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Abstract

Graph-based semi-supervised learning (GSSL) serves as a powerful tool to model
the underlying manifold structures of samples in high-dimensional spaces. It
involves two phases: constructing an affinity graph from available data and inferring
labels for unlabeled nodes on this graph. While numerous algorithms have been
developed for label inference, the crucial graph construction phase has received
comparatively less attention, despite its significant influence on the subsequent
phase. In this paper, we present an optimal asymmetric graph structure for the label
inference phase with theoretical motivations. Unlike existing graph construction
methods, we differentiate the distinct roles that labeled nodes and unlabeled nodes
could play. Accordingly, we design an efficient block-wise graph learning algorithm
with a global convergence guarantee. Other benefits induced by our method, such
as enhanced robustness to noisy node features, are explored as well. Finally, we
perform extensive experiments on synthetic and real-world datasets to demonstrate
its superiority to the state-of-the-art graph construction methods in GSSL.

1 Introduction

Graph-based semi-supervised learning (GSSL) is a burgeoning research field [52, 9, 14, 63, 65, 62].
As a subclass of semi-supervised learning (SSL), GSSL exhibits promise since it encapsulates
the smoothness or manifold assumption, where samples with similar features are likely to share
the same label. GSSL methods begin by constructing an affinity graph, wherein nodes represent
samples, and weighted edges denote similarity between pairs of nodes. This process aligns with
the manifold assumption, implying that nodes connected by edges with large weights tend to have
the same label. Upon obtaining the affinity graph, various label inference algorithms such as label
propagation [85, 82, 25, 65] can be executed to predict labels for the unlabeled nodes.

Preliminary empirical studies [16] suggest that the quality of the affinity graph significantly influences
label prediction performance. However, the graph construction phase in GSSL has received less
scrutiny compared to the subsequent label inference phase. Constructing a high-quality graph presents
a challenge as its quality can only be assessed indirectly through postmortem verification via label
inference performance. Classic solutions such as the Radial Basis Function (RBF) Kernel [85] , kNN
graph [17], and b-matching [26], while simple, may exhibit low robustness against noise due to their
simplicity. More recent and complex methods, typically framed as optimization problems to find
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the optimal graph under the smoothness assumption, suffer from inefficient optimization techniques
without fast convergence guarantees [18, 29, 63] or lack a solid theoretical foundation [58, 14, 23].

Consequently, a series of research questions arise: 1) What is the optimal graph structure for label
inference algorithms in GSSL? 2) How can we optimize this optimal graph efficiently? 3) What kinds
of benefits can this optimal graph bring?

Most existing GSSL graph construction methods treat all nodes equally, disregarding label infor-
mation, which results in a symmetric, undirected graph. However, we contend that an asymmetric,
directed graph structure might be more beneficial for subsequent label inference due to the distinct
roles labeled and unlabeled nodes can play. Intuitively, edges from labeled to unlabeled nodes would
naturally facilitate supervision information propagation, while edges from unlabeled to labeled nodes
may introduce inconsistency, potentially undermining the prediction accuracy for the labeled nodes.

Motivated by this key observation, we revisit a unified optimization framework that encompasses
most label inference algorithms, assuming the affinity graph is already constructed. We then fix the
downstream label inference result and position the graph weight matrix (or adjacency matrix) as
the optimization variable. This shift allows us to define optimality in the graph construction step of
GSSL concisely, addressing our first research question. We subsequently present a tailored optimal
solution featuring an asymmetric graph structure that aligns with our proposed intuition. In response,
we introduce the Block-wise Affinity Graph Learning (BAGL) algorithm by leveraging duality and
the fast proximal gradient method, addressing our second research question. Finally, we demonstrate
that BAGL ensures a sub-linear global convergence rate of O(1/k) and can alleviate issues of noisy
node features, addressing our third research question.

In summary, this work offers four main contributions. First, we provide a succinct definition of the
optimality of the affinity graph in GSSL, and through rigorous derivation, propose an ad-hoc solution
with an asymmetric structure. Second, we design a block-wise graph learning framework, BAGL, to
infer the weights in the optimal graph structure. Third, we prove that a global sub-linear convergence
rate is guaranteed for BAGL and analyze other benefits. Fourth, we perform extensive experiments
on synthetic and real-world datasets to demonstrate the effectiveness and efficiency of BAGL.

2 Preliminary

2.1 Problem Formulation

We present a formulation for the GSSL problem, comprising two steps: graph construction and label
inference [52]. Our study primarily investigates the optimal construction of the affinity graph in the
first phase to facilitate enhanced performance in the second label inference phase.

Given a set of data points {xi}ni=1, where each xi ∈ Rd is sampled from a d dimensional feature
space. In this paper, we interchangeably use the terms node, point, and sample to refer to xi. Each
sample xi has a label yi ∈ Nc, where Nc = {i ∈ N+ | 1 ≤ i ≤ c} with c being the number of classes.
Given the labels of the l samples {xi}li=1 as {yi}li=1, the ultimate goal of general transductive SSL
is to infer the labels {yi}l+u

i=l+1 for the remaining u unlabeled samples {xi}l+u
i=l+1 (n = l + u). As a

subcategory of general SSL, GSSL methods first construct a graph G = {V, E ,W } based on all the
training samples {xi}ni=1 and partially given labels {yi}li=1. Here, V is the node set with |V| = n.
Each node represents each sample xi. E is the edge set in which each edge (i, j) is assigned with
a weight Wij (the i-th row, j-th column entry in W ∈ Rn×n) to reflect the affinity or similarity
between the sample pair (xi,xj). Generally, a larger weight indicates a higher level of similarity.
Wij = 0 indicates no edge between node i and node j. Therefore, the key challenge in the first graph
construction step is to generate W based on {xi}ni=1 and {yi}li=1 so that the underlying manifold of
the data is properly encoded. In the second step, various label inference algorithms can be performed
on G to propagate the given labels {yi}li=1 and make predictions {yi}l+u

i=l+1 for unlabeled nodes.

However, the performance of the label inference step is significantly contingent on the quality of the
weight matrix W from the first graph construction step. This paper aims to address three critical
research questions pertaining to the graph construction step in GSSL. First, what constitutes the
overall structure of the optimal weight matrix, W ∗? (Sect. 3.1). We define the optimal weight matrix,
W ∗, as the one that gives the best prediction results when used with the same label inference method
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across different graphs W . Second, how to find an efficient method for optimizing the entries in W ∗?
(Sect. 3.2). Third, what kinds of benefits can W ∗ bring from the theoretical perspective? (Sect. 3.3)

2.2 Recap on the Unified Framework for Label Inference Step in GSSL

Before we delve into the proposed structure for the optimal affinity graph, we first revisit the unified
framework of the label inference step, allowing for a seamless definition of the optimal affinity graph.

If we assume the affinity graph has been constructed, then numerous influential label inference
methods [85, 82, 83, 4, 5, 9] can be performed over this graph to infer the labels for the unlabeled
nodes. However, the majority of them can be incorporated into the following framework.

We first define the node feature matrix X ∈ Rn×d as X = [x1, · · · ,xn]
⊺ and the predicted soft

label matrix F ∈ Rn×c as F = [f1, · · · ,fn]
⊺ with f i ∈ Rc(1 ≤ i ≤ n). Ground-truth label matrix

is given as Y = [y1, · · · ,yn]
⊺ ∈ {0, 1}n×c with yi ∈ {0, 1}c (1 ≤ i ≤ n). Here, for the labeled

nodes {xi}li=1, yi is a one-hot vector in which Yij = 1 if xi belongs to class j (yi = j), and Yij = 0,
otherwise. For the unlabeled nodes {xi}l+u

i=l+1, yi is an all-zero vector for initialization.

Driven by the geometry of the affinity graph, we can unify these label inference algorithms as a
minimizer of the optimization problem as Problem (1).

F ∗ = argmin
F

Q(F ) = argmin
F
{Tr (F ⊺SF ) + Tr ((F − Y )⊺Λ(F − Y )) . (1)

Note that the loss function Q(F ) consists of a quadratic variation term Tr (F ⊺SF ) as the graph
smoothness regularizer, and a quadratic Frobenius error norm ∥F −Y ∥2F = Tr((F −Y )⊺(F −Y )),
both of which should ideally be small subject to a trade-off parameter Λ between them. Here the
smoothing matrix S = s(W ) ∈ Sn+ in the first term, with s : Rn×n → Sn×n

+ , is positive semidefinite
and determined by the weight matrix W of the graph to ensure the adjacent nodes share similar
predictions. The second term measures the distance between predicted results and initial assignments,
and restricts the output for labeled nodes from deviating too much compared with the ground-truth.
Λ is a diagonal matrix with Λii ≥ 0 and S +Λ must be invertible to avoid trivial solutions.

By the first-order optimality condition, we can easily obtain the optimal solution for Problem (1).

F ∗ = (S +Λ)−1ΛY = (s(W ) +Λ)−1ΛY . (2)

Based on the optimal soft label matrix F ∗, the final predicted label for each node is given as
ŷi = ŷ(f i) = argmax1≤j≤c F

∗
ij . It is worth noting that the unified optimization framework in

Problem (1) can admit most of the mainstream GSSL methods. For instance, if we set the smoothing
matrix as the normalized graph Laplacian matrix S = L = s(W ) = D− 1

2 (D − W )D− 1
2

and Λ = λI , we can easily recover one of the most popular label inference methods for GSSL,

Local and Global Consistency (LGC) [82], as F ∗ = argminF { 12
∑n

i,j=1

∥∥∥∥ f i√
Dii
− fj√

Djj

∥∥∥∥2
2

Wij +

λ
∑n

i=1 ∥f i − yi∥
2
2}. Here, L ∈ Sn+ is defined as L = D− 1

2LD− 1
2 , where the combinatorial

Laplacian matrix L ∈ Sn+ is given as L = D −W , and the degree matrix D ∈ Rn×n is a diagonal
matrix defined as Dii =

∑n
j=1 Wij . We summarize several representative works under this unified

framework in Table 5 with explicit forms of S (or s(W )) and Λ in Appendix B.2.

3 Methodology

3.1 Motivation: Optimal Affinity Graph Structure

3.1.1 Definition of the Optimality of the Affinity Graph

If we perform the same label inference algorithm from the above-mentioned generalized framework
on all possible affinity graphs W , the optimal graph W ∗ will enable the label inference step to obtain
the most accurate predictions. Under the above-mentioned unified framework for label inference
(Problem (1)), the weight matrix W is fixed while the soft label matrix F is the optimization variable.
This is due to our goal of executing label inference to attain the optimal F ∗ given the affinity graph
W . Similarly, when we want to construct the optimal graph W ∗ given the label inference framework,
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we consider the weight matrix W as the optimization variable, keeping the soft label matrix F fixed
as the solution in Eq. (2). The form of Q(·) remains unchanged as it is related to the generalization
bound for GSSL that would be discussed in Appendix D.2. This approach aids in identifying the
“optimal” affinity graph for the label inference algorithms under the unified framework.
Definition 1 (Optimality of the Affinity Graph). The affinity graph G is optimal for label inference
under the unified GSSL framework if its weight matrix W is the minimizer of Problem (3).

min
W∈Rn×n

{Tr(F ⊺s(W )F ) + Tr ((F − Y )⊺Λ(F − Y ))} s.t. F = (s(W ) +Λ)−1ΛY , (3)

Although the optimization Problem (3) is intractable in general due to the various forms of s(W )
in the constraint, we can present an ad-hoc optimal structure of W ∗ that is independent of s(W ) ,
which motivates our proposed method in Sect. 3.2 from a theoretical perspective.

3.1.2 Structure of the Optimal Affinity Graph

We then present an equivalent proposition in Theorem 1, which provides a necessary and sufficient
condition for the optimality of W ∗ in Problem (3). Motivated by some classic graph sharpening
techniques [47, 15, 46], Theorem 1 helps to circumvent the challenges of directly dealing with
Problem (3) and holds regardless of the forms of s(W ) (Appendix E.1).
Theorem 1. W ∗ obtained by Definition 1 is optimal if and only if Y l = F l holds. Y l ∈ {0, 1}l×c,
F l ∈ Rl×c are the ground-truth label matrix, and the soft label matrix for labeled nodes.

To put it in a simpler way, Theorem 1 tells us that if the affinity graph is optimal, then after we perform
the label inference algorithm for GSSL, the predicted soft label for the labeled nodes would coincide
with the ground truth precisely. The converse of this observation also holds true. Unfortunately,
it remains an open question to solve Y l = F l by listing all possible classes of solutions due to
the complex interconnection of F and W . However, we can provide a simple ad-hoc solution for
Y l = F l in Proposition 1. For one thing, this asymmetric graph structure, in the theoretical sense,
conforms to the intuition of the better affinity graph we discussed earlier. For another, it also sheds
some light on the proposed optimization framework to infer the weights in this graph structure later.
Proposition 1. If W ∗ can be expressed as (4), W ∗ is an optimal solution given by (3) in Definition 1.

W ∗ =

(
O O

W ul W uu

)
, (4)

where W ul ∈ Ru×l, and W uu ∈ Ru×u can be non-zero submatrices with arbitrary entries.

Proposition 1 provides an ad-hoc solution to Problem (3) (Appendix E.2). If the constructed graph is
asymmetrical with edges from unlabeled nodes to labeled nodes only, then it is optimal by Definition 1.
This asymmetrical optimal graph structure answers the first research question in Sect. 2.1.

The optimal asymmetric graph structure presented in Proposition 1 offers meaningful interpretations
and notable advantages. It effectively eliminates the influence from unlabeled nodes to labeled
nodes by enforcing W ll and W lu to be zero matrices. This aligns with the intuition that label
information should be propagated from labeled nodes to unlabeled nodes in the GSSL methods,
rather than the other way around. More technically, when applying the classic label inference
algorithm LGC [82] on this optimal graph structure, the soft label matrix for unlabeled nodes
now becomes F u = (I − µW uu)

−1W ulY L with some constant 0 ≤ µ ≤ 1. This formulation
indicates that the LGC algorithm spreads supervision information from labeled nodes to unlabeled
nodes once through W ulY l, followed by propagating this information solely among unlabeled
nodes through (I − µW uu)

−1 = I + µW uu + µ2W 2
uu + · · · . By Theorem 1, this optimal

asymmetric graph guarantees zero empirical risk on the labeled nodes. Moreover, many existing
graph construction methods in GSSL primarily focus on node features while disregarding label
information. Consequently, these methods may produce heterophilous edges that connect nodes with
similar features but different labels. Such edges violate the manifold assumption in GSSL, where
nodes with the same label tend to be linked. During the label inference step, the label information
of these nodes connected by heterophilous edges confuses each other during propagation, resulting
in misleading predictions. By setting W ll = O, our method eliminates these heterophilous edges
completely. As a result, it increases the edge homophily ratio of the constructed graph and enhances
the robustness of subsequent label inference algorithms, as validated in Appendix D.1.
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3.2 Implementation: Block-wise Graph Learning Algorithm

3.2.1 Framework

By differentiating the roles that labeled and unlabeled nodes would play, we arrive at an optimal
structure for the affinity graph in Proposition 1. However, an efficient algorithm to infer the exact
weights or entries for blocks in Eq. (4) is still in demand. Motivated by previous works [29, 30, 19],
we make the following reasonable restrictions or assumptions on W to obtain a more meaningful
graph for GSSL. First, the features for two directly connected nodes should not vary too much, no
matter whether they are labeled or not. This agrees with the manifold assumption in GSSL, where
links tend to form between similar nodes. Violation of this fundamental assumption usually causes
a significant performance drop in the label inference step. Second, the constructed graph should
be well-connected in terms of both W ul and W uu to ensure the supervision information could
propagate freely among all nodes. Otherwise, some disconnected nodes may never receive any label
information. Third, it is desirable to control the sparsity of the graph, avoiding an overly sparse or
overly dense graph. We will empirically demonstrate the effects of the sparsity control later. We
propose two similar optimization frameworks for W ul and W uu in Eq. (4) as Problem (5) and (6).

min
Wul

∥W ul ⊙Zul∥1 − α11
⊺ log(W ul1)− α11

⊺ log(W ⊺
ul1) + β1∥W ul∥2F ,s.t.W ul ≥ 0. (5)

min
Wuu

∥W uu ⊙Zuu∥1 − α21
⊺ log(W uu1)− α21

⊺ log(W ⊺
uu1) + β2∥W uu∥2F ,s.t.W uu ≥ 0. (6)

Here, we define the pairwise distance matrix Z =

(
Zll Z⊺

ul
Zul Zuu

)
∈ Rn×n

+ with Zij = ∥xi−xj∥22.

⊙ is the Hadamard product and log(·) is the element-wise logarithm operator. Since Problem (5)
and (6) share the same form, we will only focus on Problem (5) as an example. The first term
∥W ul ⊙ Zul∥1 =

∑
1≤i≤u,1≤j≤l Wij∥xi − xj∥22 encourages similar nodes to be connected with

larger weights, meeting the manifold assumption. The second and third logarithmic barrier term
act on the out-degree and in-degree vectors to make sure that each unlabeled node is connected by
at least one labeled node and vice versa, improving the overall connectivity of the graph. The last
Frobenius norm term measures the sparsity of the graph. The parameters α1, α2, β1, β2 are positive.

3.2.2 Optimization

For convenience of presentation, we view the entries in W ul (W uu) as a new vector w =
vec[W ul] ∈ Rul

+ . Similarly, we have z = vec[Zul] ∈ Rul
+ . Accordingly, a linear mapping ma-

trix T 1 ∈ {0, 1}u×ul transforms the edge weights to the corresponding out-degree vector (i.e.
T 1w = W ul1). Similarly, we have T 2w = W ⊺

ul1 for the in-degree vector. Further, if we let
T ⊺ = (T ⊺

1 ,T
⊺
2) ∈ {0, 1}n×ul, α = α1 = α2, and β = β1 we can easily transform Problem (5) into

Problem (7) (primal) in a more compact way with an extra linear constraint.

min
w,v

f(w) + g(v) s.t. v = Tw, (7)

with f(w) = w⊺z + β∥w∥22 + I{w≥0}, g(v) = −α1⊺ log(v).

The state-of-the-art method [61] applies the linearized alternating direction method of multipliers
(ADMM) algorithm [8] directly to the primal problem with a similar structure in Problem (7), which
lacks the theoretical guarantee on its convergence rate since the objective function in Problem (7)
has no Lipschitz gradient. Motivated by the recent work [45], we circumvent this critical issue by
applying the FISTA algorithm [2], a proximal gradient method, to the dual problem of (7) instead.
Motivated by recent advances [3, 61], we can now provide a better convergence rate with rigorous
theoretical analysis so that our proposed graph construction method is much more efficient with
guarantees.

Dual Problem Formation We construct the Lagrangian function by introducing the Lagrangian
multipliers λ ∈ Rn as L(w,v,λ) = f(w) + g(v)− ⟨λ,Tw − v⟩. We establish the corresponding
dual problem as Problem (8) by introducing the conjugate functions f∗, g∗ for simpler notation
(Appendix E.3).

min
λ

F (λ) +G(λ), (8)
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with F (λ) = f∗(T ⊺λ), G(λ) = g∗(−λ). By Slater’s condition, we know that strong duality
holds as long as v resides in the range of T . Therefore, the optimal values for Problem (7) and (8)
are identical, and the optimal solution for Problem (8) can be attained. Consequently, we can apply
the FISTA algorithm to the dual problem to generate the dual sequence that converges to the optimal
solution, and construct the corresponding optimal solution back for the primal problem.

Dual Problem with FISTA It is not hard to show that F (λ) is differentiable and∇F (λ) = Tx∗,
where x∗ = argmaxx{(T

⊺λ)⊺x− f(x)} (Appendix E.4). Therefore, the dual problem minimizes
the sum of a differentiable convex function F and a closed proper convex function G. This structure
of the dual Problem (8) immediately paves the way for applying proximal gradient methods. Here,
for the sake of a better convergence rate, we apply the FISTA algorithm with a fixed step size to the
dual Problem (8), and the following iteration schemes are performed. We first choose any λ0 = λ−1

and fix the step size as t = 2β
l+u . Henceforth, k = 1, 2, · · · , we repeat the following two steps as

µk = λk−1 +
k − 2

k + 1
(λk−1 − λk−2), (9)

λk = proxtG
(
µk − t∇F (µk)

)
, (10)

Hence, based on the above-mentioned properties of ∇F (µk), we have ∇F (µk) = T w̄k with w̄k

set as w̄k = argmaxw
{
(T ⊺µk)⊺w − f(w)

}
=
[
T ⊺µk−z

2β

]
+

(Appendx E.5).

Let pk = µk − tT w̄k. By the extended Moreau decomposition [43], proxγh(z) +

γ proxγ−1h∗(z/γ) = z,∀z. We have proxtG(p
k) = pk−tproxt−1G∗(t−1pk) = µk−t(T w̄k−ūk).

Here, ūk = proxt−1g(T w̄k − t−1µk). Note that g(v) = −α1⊺ log(v) and by the definition of
proximal mapping, it is easy to prove that proxt−1g(v) =

1
2 (v+

√
v ⊙ v + 4αt−11). Therefore, we

can simplify the updating step (10) as the following three steps (Appendix E.6).

w̄k =

[
T ⊺µk − z

2β

]
+

, (11)

ūk =
1

2
(T w̄k − t−1µk) +

1

2

√
(T w̄k − t−1µk)⊙ (T w̄k − t−1µk) + 4αt−11, (12)

λk = µk − t(T w̄k − ūk), (13)

Finally, we arrive at Procedure GWBI, where the optimal graph weights are inferred for one block like
W uu in the optimal graph structure suggested in Proposition 1. Here, instead of directly optimizing
the primal variable of the block graph weight vector w, we consider its corresponding dual variable
λ for a better convergence rate. In each iteration step, we first find an extrapolated point µ based on
the points λ from two previous steps (line 3). We then perform the proximal gradient update on this
extrapolated point (lines 4-6) to obtain λ for the next iteration. Note that lines 4-6 are the detailed
instantiation of Eq. (10). Finally, we can convert the dual variable λ back to the desired primal
variable w based on line 4 after its convergence. With this core procedure in hand, we plug it into the
proposed Algorithm 1, Block-wise Affinity Graph Learning (BAGL) algorithm, in Appendix C.

3.3 Theoretical Analysis

We prove that our proposed optimization method for Problem (7) in Procedure GWBI enjoys the
guarantee of the global convergence rate, where the generated primal sequence converges to the
global optimal solution at a rate of O( 1k ) with a fixed step size. To begin with, it is well known that
the FISTA algorithm enjoys the global convergence rate of O( 1

k2 ) [2]. For simplicity, we focus on
the results when optimizing Problem (5), which can be viewed as a general case of Problem (6) when
l ̸= u. Therefore, Q(λ) ≡ F (λ) + G(λ) converges to the dual optimal value Q(λ∗) at a rate of
O( 1

k2 ) due to this well-known fact [2], which yields Theorem 2.

Theorem 2. Let {λk} be the dual sequence generated by Procedure GWBI, then

Q(λk)−Q(λ∗) ≤ l + u

β(k + 1)2
∥λ0 − λ∗∥22. (14)
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Procedure GraphWeightBlockInference(z,T ,α,β,t,ϵ)
Input: Distance vector z, linear mapping matrix T , balancing parameters α and β, step size t,

error tolerance parameter ϵ.
Output: Block graph weight vector ŵ.

1 Initialize λ0 = λ−1 at random and set k = 1;
2 do
3 µk = λk−1 + k−2

k+1 (λ
k−1 − λk−2);

4 w̄k =
[
T ⊺µk−z

2β

]
+

;

5 ūk = 1
2 (T w̄k − t−1µk) + 1

2

√
(T w̄k − t−1µk)⊙ (T w̄k − t−1µk) + 4αt−11;

6 λk = µk − t(T w̄k − ūk);
7 k ← k + 1;
8 while ∥λk − λk−1∥∞ > ϵ;
9 return ŵ = w̄k;

We then consider the corresponding primal sequence {wk} and its convergence rate. Since the strong
duality holds and a dual optimal solution λ∗ exists, any primal optimal point (w∗,v∗) is also a
minimizer of L(w,v,λ∗). This motivates us to construct the primal sequence {wk} based on the
dual sequence {λk} as wk = argminw L(w,v,λk) = argmaxw{⟨T

⊺λk,w⟩ − f(w)}. Thanks
to Theorem 3, this primal sequence {wk} is guaranteed to converge to the optimal primal solution
w∗ of Problem (7) at the rate of O( 1k ).

Theorem 3. Let wk = argmaxw{⟨T
⊺λk,w⟩ − f(w)} with the dual sequence {λk} given by

Procedure GWBI. w∗ and λ∗ are the optimal solution of Problem (7) and the optimal solution of
Problem (8), respectively. We have,

∥wk −w∗∥2 ≤
√
l + u

β(k + 1)
∥λ0 − λ∗∥2. (15)

Motivated by [45], Theorem 3 establishes that the proposed method exhibits a sub-linear convergence
rate, which represents a state-of-the-art result for optimization-based graph construction methods,
accompanied by a global convergence guarantee. This improved convergence rate is primarily
attributed to the utilization of the FISTA algorithm applied to the dual problem. Time complexity
analysis is included in Appendix G.5. More results regarding the robustness of our method are
discussed in Appendix D.

4 Experiments

In this section, we conduct numerical experiments on both synthetic and real-world datasets to
demonstrate the advantages of our proposed BAGL method in terms of efficacy and convergence.
Robustness analysis (Appendix G.3) and more experimental results are included in Appendix G.

4.1 Baseline Models

We choose the following graph construction methods in GSSL for comparison. Radial basis function
kernel (RBF) [85] and kNN graph [17] are two classic methods. Smooth graph learning (SGL) [29]
is a popular method in the graph signal processing domain. RGCLI [7] is another label-informed
graph construction method. Anchor Graph Regularization (AGR) [40] deals with large-scale graph
construction. GraphEBM [14] and BCAN [63] are two state-of-the-art methods. The former exploits
the energy-based model while the latter constructs a bipartite graph.

All the hyper-parameters are fine-tuned with the grid search method. We repeat the experiment
20 times for each case and report the average result with optimal parameter setting in the efficacy
analysis. Unless otherwise specified, the default label inference algorithm is LGC, and the label rate is
ten labeled samples per class. More details on the experimental settings can be found in Appendix F.

7



0.0 0.2 0.4 0.6 0.8 1.00.0
0.2
0.4
0.6
0.8
1.0

(a) Synthetic dataset

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2
0.4
0.6
0.8
1.0

(b) RBF

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2
0.4
0.6
0.8
1.0

(c) BAGL (Ours)

Figure 1: Visualization of classification results on the synthetic dataset.

Table 1: Description of datasets

Dataset #Samples n #Features d #Classes c

ORHD 5,620 64 10
USPS 9,298 256 10

COIL100 7,200 1,024 100
TDT2 9,394 36,771 30

MNIST 70,000 784 10
EMNIST Letters 145,600 784 20

87654321

BAGL
GraphEBM

AGR
BCAN RBF

SGL
RGCLI
kNN

accuracy

Figure 2: Comparison of BAGL against baseline
models with the Bonferroni-Dunn test. CD=2.154
at 0.05 significance level.

4.2 Synthetic Dataset

We generate a synthetic dataset as shown in Fig. 1 (a). The constructed dataset contains two clusters,
a dense Gaussian cluster surrounded by a sparse ring-like cluster. With only one labeled sample given
in each cluster, we compare the result of our proposed BAGL method (Fig. 1 (c)) with the result
of the most popular method RBF (Fig. 1 (b)). We use the coordinates as the node feature and set
the width in the RBF kernel as 0.7. For visualization purposes, we show the adjacency matrix with
yellow line segments connecting the node pairs if the weight associated with the edge is greater than
0.5 after normalization. The direction of the edge is ignored in Fig. 1 (c). For a fair comparison,
we perform label propagation [85] on both constructed affinity graphs. We can see that BAGL can
recover two ground-truth clusters much better. Unlike RBF, BAGL can improve the connectivity by
the logarithm penalty term and reduce the inter-cluster links by the block-wise design.

4.3 Real-world Datasets

Classification tasks are implemented to assess the performance of BAGL against all graph construction
baseline methods on six real-world datasets, listed in Table 1. ORHD (Optical Recognition of
Handwritten Digits Data Set), USPS, MNIST, and EMNIST Letters are four popular digits image
datasets. COIL100 is an object image dataset. TDT2 is a text dataset. We fix the number of anchor
nodes as 1000 in four datasets (COIL100, USPS, ORHD and TDT2), while for the rest two datasets
(MNIST, EMNIST-Letters), the number of anchors is fixed as 2000. We perform tf-idf and principal
component analysis (PCA) as the pre-processing step on TDT2 dataset. The default label inference
algorithm is LGC, with ten labels per class. Further details can be found in Appendix F.1.

4.3.1 Efficacy

We fix the number of labeled samples per class to ten and select three label inference methods for the
second phase of GSSL. We report average results by performing 20 trials for each algorithm over all
the settings in Table 2. Our algorithm outperforms all methods in the USPS, TDT2, and EMNIST-
Letters datasets, indicating that BAGL can learn an optimal graph for label inference algorithms in
the unified framework. Moreover, we perform the Friedman test with the Bonferroni-Dunn post hoc
test for statistical significance analysis. Fig. 2 illustrates the critical difference (CD) diagram on the
accuracy, where the average rank is marked along the axis with lower (better) ranks to the left. If
the average rank difference between two models is greater than one CD, the relative performance is
believed to be different. Accordingly, BAGL significantly outperforms all other baselines by a large
margin. We also conduct experiments under low label rates with LGC fixed as the label inference
method. Fig. 3 (a) and (b) demonstrate that BAGL performs relatively well with low label rates. This
phenomenon can be attributed to the utilization of label information in BAGL. (Appendix G.1)
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Table 2: Classification accuracy and standard deviation (%) on real-world datasets.

RBF kNN SGL RGCLI AGR GraphEBM BCAN BAGL

ORHD
GRF 97.46±0.36 86.59±1.26 94.68±0.66 88.24±3.11 97.63±0.53 95.13±0.41 97.49±0.47 97.88±0.40
LGC 97.56±0.29 87.61±2.30 95.75±0.74 89.32±2.58 96.90±0.47 95.78±0.53 97.27±0.63 98.04±0.71
GCN 98.11±0.44 90.64±3.54 95.80±0.59 89.37±3.02 98.02±0.44 98.42±0.50 98.08±0.70 98.15±0.62

USPS
GRF 94.53±0.65 81.42±0.98 87.67±0.40 84.15±1.85 93.64±0.62 94.26±0.36 93.98±0.60 96.56±0.93
LGC 94.75±0.42 85.13±1.18 86.44±0.51 84.86±1.63 95.92±0.51 94.30±0.30 95.07±0.75 96.77±0.66
GCN 94.98±0.21 86.20±2.03 90.31±0.32 86.09±1.72 95.78±0.49 95.81±0.48 95.79±0.55 97.20±0.64

COIL100
GRF 94.40±0.19 81.24±1.64 92.65±0.82 87.48±2.30 86.54±0.40 85.22±0.57 84.51±0.59 94.78±0.53
LGC 95.13±0.37 83.66±1.35 93.27±1.03 87.79±2.47 87.81±0.57 88.50±0.47 87.06±0.63 94.93±0.45
GCN 94.31±0.25 87.64±1.72 93.52±0.91 89.30±1.65 94.63±0.51 90.15±0.39 90.02±0.48 94.99±0.88

TDT2
GRF 89.22±0.79 80.09±2.69 92.13±0.99 86.51±3.42 94.47±0.79 93.64±0.74 95.95±0.60 96.01±0.91
LGC 89.67±0.46 82.35±3.04 92.96±1.24 87.60±2.84 94.15±0.67 93.97±0.61 94.13±0.79 95.42±0.71
GCN 92.89±0.68 85.77±2.41 94.39±0.83 89.94±3.15 95.36±0.85 94.78±0.69 96.30±0.77 96.33±0.85

MNIST
GRF 83.60±0.24 64.20±1.82 95.03±0.77 87.65±2.07 91.02±0.31 95.39±0.31 92.41±0.47 95.40±0.62
LGC 84.12±0.17 68.86±1.63 94.40±0.52 88.22±2.36 94.79±0.37 95.43±0.47 93.55±0.58 95.42±0.51
GCN 87.03±0.32 74.93±1.77 95.18±0.47 90.47±2.11 95.30±0.21 95.51±0.40 94.84±0.37 95.47±0.43

EMNIST
Letters

GRF 50.74±0.16 41.85±1.35 62.34±0.58 54.04±1.92 64.38±0.65 65.03±0.27 67.69±0.39 67.81±0.40
LGC 54.35±0.27 49.51±1.57 63.02±0.41 57.18±2.30 66.49±0.49 66.67±0.23 68.92±0.46 69.03±0.44
GCN 59.28±0.24 51.48±1.44 66.51±0.37 58.82±1.74 67.21±0.71 68.56±0.19 68.97±0.50 69.14±0.47
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Figure 3: (a) (b) Classification results and (c) (d) convergence results on real-world datasets.

4.3.2 Convergence

As an essential part of the overhead for BAGL, Procedure GWBI needs to be efficient for practice.
Compared with two other optimization-based methods sharing a similar objective, SGL and its
accelerated version by ADMM [61], BAGL enjoys the fastest convergence rate on both datasets.
We sample 1% nodes in each dataset for the convenience of presentation in Fig. 3 (c) and (d). Its
outstanding performance confirms the theoretical analysis in Theorem 3. (Appendix G.2).

4.3.3 Ablation Study

To obtain a better understanding of why the proposed BAGL works, we perform some ablation studies
to empirically show how the key design of BAGL will potentially affect performance. We create
three variants based on the original version of BAGL. First, to demonstrate the significance of the
optimal asymmetric structure, we now do not differentiate labeled nodes and unlabeled nodes, and
let any graph structure be the potential optimal structure without the constraints of W ul = O and
W uu = O. We call this variant BAGL w/o optimal structure. Second, to reveal the importance of
the connectivity regularization term, we set α = 0 in Procedure GWBI to remove the connectivity
consideration. This variant is termed BAGL w/o connectivity. Third, to investigate the effects of
sparsity control, we set β = 10e− 5 ≈ 0 in Procedure GWBI to allow the sparsity of the constructed
graph to vary arbitrarily. The last variant of BAGL is abbreviated as BAGL w/o sparsity. We conduct
the experiments on the ORHD dataset with the same setting as Table 2 and report the classification
accuracy results in Table 3. The proposed optimal asymmetric graph structure contributes most to
the success of BAGL. The connectivity regularization term and the sparsity control term also matter
since they together encourage a more sparse graph (the latter) but without disconnected components
(the former), which is a more favorable graph for the second label inference step.
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Table 3: Ablation study of BAGL on the ORHD dataset.
BAGL w/o

optimal structure
BAGL w/o

connectivity
BAGL w/o

sparsity BAGL

ORHD
GRF 95.71±0.84 96.71±0.62 96.05±0.73 97.88±0.40
LGC 96.34±0.66 96.60±0.57 97.19±0.48 98.04±0.71
GCN 97.29±0.59 97.89±0.64 97.74±0.53 98.15±0.62

5 Conclusion

In this paper, we propose a novel approach to graph construction for graph-based semi-supervised
learning. Building upon the optimal asymmetric graph structure derived from theoretical insights, we
develop an efficient block-wise graph construction method that guarantees faster convergence. Our
approach combines theoretical insights with practical considerations to provide a more effective and
reliable framework for the graph construction step in graph-based semi-supervised learning.

6 Limitations

BAGL is an optimization-based method for the graph construction step in graph-based semi-
supervised learning. Graph Neural Networks (GNNs) excel in learning representations for graph-
structured data [64, 54, 12, 49, 39, 78, 41, 75, 13, 53, 77, 51, 73, 52, 50, 38, 76, 11]. More recent
graph structure learning methods aim to learn a clean graph structure from the given noisy graph
so that the subsequent GNNs trained on this learned clean graph can obtain better performance. In
GSSL, however, there is no given graph structure, and we need to learn the graph structure based on
the node features only. Therefore, it is a more challenging task compared to graph structure learning.
Therefore, we do not compare our method with other graph structure learning methods since their
settings and goals are slightly different. We leave the investigation of graph structure learning for
GSSL as future work since it is currently out of the scope of this work.

The other limitation of BAGL is it is only suitable for the transductive setting. If we have nodes or
samples unseen in the training set, we have to construct the affinity graph again by executing BAGL
again to infer their labels, which is often time-consuming and troublesome regarding efficiency. This
is not desirable in real-world applications since we often come across new training samples after
we build the affinity graph. We also leave the investigation of the inductive extension of BAGL as
future work since this lack of inductive generalization is a well-known challenge in graph-based
semi-supervised learning.

Even though BAGL is quite efficient in terms of convergence rate, it may still have computational
issues when dealing with extremely large-scale datasets with billions of samples because the time
spent on finishing one iteration during the optimization would increase dramatically when the number
of training samples is extremely large. We leave the exploration of graph construction methods for
extremely large-scale datasets as future work. Other potential applications of our method can be
explored in the hyperbolic space [67, 70, 68, 71, 69, 66, 72] or in the natural language processing
domain [32, 34, 33, 21, 20, 55, 42, 80, 81, 79].
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