCO-CFs test set.

performance. The Pearson correlation coefficient between COCO-CFs Label Frequency and the 18
performance change measurements in Table 6 is 0.522 with a p-value of 0.026, indicating statistically
significant positive correlation.

These results suggest that a major contributor to the variation in OOD generalization performance
across datasets is the overlap between the evaluation dataset domain and the set of subjects which
are altered in COCO-Counterfactuals. Food101, the only dataset which saw no improvement in
performance on our best-performing COCO-CFs training dataset, had only 28 cases of overlap
between its label set and the subject alterations in COCO-CFs. In contrast, the greatest performance
improvements were achieved on CIFAR100, for which 3446 COCO-CFs had subject alterations
matching at least one label from the dataset. These findings point to the potential usefulness of
targeting counterfactual changes for task-specific datasets.

A.3 Analysis of Errors in COCO-Counterfactuals Identified by Human Annotators

In this section, we analyze errors in COCO-Counterfactuals using the labels assigned by human
annotators (Section 4.1). Specifically, we consider an error to be any image-text pair from the
COCO-Counterfactuals dataset for which the human annotator did not select the correct caption for
the corresponding image.

A.3.1 Manual Categorization of Errors

To investigate potential failure cases in our counterfactual generation approach, we randomly sampled
and categorized 100 image-text pairs which were identified as errors by the human annotators. Table 7
provides the percentage of sampled COCO-Counterfactuals which were assigned to various error
categories. Additionally, Tables 8 and 9 provide examples of counterfactual pairs which were assigned
to the top-six most frequent error categories.

We found that 66% of the sampled errors can be attributed to known limitations of existing text-to-
image diffusion models (Chefer et al., 2023; Samuel et al., 2023; Cho et al., 2022), which include
the categories for failure to generate a subject or object (e.g., Table 8, row 1), failure to generate
fine-grained details (e.g., Table 8, row 2), failure to accurately depict spatial relationships (e.g.,
Table 9, row 2), failure to generate the correct number of objects described in the prompt (e.g.,
Table 9, row 3), and failure to bind attributes such as color.
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Original Counterfactual
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A cat walking through a kitchen by a eating tray A cat walking through a field by a eating tray.
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A man playing Wii in a dirty room A kid playing Wii in a dirty room

H
yp

on
ym

y
re

la
tio

ns
hi

p
be

tw
ee

n
al

te
re

d
su

bj
ec

ts

Two kids in pink and purple jackets standing by a
fence

Two girls in pink and purple jackets standing by
a fence

Table 8: Examples of failure cases identified by manual error analysis
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Original Counterfactual
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Two people dressed in red skiing across a snowy
landscape

Two people dressed in red race across a snowy
landscape
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A woman lies on the ground under a suitcase. A man lies on the ground under a suitcase.
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A bathroom sink with two toothbrush holders on it A bathroom sink with two cup holders on it

Table 9: Additional examples of failure cases identified by manual error analysis
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Altered Subjects Count Altered Subjects Count Altered Subjects Count
woman → girl 126 man → boy 125 people → men 116
person → man 93 person → woman 42 person → boy 37
couple → group 36 people → guy 35 people → kid 33
person → girl 33 girl → woman 32 man → woman 30
men → people 29 people → student 27 woman → man 24
man → person 24 building → house 23 men → boy 21
women → girl 21 boy → man 21

Table 10: Frequency of altered subjects which appeared at least 20 times in errors identified by human
annotators

In many cases, these failures do not negatively impact the depiction of the counterfactual change
in the two images because the inaccuracies pertain to details other than the altered subjects. For
example, the first row of Table 8 shows the counterfactual pair associated with an image which was
categorized as a failure to generate a subject/object; in this case, the altered subjects (kitchen →
field) are depicted correctly, but both images lack the eating tray described in the prompt. Similarly,
the counterfactual pair shown in the second row of Table 8 lacks fine-grained details in the prompt
(e.g., dirty room), but still depicts the altered subjects correctly (man → kid).

We found that 15% of the sampled errors could be attributed to a hyponymy relationship between
the altered subjects which caused both captions to be equally valid for a given image. For example,
the third row of Table 8 shows a counterfactual pair where the counterfactual image was incorrectly
labeled by the human annotator because both captions were valid descriptions of the image (i.e.,
girls can also be referred to as kids). Nevertheless, this example is still a valid counterfactual pair
considering that the counterfactual caption does not accurately describe the original image and is
more descriptive of the counterfactual image than the original caption.

An additional 15% of the sampled errors appeared to be valid image-text pairs without any significant
deficiencies. We therefore concluded that such cases were human annotation errors (see Table 9 row
1 for an example). Finally, 4% of the sampled images had equally valid caption choices because both
of the altered subjects appeared in the image that was annotated.

The results of this error analysis suggest that the quality of counterfactuals produced by our approach
may improve as the capabilities of text-to-image diffusion models advance. New models which
overcome known limitations of existing models could be used as a substitute for Stable Diffusion
in our approach to produce higher-quality counterfactuals. Additionally, errors associated with
hyponymy relationships could be addressed in future work through a refinement of our subject
alteration process. For example, ontologies could be used to avoid noun substitutions where it can
be determined that a hyponymy relationship exists between the noun candidates. Finally, additional
constraints on the image generation process could be explored to prevent both altered subjects from
appearing in the same image.

A.3.2 Taxonomic Analysis of Errors

To better understand the relationship between the altered subjects in our counterfactuals and potential
failure cases, we conducted a taxonomic analysis of the altered subjects which occurred most
frequently among errors identified by human annotators. Table 10 provides the frequency of altered
subject pairs which occurred at least 20 times in the error cases identified by human annotators.
Interestingly, we observe that 19 of these 20 most frequent altered subject pairs belong to the human
taxonomy.

We further analyzed this human taxonomy in COCO-Counterfactuals by constructing a list of
human-related words, which consists of ‘girl’, ‘boy’, ‘man’, ‘men’, ‘woman’, ‘guy’, ‘kid’, ‘person’,
‘people’, ‘child’, ‘children’, ‘couple’, ‘group’, and ‘lady’. An image-text pair is said to be related to
this human taxonomy if the altered subject of its caption belong to this list. We find that there are
4117 image-text pairs in COCO-Counterfactuals that are related to the human taxonomy, among
which 1864 were identified as errors by human annotators. The corresponding error rate for altered
subjects related to the human taxonomy is 44.3%, which indicates that generating counterfactual
pairs involving human altered subjects is more challenging for our approach. This suggests that a
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Text Retrieval Image Retrieval

Training dataset |Dtrain| |DCF
train| R@1 R@5 R@10 R@1 R@5 R@10 Mean

MS-COCO + COCO-CFs 34,313 20,385 75.91 93.95 96.90 77.66 94.51 97.20 89.36

Table 11: Mean image-text retrieval performance on the OOD Flickr30k test set using only COCO-
Counterfactuals which were correctly labeled by humans, measured across 25 different random
seeds.

Text Retrieval Image Retrieval

Training dataset |Dtrain| |DCF
train| R@1 R@5 R@10 R@1 R@5 R@10 Mean

None (pre-trained CLIP) 0 0 50.12 75.04 83.6 30.73 56.28 67.18 60.49

MS-COCO 13,928 0 57.330.3 81.280.2 88.710.2 41.130.1 68.460.1 78.450.1 69.230.1
MS-COCO + COCO-CFs 13,928 6,939 56.910.3 80.700.2 87.820.2 39.920.1 67.010.1 77.150.1 68.250.1

MS-COCO + COCO-CFs 34,820 20,894 58.060.3 81.390.2 88.910.2 41.630.2 68.640.1 78.850.1 69.580.1
MS-COCO + COCO-CFs 41,784 27,853 58.020.3 81.390.2 88.780.2 41.820.1 68.790.1 78.890.1 69.620.1

Table 12: Image-text retrieval performance on the in-domain MS-COCO test set. All other settings
are identical to Table 3.

promising direction for future work is the exploration of improvements to the generation of images
involving human subjects.

A.4 Training Data Augmentation with Only Correctly-annotated COCO-Counterfactuals

We investigate the potential impact of COCO-Counterfactuals which were incorrectly labeled by hu-
mans on training data augmentation. Table 11 provides the OOD image-text retrieval performance in
this setting, where COCO-Counterfactuals were filtered to only include those which were correctly
labeled by the human annotators. Overall we find similar performance as our previous experiments
using the full COCO-Counterfactuals dataset (Table 3), suggesting that filtering our synthetic data
using human evaluations is not necessary for data augmentation applications.

A.5 COCO-Counterfactuals Improve In-domain Performance

We evaluate the same models trained with counterfactual data augmentation described in Section 5
on the MS-COCO test set. The results of this in-domain evaluation are provided in Table 12.
Similar to the OOD image-text retrieval setting, we find that data augmentation with 20, 892 COCO-
Counterfactuals provides statistically significant performance improvements relative to training
without counterfactual data augmentations. Notably, previous work has observed that counterfactual
data augmentation can degrade performance on withheld in-domain test sets (Wang and Culotta,
2021; Howard et al., 2022), whereas data augmentation with our COCO-Counterfactuals actually
increases in-domain performance on MS-COCO.

A.6 COCO-Counterfactuals for Model Evaluation Experiments

We further investigate whether our COCO-Counterfactuals (COCO-CFs) can serve as a challenging
test set for state-of-the-art multimodal vision-language models such as CLIP, Flava (Singh et al.,
2022), BridgeTower (Xu et al., 2022) and ViLT (Kim et al., 2021) for the zero-shot image-text
retrieval and image-text matching tasks. We employed the following HuggingFace implementations
of these models via the transformers library:

• CLIP: We used the pre-trained model clip-vit-base-patch32
• Flava: We used the pre-trained model flava-full
• BridgeTower: We used the pre-trained model bridgetower-large-itm-mlm-itc
• ViLT: We used the pre-trained model vilt-b32-finetuned-coco

Zero-shot Image-text Retrieval. In Section 4, we evaluated the zero-shot image-text retrieval (ITR)
performance of pre-trained Flava and BridgeTower models on COCO-CFs and human-evaluated
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Text Retrieval Image Retrieval
HuggingFace Pre-trained Models Evaluated Dataset R@1 R@5 R@10 R@1 R@5 R@10

Clip COCO-CFs 37.65 (-21%) 64.89 (-9%) 74.57 (-7%) 34.98 (+5%) 62.29 (+7%) 72.43 (+4%)
human-evaluated-COCO-CFs 43.25 (-9%) 70.4 (-2%) 79.37 (-1%) 40.14 (+21%) 67.86 (+16%) 77.66 (+11%)

Table 13: Image-text retrieval performance on COCO-CFs and human-evaluated COCO-CFs for
CLIP model. Largest drops of performance against the baseline are in boldface.

COCO-CFs that consists of only image-text pairs that were correctly matched in human evaluation in
Section 4.1. Since a pre-trained CLIP model was employed in our counterfactual image generation
process (see Section 3.2), CLIP models are not suitable for the zero-shot ITR evaluation. Hence, we
only report evaluation of pre-trained CLIP model for ITR task here for completeness.

Table 13 reports ITR performance (i.e., Recall at 1, 5, and 10) on COCO-CFs and human-evaluated-
COCO-CFs for the pre-trained CLIP model. Similar to Table 2, the percentages enclosed within
parentheses indicate the change in performance of the CLIP model on an evaluated dataset versus the
performance of that model on MS-COCO (baseline).

We observe that on both COCO-CFs and human-evaluated-COCO-CFs datasets, while the perfor-
mance of the pre-trained CLIP model degrades marginally on Text Retrieval task, its performance
increases for Image Retrieval task. We attribute this to potential data contamination due to how
we employed a pre-trained CLIP model in our counterfactual image generation process (see Sec-
tion 3.2). As a result, COCO-Counterfactuals includes image-text pairs for which CLIP achieves
high image-text retrieval performance.

B Dataset and Experiment Details

B.1 Hyper-parameter Selection and Models Used to Generate COCO-Counterfactuals

In this section, we will detail hyper-parameters and pre-trained models used to our generate COCO-
Counterfactuals dataset.

B.1.1 Creating Counterfactual Captions

Given an original caption from the MS-COCO dataset, we use Natural Language Toolkit
(NLTK) (Bird et al., 2009) modules:

• punkt for sentence tokenizer, and

• averaged_perceptron_tagger for part-of-speech (POS) tagger

to identify all nouns as candidate words for substitution.

For each of the identified nouns, we create 10 candidate counterfactual captions by replacing only
one noun with the [MASK] token and retrieving the top-10 most probable replacements via masked
language modeling (MLM). For MLM, we used the pre-trained model roberta-base (Liu et al., 2019)
implemented in the library transformers (Wolf et al., 2019)

A motivation for our use of noun substitutions is the desire to produce minimal-edit counterfactuals.
This is a common strategy for NLP counterfactuals (Kaushik et al., 2019; Wang and Culotta, 2021;
Yang et al., 2021) because the high degree of similarity between the original and counterfactual
text preserves spurious correlations that models might rely on for discernment. Furthermore, our
use of perplexity filtering mitigates the potential for such word substitutions to produce unrealistic
counterfactual captions.

In order to measure similarity between each candidate counterfactual caption and an original caption,
we used the pre-trained model all-MiniLM-L6-v2, which is implemented within the library sentence-
transformers (Reimers and Gurevych, 2019).

Among generated candidate counterfactual captions, we kept only those candidates which have
a sentence similarity within the range (0.8, 0.91). We selected this similarity range heuristically,
observing that it produced best results after extensive experimentation.
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Finally, we employed the pre-trained model gpt2-large, a GPT-2 (Radford et al., 2018) model
implemented in the transformers library, to score the perplexity and choose the candidate having the
lowest perplexity as our counterfactual caption.

B.1.2 Generating Counterfactual Images

After creating a counterfactual caption, our next task is to generate synthetic images from the
corresponding original caption and counterfactual caption, respectively. In order to do so, we have
adopted an implementation from Instruct-Pix2Pix (Brooks et al., 2023) in which all hyper-parameters
are set to their default values.

Specifically, we over-generate 100 image pairs with Prompt-to-Prompt by randomly sampling values
of the parameter p ∼ U(0.1, 0.9) (i.e., parameter p indicates the portion of denoising for which to fix
self attention maps). The resulting 100 image pairs are filtered using CLIP (Radford et al., 2021) to
ensure:

i. a minimum cosine similarity of 0.2 between the encoding of each caption and its correspond-
ing generated image, and

ii. a minimum cosine similarity of 0.7 between the encoding of the two respective images in
each generated image pair.

From remaining image pairs, the best image pair is chosen such that it has the highest directional
similarity CLIPdir score. Selecting images with the highest CLIPdir improves the overall quality of
our generated counterfactuals via greater consistency between the alterations made in both modalities.

B.2 Human Annotation Study

Professional annotation services for our human study were provided by Mindy Support. The total
cost of this study was $1068.59 for 218 annotation hours. The instructions provided to annotators are
depicted in Figure 4. We are unable to provide the hourly wages paid to workers as this is considered
proprietary information by Mindy Support. However, the following statement was provided by the
vendor regarding compensation:

“We prioritize compliance with all standards of local and international legislation, ensuring fair treat-
ment and equal opportunities for individuals of various backgrounds, ages, and other characteristics.
We are committed to upholding the principles of fair wages, non-discrimination, and labor standards,
including the prohibition of child labor. As an organization, we strictly adhere to legal requirements
and strive to create an inclusive and ethical working environment for all. Rest assured that our
compensation rates reflect market demands and provide fair remuneration for the work performed by
our participants. We remain dedicated to abiding by all labor regulations and social and economic
standards.”

B.3 Training Data Augmentation Experiments

In this section, we detail how we constructed our training datasets and how we finetuned the pre-
trained CLIP model for experiments described in Section 5.

B.3.1 Training Dataset Preparation

Our training data augmentation experiments utilize various combinations of the MS-COCO validation
set and our COCO-Counterfactuals dataset. For simplicity, a caption-image pair is referred to as a
sample. We define a counterfactual sample as following. Given a sample (C, I) (i.e., caption C and
image I) from our COCO-Counterfactuals dataset, a sample (C ′, I ′) from COCO-Counterfactuals
dataset is called a counterfactual sample of (C, I) iff C ′ and C are counterfactual captions of each
other. By this definition, COCO-Counterfactuals dataset includes 34,820 samples that correspond
to 17,410 paired counterfactual samples.

For experiments in Section 5, we have prepared the following 4 datasets:
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Instructions:  

Select the caption which best describes the image. In cases where both captions are valid for the image, 
please try to pick the one which is more descriptive or detailed. If both captions are valid and describe 
the image equally well, select “Both”. If neither of the captions accurately describe the image, select 
“Neither”.  

 

 

• A woman standing in a kitchen by a window 
• A man standing in a kitchen by a window 
• Both 
• Neither 

 
Figure 4: Instructions provided to data annotators

(a.) MS-COCO dataset. This is a subset of the 5K validation split of the 2017 MS-COCO
dataset13, achieved by filtering out all samples with captions which are not included in our
COCO-Counterfactuals. This results in a dataset (referred to as the MS-COCO dataset
used in experiments in Section 5) of 17,410 captions and their paired original images.

(b.) [MS-COCO + COCO-CFs ]base dataset. This dataset is a combination of:
– 50% random sampling (i.e., 8,705 caption-image pairs) of the MS-COCO dataset

constructed in (a.).
– 25% random sampling of paired counterfactual samples from our COCO-

Counterfactuals dataset. This results in a total of 4,353 pairs of samples with their
corresponding counterfactuals, for a total of 8,706 caption-image samples from our
COCO-Counterfactuals dataset.

13https://cocodataset.org/#download
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Overall, the [MS-COCO + COCO-CFs ]base dataset consists of 17,411 captions and their
paired original images, which is approximately equal in size to the MS-COCO dataset
constructed in (a.)

(c.) [MS-COCO + COCO-CFs ]medium dataset. This dataset is a combination of:
– all samples (i.e., 17,410 caption-image pairs) from the MS-COCO dataset constructed

in (a.).
– 75% random sampling (i.e., 26,115 caption-image pairs) from our COCO-

Counterfactuals dataset.
Overall, dataset [MS-COCO + COCO-CFs ]medium consists of 43,525 captions and their
paired original images.

(d.) [MS-COCO + COCO-CFs ]all dataset. This dataset is a combination of:
– all samples (i.e., 17,410 caption-image pairs) from the MS-COCO dataset constructed

in (a.).
– all samples (i.e., 34,820 caption-image pairs) from our COCO-Counterfactuals

dataset.
Overall, dataset [MS-COCO + COCO-CFs ]all consists of 52,230 captions and their paired
original images.

Each of the datasets described above is split into a training set (80%) and a validation set (20%). In
each experiment, the validation set is used to pick the best model checkpoint at the conclusion of
training. Tables 3, 4, and 12 report experimental results for models trained using the train split of
these four datasets. |Dtrain| indicates the total number of samples (i.e., image-text pairs) included in
the respective training set, while |DCF

train| indicates how many of those image-text pairs were sampled
from the COCO-Counterfactuals dataset.

B.3.2 Finetuning CLIP with Data Augmentation

We use each of the four training sets constructed in Section B.3.1 to finetune the CLIP model
clip-vit-base-patch32. We adopted a publicly-available finetuning script provided by HuggingFace14.

We repeat each of our training experiments with 25 different seeds and data_seed from the ranges
[107, 131] and [108, 132], respectively. In each experiment, we use a learning rate to 5e-7, weight
decay of 0.001, training batch size of 128, and evaluation batch size of 128.

B.4 Compute Infrastructure Used In this Study

Our experiments were conducted using an Intel AI supercomputing cluster comprised of Intel Xeon
processors and 512 Intel Gaudi®AI accelerators, as well as an internal Slurm linux cluster with Nvidia
RTX 3090 GPUs. Our dataset generation pipeline was parallelized across this compute infrastructure
and took approximately 3 days to complete. Our training data augmentation experiments varied in
running time depending upon the size of the dataset, ranging between 2 to 10 hours.

B.5 License Information of Assets Employed in This Study

• NLTK is open source software distributed under the terms of the Apache License Version
2.0.

• Transformers is released under the Apache License Version 2.0 and is available on GitHub
at https://github.com/huggingface/transformers.

• Pre-trained model Roberta-base is released under the MIT License.
• Library sentence-transformers is licensed under the Apache License Version 2.0 and is

available on GitHub at https://github.com/UKPLab/sentence-transformers.
• Pre-trained model all-MiniLM-L6-v2 is licensed under the Apache License Version 2.0.
• Pre-trained gpt2-large model is license under the MIT License.

14The finetuning script can be accessed at https://github.com/huggingface/transformers/blob/
main/examples/pytorch/contrastive-image-text/run_clip.py.
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• Instruct-Pix2Pix is licensed under the MIT License and is available on GitHub at
https://github.com/timothybrooks/instruct-pix2pix.

• Instruct-Pix2Pix further employs stable-diffusion-v1-5 that is released under CreativeML-
Open-RAIL-M License.

• For the MS-COCO dataset:
– The annotations in the dataset are released under the Creative Commons Attribution

4.0 License.
– The use of the images in the dataset must abide by the Flickr Terms of Use.

• Pre-trained model clip-vit-base-patch32 is licensed under the MIT License.
• Pre-trained model flava-full is licensed under the 3-Clause BSD License.
• Pre-trained model BridgeTower large-itm-mlm-itc is released under the MIT License.
• Pre-trained vilt-b32-finetuned-coco model is license under the Apache License Version 2.0.

C Datasheet for Dataset

C.1 Motivation

For what purpose was this dataset created? This dataset was created for the purpose of exploring
the relevancy of counterfactual examples for multimodal vision-language models. Specifically, our
aim was to create a dataset which can serve both as a challenging evaluation dataset for existing models
and as a resource for training data augmentation to improve multimodal models on downstream tasks.
For additional discussion of our motivation and the intuition behind counterfactual examples, see
Section 1.

Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)? The dataset was created by the authors of this paper who are
affiliated with Intel Labs, a research and development organization within Intel Corporation.

Who funded the creation of the dataset? The creation of this dataset was funded by Intel Corpora-
tion.

C.2 Composition

What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)? The instances represent synthetically-generated images and accompanying text captions.
The images depict a variety of different everyday scenarios.

How many instances are there in total (of each type, if appropriate)? COCO-Counterfactuals
contains a total of 34,820 image-caption pairs.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? Yes, it contains all possible instances per our filtering criteria.

What data does each instance consist of? Each instance consists of a synthetically-generated image
and an accompanying text caption.

Is there a label or target associated with each instance? No

Is any information missing from individual instances? No

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social
network links)? Yes, instances which correspond to a single counterfactual pair are annotated as
such in our dataset. Otherwise, there are no other relationships between individual instances.

Are there recommended data splits (e.g., training, development/validation, testing)? No

Are there any errors, sources of noise, or redundancies in the dataset? The automated methodol-
ogy used to generate COCO-Counterfactuals introduces the possibility of noise and errors in the
dataset. See Section ?? for additional discussion.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? Yes
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Does the dataset contain data that might be considered confidential (e.g., data that is pro-
tected by legal privilege or by doctor–patient confidentiality, data that includes the content of
individuals’ non-public communications)? No

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? Yes, the dataset may contain offensive material due to the
manner in which it was automatically constructed. See Section ?? for additional discussion.

Does the dataset identify any subpopulations (e.g., by age, gender)? No

Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? No

Does the dataset contain data that might be considered sensitive in any way (e.g., data that
reveals race or ethnic origins, sexual orientations, religious beliefs, political opinions or union
memberships, or locations; financial or health data; biometric or genetic data; forms of
government identification, such as social security numbers; criminal history)? No

C.3 Collection Process

How was the data associated with each instance acquired? The data associated with each instance
was acquired via our data generation methodology (see Section 3 for a detailed description).

What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or
sensors, manual human curation, software programs, software APIs)? Please see Section 3 for a
complete description of our data generation methodology.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)? Not applicable

Who was involved in the data collection process (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)? The COCO-
Counterfactuals dataset was collected automatically, as detailed in Section 3. Human evaluation
of COCO-Counterfactuals involved paid professional annotators employed by Mindy Support (see
Appendix B.2 for details).

Over what timeframe was the data collected? The data was generated and evaluated over the
course of approximately three months.

Were any ethical review processes conducted (e.g., by an institutional review board)? No,
institutional review was not required.

Did you collect the data from the individuals in question directly, or obtain it via third parties
or other sources (e.g., websites)? No, the dataset was generated automatically and was not collected
directly from individuals.

Were the individuals in question notified about the data collection? Not applicable

Did the individuals in question consent to the collection and use of their data? Not applicable

If consent was obtained, were the consenting individuals provided with a mechanism to revoke
their consent in the future or for certain uses? Not applicable

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data
protection impact analysis) been conducted? No, not applicable

C.4 Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
of missing values)? Yes, we apply extensive filtering to various stages of our data generation pipeline
in order to improve the quality of the dataset. See Section 3 for a complete description of these
methods.
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Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)? No. However, due to how our dataset is automatically constructed, raw
data can be reproduced by running our code.

Is the software that was used to preprocess/clean/label the data available? Yes, we will make our
code publicly available upon publication.

C.5 Uses

Has the dataset been used for any tasks already? Yes, we applied COCO-Counterfactuals to the
task of model evaluation in Section 4 and to the task of training data augmentation in Section 5.

Is there a repository that links to any or all papers or systems that use the dataset? Our
GitHub repository will contain links to papers and systems used by our data generation methodology.
Additionally, this paper contains references to all such papers and systems that we utilized.

What (other) tasks could the dataset be used for? COCO-Counterfactuals is broadly applicable
to tasks which require multimodal inputs consisting of images with paired text. One potential use
case not explored during this study is large-scale pre-trianing of multimodal models, which could be
improved through counterfactual data augmentation.

Is there anything about the composition of the dataset or the way it was collected and pre-
processed/cleaned/labeled that might impact future uses? Due to the way in which COCO-
Counterfactuals was generated automatically, it may contain errors, offensive material, or biases
which are present in the models employed by our pipeline.

We used Stable Diffusion to collect image data, which has well-known limitations that should be
considered when utilizing datasets which are derived from them. These limitations include unrealistic
depictions of hands, palms, and other fine-grained objects (Samuel et al., 2023); failures to generate
one or more of the subjects in a prompt and correctly bind attributes such as color (Chefer et al.,
2023); difficulties with object counting and spatial relationship understanding (Cho et al., 2022); and
challenges associated with the composition of concepts (Liu et al., 2022). While our experiments
suggest that COCO-Counterfactuals is relatively robust to generation failures when used for training
data augmentation, future applications of our methodology should consider the risks associated with
these limitations relative to the intended use of the generated dataset.

Stable diffusion and other text-to-image diffusion models have been shown to exhibit biases associated
with race and gender, including over-representation of masculinity and whiteness (Luccioni et al.,
2023); racial and gender disparities in depictions of certain occupations (Bianchi et al., 2023); and
preferences for certain genders or skin tones (Cho et al., 2022). Consequently, models trained on
COCO-Counterfactuals may learn similar social biases as those expressed in synthetic images
generated by Stable Diffusion. While some recent work has investigated approaches for mitigating
biases in diffusion models, further investigation is needed into the de-biasing of datasets on which
these models are trained in order to fully eliminate them (Schramowski et al., 2023).

Users of the dataset should carefully consider how these limitations may impact their potential use
case.

Are there tasks for which the dataset should not be used? The dataset should not be used for a
task if the limitations discussed above are unacceptable or potentially problematic for the inteded use
case.

C.6 Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? Yes, the dataset will be made open
source and publicly available.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? The dataset will
be distributed via the Hugging Face Hub.

When will the dataset be distributed? The dataset will be made available publicly upon publication
of this paper.

26

https://huggingface.co/datasets


Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? The dataset will be distributed under the CC BY 4.0
license.

Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? No

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? No

C.7 Maintenance

Who will be supporting/hosting/maintaining the dataset? The datasset will be hosted on the
Hugging Face Hub. The authors of this paper will support and maintain the dataset via our public
GitHub repository.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)? The
corresponding author can be contacted via the e-mail address listed on the first page of this paper.
Alternatively, an issue can be raised on our GitHub repository.

Is there an erratum? No

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?
Although we do not anticipate the need to update this dataset in the future, we will respond to issues
which are raised on our public GitHub repository for this project.

If the dataset relates to people, are there applicable limits on the retention of the data associated
with the instances (e.g., were the individuals in question told that their data would be retained
for a fixed period of time and then deleted)? Not applicable

Will older versions of the dataset continue to be supported/hosted/maintained? Yes. If the
dataset is updated in the future, older versions will remain available.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? Yes, we make our dataset open source and welcome others to build on it. This can be
done by making contributions to our GitHub repository and/or citing our dataset as appropriate when
used in future work.
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