
Training on Foveated Images Improves Robustness to
Adversarial Attacks

Muhammad A. Shah
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213
mshah1@cmu.edu

Aqsa Kashaf ∗

ByteDance
San Jose, CA 95110
akashaf@cmu.edu

Bhiksha Raj
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213
bhiksha@cs.cmu.edu

Abstract

Deep neural networks (DNNs) are known to be vulnerable to adversarial attacks
– subtle, perceptually indistinguishable perturbations of inputs that change the
response of the model. We hypothesize that an important contributor to the robust-
ness of human visual perception is constant exposure to low-fidelity visual stimuli
in our peripheral vision. To investigate this hypothesis, we develop R-Blur, an
image transform that simulates the loss in fidelity of peripheral vision by blurring
the image and reducing its color saturation based on the distance from a given
fixation point. We show that compared to DNNs trained on the original images,
DNNs trained on images transformed by R-Blur are substantially more robust to
adversarial attacks, as well as other, non-adversarial, corruptions, achieving up to
25% higher accuracy on perturbed data2.

1 Introduction

Deep Neural Networks (DNNs) are exceptionally adept at many computer vision tasks and have
emerged as one of the best models of the biological neurons involved in visual object recognition [1, 2].
However, their lack of robustness to subtle image perturbations that humans are largely invariant
[3, 4, 5] to has raised questions about their reliability in real-world scenarios. Of these perturbations,
perhaps the most alarming are adversarial attacks, which are specially crafted distortions that can
change the response of DNNs when added to their inputs [3, 6] but are either imperceptible to humans
or perceptually irrelevant enough to be ignored by them.

While several defenses have been proposed over the years to defend DNNs against adversarial attacks,
only a few of them have sought inspiration from biological perception, which, perhaps axiomatically,
is one of the most robust perceptual systems in existence. Instead, most methods seek to teach DNNs
to be robust to adversarial attacks by exposing them to adversarially perturbed images [7, 8, 9] or
random noise [10, 11, 12] during training. While this approach is highly effective in making DNNs
robust to the types of perturbations used during training, the robustness often does not generalize to
other types of perturbations [13, 14, 15]. In contrast, biologically-inspired defenses seek to make
DNNs robust by integrating into them biological mechanisms that would bring their behavior more in
line with human/animal vision [16, 17, 18, 19, 20, 21, 22]. As these defenses do not require DNNs to
be trained on any particular type of perturbation, they yield models that, like humans, are robust to
a variety of perturbations [18] in addition to adversarial attacks. For this reason, and in light of the
evidence indicating a positive correlation between biological alignment and adversarial robustness
[18, 23], we believe biologically inspired defenses are more promising in the long run.

∗work done while at Carnegie Mellon University
2The code for R-Blur is available at https://github.com/ahmedshah1494/RBlur

37th Conference on Neural Information Processing Systems (NeurIPS 2023).
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Figure 1: R-Blur adds Gaussian noise to image (a) with the fixation point (red dot) to obtain (b). It
then creates a colored and a grayscaled copy of the image and applies adaptive Gaussian blurring to
them to obtain the low-fidelity images (c) and (d), where the numbers indicate the standard deviation
of the Gaussian kernel applied in the region bounded by the boxes. The blurred color and gray images
are combined in a pixel-wise weighted combination to obtain the final image (e), where the weights
of the colored and gray pixels are a function of their respective estimated acuity values (see 2.2).

Following this line of inquiry, we investigate the contribution of low-fidelity visual sensing that occurs
in peripheral vision to the robustness of human/animal vision. Unlike DNNs, which sense visual
stimuli at maximum fidelity at every point in their visual field, humans sense most of their visual field
in low fidelity, i.e without fine-grained contrast [24] and color information [25]. In adults with fully
developed vision, only a small region (less than 1% by area) of the visual field around the point of
fixation [26] can be sensed with high fidelity. In the remainder of the visual field (the periphery), the
fidelity of the sensed stimuli decreases exponentially with distance from the fixation point [27]. This
phenomenon is called “foveation”. Despite this limitation, humans can accurately categorize objects
that appear in the visual periphery into high-level classes [28]. Meanwhile, the presence of a small
amount of noise or blurring can decimate the accuracy of an otherwise accurate DNN. Therefore,
we hypothesize that the experience of viewing the world at multiple levels of fidelity, perhaps even
at the same instant, causes human vision to be invariant to low-level features, such as textures, and
high-frequency patterns, that can be exploited by adversarial attacks.

In this paper, we propose R-Blur (short for Retina Blur), which simulates foveation by blurring the
image and reducing its color saturation adaptively based on the distance from a given fixation point.
This causes regions further away from the fixation point to appear more blurry and less vividly colored
than those closer to it. Although adaptive blurring methods have been proposed as computational
approximations of foveation [29, 30, 31], their impact on robustness has not been evaluated to the
best of our knowledge. Furthermore, color sensitivity is known to decrease in the periphery of the
visual field [25, 32, 33], yet most of the existing techniques do not account for this phenomenon.

Similar to how the retina preprocesses the visual stimuli before it reaches the visual cortex, we
use R-Blur to preprocess the input before it reaches the DNN. To measure the impact of R-Blur,
we evaluate the object recognition capability of ResNets [34] trained with and without R-Blur on
three image datasets: CIFAR-10 [35], Ecoset [36] and Imagenet [37], under different levels of
adversarial attacks and common image corruptions [38]. We find that R-Blur models retain most
of the high classification accuracy of the base ResNet while being more robust. Compared to the
base ResNet, R-Blur models achieve 12-25 percentage points (pp) higher accuracy on perturbed
images. Furthermore, the robustness achieved by R-Blur is certifiable using the approach from [10].
We also compare R-Blur with two biologically inspired preprocessing defenses, namely VOneBlock
[18], a fixed parameter module that simulates the primate V1, and a non-uniform sampling-based
foveation technique [22], which we refer to as R-Warp. We observe that R-Blur induces a higher
level of robustness, achieving accuracy up to 33 pp higher than R-Warp and up to 15 pp higher
than VOneBlock against adversarial attacks. Compared to adversarial training (AT) [7, 8] – the
state-of-the-art non-biological defense, R-Blur achieves up to 7 pp higher accuracy on average against
non-adversarial corruptions of various types and strengths thus indicating that the robustness of
R-Blur generalizes better to non-adversarial perturbations than AT . Finally, an ablation study showed
that both adaptive blurring and desaturation contribute to the improved robustness of R-Blur.

2 Retinal Blur: An Approximation for Peripheral Vision

To simulate the loss in contrast and color sensitivity of human perception with increasing eccentricity,
we propose R-Blur, an adaptive Gaussian blurring, and color desaturation technique. The operations
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performed by R-Blur, given an image and fixation point, are shown in Figure 1. First, R-Blur adds
Gaussian noise to the image to simulate stochastic firing rates of biological photoreceptors [39]. It
then creates color and grayscale copies of the image and estimates the acuity of color and grayscale
vision at each pixel location, using distributions that approximate the relationship between distance
from the fixation point (eccentricity) and visual acuity levels in humans. R-Blur then applies adaptive
Gaussian blurring to both image copies such that the standard deviation of the Gaussian kernel at each
pixel in the color and the grayscale image is a function of the estimated color and grayscale acuity at
that pixel. Finally, R-Blur combines the two blurred images in a pixel-wise weighted combination in
which the weights of the colored and gray pixels are a function of their respective estimated acuity
values. Below we describe some of the more involved operations in detail.

2.1 Eccentricity Computation

The distance of a pixel location from the fixation point, i.e. its eccentricity, determines the standard
deviation of the Gaussian kernel applied to it and the combination weight of the color and gray images
at this location. While eccentricity is typically measured radially, in this paper we use a different
distance metric that produces un-rotated square level sets. This property allows us to efficiently
extract regions having the same eccentricity by simply slicing the image tensor. Concretely, we
compute the eccentricity of the pixel at location (xp, yp) as

exp,yp
=

max(|xp − xf |, |yp − yf |)
WV

, (1)

where (xf , yf ) and WV represent the fixation point and the width of the visual field, i.e. the
rectangular region over which R-Blur operates and defines the maximum image size that is expected
by R-Blur. We normalize by WV to make the exp,yp

invariant to the size of the visual field.

2.2 Visual Acuity Estimation

We compute the visual acuity at each pixel location based on its eccentricity. The biological retina
contains two types of photoreceptors. The first type, called cones, are color sensitive and give rise
to high-fidelity visual perception at the fovea, while the second type, called rods, are sensitive to
only illumination but not color and give rise to low-fidelity vision in the periphery. We devise the
following two sampling distributions, DR(ex,y) and DC(ex,y), to model the acuity of color and
grayscale vision, arising from the cones and rods at each pixel location, (x, y).

D(e;σ, α) = max [λ(e; 0, σ), γ(e; 0, ασ)] (2)
DC(e;σC , α) = D(e;σC , α) (3)

DR(e;σR, α, pmax) = pmax(1−D(e;σR, α)), (4)

where λ(.;µ, σ) and γ(.;µ, σ) are the PDFs of the Laplace and Cauchy distribution with location
and scale parameters µ and σ, and α is a parameter used to control the width of the distribution. We
set σC = 0.12, σR = 0.09, α = 2.5 and pmax = 0.12. We choose the above equations and their
parameters to approximate the curves of photopic and scotopic visual acuity from [27]. The resulting
acuity estimates are shown in Figure 2b. Unfortunately, the measured photopic and scotopic acuity
curves from [27] cannot be reproduced here due to copyright reasons, however, they can be viewed at
https://nba.uth.tmc.edu/neuroscience/m/s2/chapter14.html (see Figure 14.3).

2.3 Quantizing the Visual Acuity Estimate

In the form stated above, we would need to create and apply as many Gaussian kernels as the distance
between the fixation point and the farthest vertex of the visual field. This number can be quite
large as the size of the image increases and will drastically increase the per-image computation time.
To mitigate this issue we quantize the estimated acuity values. As a result, the locations to which
the same kernel is applied no longer constitute a single pixel perimeter but become a much wider
region (see Figure 1 (c) and (d)), which allows us to apply the Gaussian kernel in these regions very
efficiently using optimized implementations of the convolution operator.

To create a quantized eccentricity-acuity mapping, we do the following. We first list all the color
and gray acuity values possible in the visual field by assuming a fixation point at (0, 0), computing
eccentricity values e0,y for y ∈ [0,WV ] and the corresponding values of DR = {DR(e0,y)|y ∈
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(a) unquantized (b) quantized

Figure 2: Estimated visual acuity
of sharp and colorful, photopic, and
gray and blurry, scotopic, vision us-
ing equations 3 and 4

Figure 3: Illustration of increasing the viewing distance (left to
right). As the viewing distance is increased, more of the image
is brought into focus. We used vd = 3 during inference.

[0,WV ]} and DC = {DC(e0,y)|y ∈ [0,WV ]}. We then compute and store the histograms, HR and
HC , from DR and DC , respectively. To further reduce the number of kernels we need to apply and
increase the size of the region each of them is applied to, we merge the bins containing less than τ
elements in each histogram with the adjacent bin to their left. After that, given an image to process,
we will compute the color and gray visual acuity for each pixel, determine in which bin it falls in HR

and HC , and assign it the average value of that bin.

2.4 Changing the Viewing Distance

Increasing the viewing distance can be beneficial as it allows the viewer to gather a more global view
of the visual scene and facilitates object recognition. To increase the viewing distance we drop the k
lowest acuity bins and shift the pixels assigned to them k bins ahead such that the pixels that were in
bins 1 through k − 1 are now assigned to bin 1. Figure 3 shows the change in the viewing distance
as the value of k increases from 0 to 5. Formally, given the quantized DC(ex,y) and DR(ex,y), let
D = [d1, ..., dn] represent the value assigned to each bin and Pi be the pixel locations assigned to the
ith bin, with P1 and Pn corresponding to points with the lowest and highest eccentricity, respectively.
To increase the viewing distance, we merge bins 1 through k such that D′ = [d1, ..., dn−k] and the
corresponding pixels are P ′

1 = [P1, ..., Pk] and Pi>1 = Pk+1.

2.5 Blurring and Color Desaturation

We map the estimated visual acuity at each pixel location, (xp, yp), to the standard deviation of the
Gaussian kernel that will be applied at that location as σ(xp,yp) = βWV (1−D(ex,y)), where β is
constant to control the standard deviation and is set to β = 0.05 in this paper, and D = DC for
pixels in the colored image and D = DR for pixels in the grayscaled image. We then apply Gaussian
kernels of the corresponding standard deviation to each pixel in the colored and grayscale image to
obtain an adaptively blurred copy of each, which we combine in a pixel-wise weighted combination
to obtain the final image. The weight of each colored and gray pixel is given by the normalized color
and gray acuity, respectively, at that pixel. Formally, the pixel at (xp, yp) in the final image has value

vf(xp,yp)
=

vc(xp,yp)
DC(ex,y;σC , α) + vg(xp,yp)

DR(ex,y;σC , α)

DC(ex,y;σC , α) +DR(ex,y;σC , α)
, (5)

vc(xp,yp)
and vg(xp,yp)

are the pixel value at (xp, yp) in the blurred color and gray images respectively.

3 Evaluation

In this section, we determine the accuracy and robustness of R-Blur by evaluating it on clean data and
data that has been perturbed by either adversarial attacks or common – non-adversarial – corruptions.
We compare the performance of R-Blur with an unmodified ResNet, two existing biologically-inspired
defenses, R-Warp [22] and VOneBlock [18], and a non-biological adversarial defenses: Adversarial
Training (AT) [7]. We show that R-Blur is significantly more robust to adversarial attacks and
common corruptions than the unmodified ResNet and prior biologically inspired methods. Moreover,
we use Randomize Smoothing [10] to show that R-Blur is provably robust. While AT is more robust
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(a) R-Blur (b) R-Warp

Figure 4: Illustration of fixation selection. The initial fixation point is set to top-left (0,0) and the
image at t0 is processed with R-Blur /R-Warp to get the image at t1. DeepGaze-III is used to generate
a fixation heatmap from this image. The next fixation point is sampled from the heat map, and R-Blur
/R-Warp is applied to get the image at t2. The region in the heatmap around the chosen fixation
point is masked with an inverted Gaussian kernel to prevent spatial clustering of fixation points. This
process is repeated to get a sequence of fixation points.

than R-Blur against adversarial attacks, R-Blur is more robust than AT against common corruptions,
thus indicating that the robustness of R-Blur generalizes better to different types of perturbation than
AT . We also analyze the contribution of the various components of R-Blur in improving robustness.

3.1 Experimental Setup

Datasets: We use natural image datasets, namely CIFAR-10 [35], Imagenet ILSVRC 2012 [37],
Ecoset [36] and a 10-class subset of Ecoset (Ecoset-10). Ecoset contains around 1.4M images, mostly
obtained from ImageNet database [40] (not the ILSVRC dataset), that are organized into 565 basic
object classes. The classes in Ecoset correspond to commonly used nouns that refer to concrete
objects. To create Ecoset-10, we select 10 classes from Ecoset that have the highest number of images.
The training/validation/test splits of Ecoset-10 and Ecoset are 48K/859/1K, and 1.4M/28K/28K
respectively. For most experiments with Ecoset and Imagenet, we use 1130, and 2000 test images,
with an equal number of images per class. During training, we use random horizontal flipping and
padding + random cropping, as well as AutoAugment [41] for CIFAR-10 and RandAugment for
Ecoset and Imagenet. All Ecoset and Imagenet images were resized and cropped to 224× 224. We
applied these augmentations to all the models we trained – those with biological and non-biological
defenses, as well as the baseline models.

Model Architectures: For CIFAR-10 we use a Wide-Resnet [42] model with 22 convolutional layers
and a widening factor of 4, and for Ecoset and Imagenet we use XResNet-18 from fastai [43] with a
widening factor of 2. Moving forward, we will refer to both these models as ResNet and indicate
only the training/evaluation datasets from which the exact architecture may be inferred. Results for
additional architectures are presented in Appendix C.

Baselines and Existing Methods: We compare the performance of R-Blur to two baselines: (1)
an unmodified ResNet trained on clean data (ResNet), and (2) a ResNet which applies five affine
transformations 3 to the input image and averages the logits (RandAffine). We also compare R-Blur
with two biologically inspired defenses: VOneBlock pre-processing proposed in [18], which simulates
the receptive fields and activations of the primate V1 4, and R-Warp preprocessing proposed in [22],
which simulates foveation by resampling input images such that the sampling density of pixels is
maximal at the point of fixation and decays progressively in regions further away from it. Finally,
we compare R-Blur with two non-biological adversarial defenses: fast adversarial training [8] with
∥δ∥∞ = 0.008 (AT), and Randomized Smoothing (RS) [10].

Fixation Selection for R-Blur and R-Warp: While training models with R-Blur and R-Warp, we
split each batch into sub-batches of 32 images, and for each sub-batch, we randomly sample a single
fixation point that we use to apply R-Blur or R-Warp to all the images in that sub-batch. While
training the R-Blur model, we also set the viewing distance uniformly at random using the procedure

3We apply rotation, translation, and shearing, with their parameters sampled from [−8.6◦, 8.6◦], [−49, 49]
and [−8.6◦, 8.6◦] respectively. The ranges are chosen to match the ranges used in RandAugment. The random
seed is fixed during evaluation to prevent interference with adversarial attack generation.

4As in [18], we remove the first conv, batch norm, ReLU, and MaxPool from the ResNet with VOneBlock.
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(b) Ecoset-10
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(c) Ecoset

0.002 0.004 0.008
Perturbation Distance 

0
20
40
60
80

100

Ac
cu

ra
cy

0 0 07 0 0

35
18

2

(d) Imagenet

Figure 5: Comparison of accuracy on various datasets (a-d) under adversarial attacks of several ℓ2
(top) and ℓ∞ (bottom) norms between R-Blur (green) and two baseline methods: RandAffine (orange)
and ResNet (blue). The dashed lines indicate accuracy on clean images. R-Blur models consistently
achieve higher accuracy than baseline methods on all datasets, and adversarial perturbation sizes.

described in 2.4. During inference, we determine a sequence of five fixation points (a scanpath)
using DeepGaze-III [44]. DeepGaze-III passes the input image through a pretrained CNN backbone
(DenseNet-201 in [44]) and extracts the activations from several intermediate layers of the CNN. It
then applies a sequence of pointwise convolution and normalization layers to the activations to obtain
a heatmap indicating where a human is likely to fixate. We found that it was more efficient to not use
the scanpath prediction module in DeepGaze-III, and instead obtain scanpaths by keeping track of
the past fixation points, and masking the predicted heatmap at these locations prior to sampling the
next fixation point from it. This process is illustrated in Figure 4.

We trained two instances of DeepGaze-III using the ResNets we trained with R-Blur and R-Warp
as the CNN backbone. We use the corresponding DeepGaze-III models to predict the scanpaths for
R-Blur and R-Warp models. To train deepgaze-iii we used the code from the official github repository
[41]. The only significant modification we made was to replace the pretrained DenseNet-201 with
the pretrained R-Warp/R-Blur augmented XResNet-18 we trained on ImageNet. This improves
performance, while keeping the total number of parameters low. Following [41] we train DeepGaze
on the SALICON dataset [45]. This corresponds to phase 1 of training mentioned in Table 1 of [41].
We did not notice any benefits in our use case of phases 2-4, so we skipped them.

3.2 Results

R-Blur improves robustness to white-box attacks. We evaluate robustness by measuring the
accuracy of models under Auto-PGD (APGD)[46] attack, which is a state-of-the-art white-box
adversarial attack. We run APGD for 25 steps on each image. We find that increasing the number
of steps beyond 25 only minimally reduces accuracy (Appendix A). We take a number of measures
to avoid the pitfalls of gradient obfuscation [47, 48] so that our results reflect the true robustness of
R-Blur. These steps and detailed settings used for adversarial attacks are mentioned in Appendix A.

To determine if R-Blur improves robustness, we compare R-Blur with the unmodified ResNet and
RandAffine under the APGD attack. We observe that R-Blur is significantly more robust than the
unmodified ResNet and RandAffine models, consistently achieving higher accuracy than the two on
all datasets and against all perturbation types and sizes, while largely retaining accuracy on clean data
(Figure 5). While RandAffine does induce some level of robustness, it significantly underperforms
R-Blur. On smaller datasets, R-Blur suffers relatively little loss in accuracy at small to moderate levels
(∥δ∥∞ ≤ 0.004, ∥δ∥2 ≤ 1) of adversarial perturbations, while the accuracy of baseline methods
quickly deteriorates to chance or worse. On larger datasets – Ecoset and Imagenet, even the smallest
amount of adversarial perturbation (∥δ∥∞ = 0.002, ∥δ∥2 = 0.5) is enough to drive the accuracy of
the baselines to ∼10%, while R-Blur still is able to achieve 35-44% accuracy. As the perturbation is
increased to ∥δ∥∞ = 0.004 and ∥δ∥2 = 1.0, the accuracy of the baselines goes to 0%, while R-Blur
achieves 18-22%. We do observe that the accuracy of R-Blur on clean data from Ecoset and Imagenet
is noticeably lower than that of the baseline methods.

We also compare R-Blur to two existing biologically motivated adversarial defenses: VOneBlock and
R-Warp, and find that R-Blur achieves higher accuracy than both of them at all perturbation sizes and
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Figure 6: The difference in accuracy under adversarial attacks of several ℓ2 and ℓ∞ norms between
R-Blur and two biologically inspired defenses: R-Warp (blue) and VOneBlock (orange). R-Blur con-
sistently achieves higher accuracy on all adversarial perturbation sizes than R-Warp and VOneBlock.
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Figure 7: The certified accuracy at various ℓ2-norm radii of R-Blur and G-Noise models. R-Blur-CFI
uses 1 fixation at the center of the image, and R-Blur-5FI, averages logits from 5 fixation (corners +
center). σt denotes the scale of noise added during training and is 0.125 unless specified, whereas σc

is the scale of the noise used to compute the certified accuracy. G-Noise outperforms R-Blur in the
matched scenario, while R-Blur is superior in the unmatched scenario indicating that the robustness
of R-Blur is more generalizable.

types. From Figure 6 we see that R-Blur achieves up to 33pp higher accuracy than R-Warp, and up to
15 pp higher accuracy than VOneBlock on adversarially perturbed data.

R-Blur is certifiably robust. To verify that the gains in robustness observed above are indeed reliable,
we use the certification method (CERTIFY) from [10] to provide formal robustness guarantees for
R-Blur. This entails obtaining predictions for an input under a very large number (105) of noise
samples drawn from N (0, σc), and using a hypothesis test to determine the certified radius around
the input in which the model’s prediction is stable with high probability (≥ 99.9%). Given a dataset,
we can compute the certified accuracy at a radius r as the proportion of data points for which the
certified radius is ≥ r and the model’s prediction is correct. It was shown in [10] that a model trained
on data perturbed with Gaussian noise achieves high certified accuracy. We call this model G-Noise.
We compare the certified accuracy of G-Noise and R-Blur on 200 images from Imagenet and Ecoset.

We expose both R-Blur and G-Noise to Gaussian noise of scale σt = 0.125 during training and
compute their certified accuracy at radii r ∈ {0.5, 1.0}. According to [10], if the scale of the noise
used in CERTIFY is σc, then the maximum radius for which certified accuracy can be computed (with
105 noise samples) is r = 4σc. Therefore, when computing certified accuracy at r ≤ 0.5 CERTIFY
adds noise of the same scale as was used during training (σc = 0.125 = σt), thus we call this the
matched setting. However, to compute certified accuracy at r ≤ 1.0 CERTIFY adds noise of a larger
scale than was used during training (σc = 0.25 > σt), and thus in order to achieve high certified
accuracy at r ≤ 1.0 the model must be able to generalize to a change in noise distribution. We call
this the unmatched setting.

Figure 7a and 7b show the certified accuracy of R-Blur and the G-Noise on Ecoset and Imagenet at
several ℓ2 norm radii under matched and unmatched settings. In both settings, we see that R-Blur
achieves a high certified accuracy on both Ecoset and Imagenet, with the certified accuracy at r ≈ 0.5
and r ≈ 1.0 being close to the ones observed in Figure 5, indicating that our earlier results are a
faithful representation of R-Blur’s robustness. Furthermore, we see that even if R-Blur was trained
without any noise, it can still achieve more than 50% of the certified accuracy achieved by R-Blur
trained with noise. This indicates that adaptive blurring and desaturation do in fact endow the model
with a significant level of robustness. Finally, we note that while G-Noise has (slightly) higher
certified accuracy than R-Blur in the matched setting, R-Blur achieves significantly higher certified
accuracy in the unmatched setting, outstripping G-Noise by more than 10 pp at r ≈ 1.0 on Imagenet.
This shows that the robustness of R-Blur generalizes beyond the training conditions, while G-Noise
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Figure 8: The accuracy of the models on Imagenet and Ecoset under the common corruptions from
[38] at various severity levels. We see that R-Blur generally achieves the highest accuracy.

Method Mean CC WB Clean Mean CC Wb Clean

Ecoset Imagenet

ResNet 37.1 39.4 0.8 71.2 34.7 33.6 0.1 70.3
RandAffine 35.7 35.8 3.6 67.6 33.7 30.8 2.0 68.3

AT 49.0 38.5 47.5 61.1 46.3 34.2 43.5 61.3

R-Warp 38.5 40.0 4.5 71.1 34.1 32.5 2.2 67.7
VOneBlock 42.9 40.7 16.1 72.0 38.8 35.8 11.9 68.7

R-Blur 44.2 45.6 23.8 63.3 38.9 39.0 17.2 60.5
best, second best

Table 1: Accuracy of the evaluated models on clean, and perturbed data from Imagenet. “WB”
refers to the accuracy under APGD attacks, while “CC” refers to the accuracy under common non-
adversarial corruption [38]. R-Blur significantly improves the robustness of ResNet, and outperforms
prior biologically motivated defenses, while approaching the performance of AT .

overfits to them. This makes R-Blur particularly suited for settings in which the exact adversarial
attack budget is not known, and the model must be able to generalize.

R-Blur Improves accuracy on common (non-adversarial) corruptions. Adversarial perturbations
constitute only a small subset of perturbations that human vision is invariant to, therefore we evaluate
R-Blur on a set of common image corruptions [38] that humans are largely invariant to but DNNs are
not. We sample 2 images/class from Imagenet and 5 images/class from Ecoset. Then we apply 17 5

common corruptions proposed in [38] at 5 different severity levels to generate 85 corrupted versions
of each image. This yields corrupted versions of Imagenet and Ecoset containing 170K and 240K
images, respectively.

Figure 8 shows the accuracy of the models on corrupted Ecoset and Imagenet. Here we also compare
against an adversarially trained model (AT) trained with ∥δ∥∞ = 0.008 using the method of [8]. We
see that at severity greater than 1 R-Blur consistently achieves the highest accuracy. Furthermore, we
also note that R-Blur, and VOneBlock consistently achieve higher accuracy than AT , which supports
our hypothesis that the robustness of biologically motivated methods, and particularly R-Blur, is more
general than non-biological defenses, like AT . In fact, the accuracy of AT on common corruptions
is generally lesser than or at par with the accuracy of the unmodified ResNet, indicating that the
robustness of AT does not generalize well.

Summary of Results: Table 1 summarizes the results of our paper and reiterates two key observa-
tions from earlier sections. Firstly, R-Blur makes models more significantly robust to adversarial
perturbations than the unmodified ResNet, and other biologically inspired defenses. R-Blur, however,
achieves lower accuracy against white-box attacks than AT . This is to be expected because AT is
trained on adversarially perturbed data. Secondly, R-Blur augmented models are significantly more
robust to common corruptions than all other models, including AT . In contrast, the accuracy of AT
on common corruptions is almost the same as that of the unmodified ResNet, indicating that the
robustness of AT does not generalize.

5We exclude Gaussian blur and Gaussian noise since they are similar to the transformations done by R-Blur.
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Figure 10: Comparison of R-Blur with models trained with non-adaptive Gaussian blur or Gaussian
noise augmentations. (a) compares the accuracy under adversarial attack on Ecoset-10 of R-Blur
and models augmented with non-adaptive Gaussian blur of various standard deviations (σ). While
non-adaptive Gaussian blur does increase robustness, the adaptive blurring in R-Blur outperforms it
by a margin. (b) compares the accuracy under adversarial attack on Imagenet of R-Blur and models
augmented with either non-adaptive Gaussian blur or Gaussian noise. We see that R-Blur achieves
better robustness than either of these methods.

3.3 Ablation Study

We examine, by way of ablation, how much each component of R-Blur contributes towards its overall
robustness as shown in Figure 9. The most significant contributor to robustness is the addition of noise.
This echoes the findings from [18], which showed that neural stochasticity contributes significantly
to the robustness of the visual system. Nevertheless, even without noise R-Blur achieves an 11 point
improvement over the vanilla ResNet which archives 0% accuracy under the attack, which indicates
that other components of R-Blur also contribute towards robustness. Furthermore, experimental
results reveal that robustness induced by noise diminishes as the complexity of the dataset increases
and the size of the perturbations increases. As observed in Figure 10b, Gaussian noise augmentation
achieves 45-58% (8-10 points) lower accuracy than R-Blur, and in Figure 7b, which shows that at
larger perturbation sizes R-Blur achieves higher certified accuracy.

The second most significant contributor to robustness is the blurring performed by R-Blur. Importantly,
we note that Gaussian blurring in and of itself does not greatly improve robustness. Figure 9 shows
that non-adaptive blurring with a single Gaussian kernel having σ = 10.5 (σ = 10.9 is the maximum
used in R-Blur) improves robustness by only 5 points. Furthermore, Figure 10a shows that increasing
the strength of non-adaptive blurring trades off clean accuracy for robustness. However, after σ = 8
the gains in robustness hit (a rather low) ceiling, and increasing σ further reduces both clean accuracy
and robustness. On the other hand, R-Blur, without any additive noise, achieves similar clean accuracy
as non-adaptive blurring (σ = 10.5) but achieves significantly better adversarial robustness, thereby
demonstrating that Gaussian blurring alone accounts for only a fraction of R-Blur’s robustness.
Furthermore, Figure 10b shows that the contribution of non-adaptive blurring declines on the more
complex Imagenet, where it achieves only 1% accuracy on moderate-sized perturbations.

The next most significant factor, after noise and adaptive blurring, is evaluating multiple fixation
points which improved robustness significantly compared to a single fixation point in the center of
the image, which suggests that, multiple fixations and saccades are important when the image is
hard to recognize and presents a promising direction for future work. Furthermore, not adaptively
desaturating the colors reduces the robustness slightly. Finally, we note that dynamic fixation
does not improve performance compared to 5 predefined fixation points. To summarize, most of the
biologically-motivated components of R-Blur contribute towards improving the adversarial robustness
of object recognition DNNs from close to 0% to 45% (ℓ∞ = 0.008 for Ecoset-10).
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4 Related Work

Non-biological defenses: Perhaps the most successful class of adversarial defenses are adversarial
training algorithms [7, 9, 49, 17, 8], which train models on adversarially perturbed data generated by
backpropagating gradients from the loss to the input during each training step. Another popular class
of defenses is certified defenses [10, 11, 50, 51] which are accompanied by provable guarantees of the
form: with probability 1− δ, the model’s output will not change if a given image is perturbed at most
ϵ. Perhaps, most closely related to our work are preprocessing defenses [52, 53] that apply a large
number of transforms to the input during inference. Usually, these defenses rely on non-differentiable
transformations, and a high degree of randomization in the number, sequence, and parameters of
the transforms they apply to each image. Therefore, these defenses tend to obfuscate gradients [47],
and have been shown to be compromised by attacks with a higher step budget. We would like to
point out that R-Blur does not have these aforementioned pitfalls – the transforms that R-Blur applies
(Gaussian blur and desaturation) are fully differentiable and totally deterministic. In general, it is our
opinion that by not being cognizant of the biological basis of robust vision, current approaches are
excluding a large set of potentially effective approaches for defending against adversarial attacks.

Biologically inspired defenses: Several biological defenses have been proposed over the years.
These defenses involve integrating computational analogues of biological processes that are absent
from common DNNs, such as predictive/sparse coding [16, 17], biologically constrained visual filters,
nonlinearities, and stochasticity [18], foveation [19, 20, 21, 22], into DNNs. The resulting models
are made more robust to adversarially perturbed data, and have been shown to better approximate the
responses of biological neurons [18].

Most relevant to our work are defenses that have integrated foveation with DNNs. One of the earliest
works [20] implements foveation by cropping the salient region of the image at inference time. This
work has several shortcomings. Firstly, the biological plausibility of this method is questionable
because it does not simulate the degradation of visual acuity in the periphery of the visual field, rather
it discards the periphery entirely. Secondly, it crops the image after applying the adversarial attack,
which means that the attack does not take into account the cropping, which is akin to obfuscating the
gradients, and hence any reported improvements in robustness are suspect. A later work [22] (R-Warp)
avoids the aforementioned pitfalls and simulates foveation via non-uniform sampling (regions further
away from the fixation points are sampled less densely). Since this method is fully differentiable and
highly biologically plausible, we compare against it in this paper. Some recent works [19, 21] apply
foveation in the latent feature space (the intermediate feature maps generated by a CNN). These
works implement foveation by changing the receptive field sizes of the convolutional kernels based
on the distance to the fixation. Since they operate on the latent feature space, rather than image pixels,
their methods not directly comparable to ours.

5 Limitations

Adding R-Blur reduces accuracy on clean data, however, it is possible to significantly improve the
accuracy of R-Blur by developing better methods for selecting the fixation point. Further experimental
results presented in Appendix B show that if the optimal fixation point was chosen by an oracle the
clean accuracy of R-Blur can be improved to within 2% of the accuracy of the unmodified ResNet.

6 Conclusion
Since the existence of adversarial attacks presents a divergence between DNNs and humans, we
ask if some aspect of human vision is fundamental to its robustness that is not modeled by DNNs.
To this end, we propose R-Blur, a foveation technique that blurs the input image and reduces its
color saturation adaptively based on the distance from a given fixation point. We evaluate R-Blur
and other baseline models against APGD attacks on two datasets containing real-world images.
R-Blur outperforms other biologically inspired defenses. Furthermore, R-Blur also significantly
improves robustness to common, non-adversarial corruptions and achieves accuracy greater than
that of adversarial training. The robustness achieved by R-Blur is certifiable using the approach
from [10] and the certified accuracy achieved by R-Blur is at par or better than that achieved by
randomized smoothing [10]. Our work provides further evidence that biologically inspired techniques
can improve the accuracy and robustness of AI models.
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Figure 11: Accuracy of a R-Blur model trained on Imagenet under APGD attack with different
settings. (a) shows the accuracy when APGD attack is applied with different numbers of update steps.
(b) shows the accuracy when 10 step of expectation-over-transformation (EOT-10) [54] is used and
R-Blur is converted into a straight-through-estimator (STE) in the backward pass. The dashed line in
(b) shows the accuracy of a 25-step APGD attack without EOT and normal gradient computation
for R-Blur. Together these results strongly indicate that R-Blur does not obfuscate gradients and
legitimately improves the adversarial robustness of the model.

Appendix

A Preventing Gradient Obfuscation

We take a number of measures to ensure that our results correspond to the true robustness of our
method, and we avoid the pitfalls of gradient obfuscation [47, 48].

Firstly, we remove inference time stochasticity from all the models we test. We do this by sampling
the Gaussian noise used in R-Blur and VOneBlock once and applying the same noise to all test images.
Similarly, we sample the affine transform parameters for RandAffine once and use them for all test
images. We also compute the fixation point sequences for R-Blur and R-Warp on unattacked images
and do not update them during or after running APGD.

Secondly, we ran APGD for 1 to 100 iterations and observed that as the number of iterations increases
the success rate of the attack increases (Figure 11a). The success rate plateaus at 50 iterations. Since
the attack success rate with 25 steps is only 0.1% lower than the success rate with 50 steps, we run
APGD with 25 steps in most of our experiments.

Thirdly, we evaluate R-Blur against AutoAttack [46], an ensemble of 4 state-of-the-art white and
black box adversarial attacks. Figure 12 compares the accuracy of R-Blur on Imagenet under APGD
and AutoAttack. We see that the accuracy under AutoAttack is only slightly lower than the accuracy
under APGD, with the maximum difference being 3%, which would not change any of the trends
observed in the paper. Since computing AutoAttack requires a lot of time and compute, and given
that it does not decrease accuracy significantly compared to 25-step APGD, we chose to use the latter
for most of the results presented in the paper.

Finally, we applied expectation over transformation [54] by computing 10 gradient samples at each
APGD iteration and averaging them to obtain the final update. We found this did not change the attack
success rate so we take only 1 gradient sample in most of our experiments (Figure 11b). Finally, we
also used a straight-though-estimator to pass gradients through R-Blur in case it may be obfuscating
them and found that doing so reduces the attack success rate, thus indicating that gradients that pass
through R-Blur retain valuable information that can be used by the adversarial attack (Figure 11b).

B Fixation Point Selection

In this study, we did not attempt to develop an optimal fixation point selection algorithm, and instead,
we operate under the assumption that points at which humans tend to fixate are sufficiently informative
to perform accurate object classification. Therefore, we used DeepGaze-III [44], which is a neural
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Figure 12: Accuracy of R-Blur on
Imagenet under APGD (blue) and
AutoAttack (orange). The accuracy
under APGD and AutoAttack is very
similar, which shows that evaluating
with only APGD provides a reliable
measure of R-Blur’s robustness

(a) Optimal Fixation (b) DeepGaze-III Five Fixations (c) Adversarial Training

Figure 13: The accuracy obtained on clean and adversarial data when (a) the optimal fixation point
was selected, (b) when the five fixation approach from Section 3 was used, and (c) an adversarially
trained model was used.

network model trained to model the human gaze. DeepGaze-III uses a deep CNN backbone to extract
features from the image, and based on these features another DNN predicts a heatmap that indicates,
for each spatial coordinate, the probability that a human will fixate on it. However, it is possible
that this algorithm is sub-optimal, and with further study, a better one could be developed. Though
developing such an algorithm is out of the scope of this paper, we conduct a preliminary study to
determine if it is possible to select better fixation points than the ones predicted by DeepGaze-III.

To this end, we run the following experiment to pick an optimal fixation point for each image during
inference. For each testing image, we select 49 fixation points, spaced uniformly in a grid. Using
the models we trained in earlier (see section 3) we obtain predictions for each image and each of the
49 fixation points. If there was at least one fixation point at which the model was able to correctly
classify the image, we consider it to be correctly classified for the purpose of computing accuracy. We
repeat this experiment for Ecoset-10, Ecoset, and Imagenet, using clean and adversarially perturbed
data. We obtain the adversarially perturbed images for each of the 49 fixation points by fixing the
fixation point at one location running the APGD attack with ℓ∞-norm bounded to 0.004. Figure 14
illustrates this experiment with some example images.

The results are presented in Figure 13. We see that when the optimal fixation point is chosen accuracy
on both clean and adversarially perturbed data improves, with the improvement in clean accuracy
being the most marked. The clean accuracy on Ecoset-10, Ecoset, and Imagenet improved by 5%,
11%, and 10% respectively, which makes the clean accuracy of the R-Blur model on par or better
than the clean accuracy achieved by the unmodified ResNet. Furthermore, when the optimal fixation
point, is chosen R-Blur obtains higher clean accuracy than AT on all the datasets.

These results are meant to lay the groundwork for future work toward developing methods for
determining the optimal fixation point based on the input image. However, they also illustrate that
models trained with R-Blur learn features that are not only more adversarially robust features than
ResNet but also allow the model to make highly accurate predictions on clean data.

C Evaluations With Different Architectures

To demonstrate that the benefits of R-Blur are not limited to CNNs, we trained MLP-Mixer [55] and
ViT [56] models with R-Blur preprocessing and evaluated their robustness. We use the configuration
of MLP-Mixer referred to as S16 in [55]. Our ViT has a similar configuration, with 8 layers each
having a hidden size of 512, an intermediate size of 2048, and 8 self-attention heads. We train both
models with a batch size of 128 for 60 epochs on Ecoset-10 using the Adam optimizer. The learning
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Figure 14: This figure indicates the locations of the optimal fixation points for some sample images.
Each square in the grid corresponds to one of 49 fixation locations and represents the highest
resolution region of the image if the model fixates at the center of the square. Squares that are
shaded green indicate that the model’s prediction at the corresponding fixation point was correct,
while squares shaded red indicate that the model’s prediction at the corresponding fixation point was
incorrect. We see that there are certain images in which there are only a few optimal fixation points
and they may not be in the center or in the corners of the image.

rate of the optimizer is linearly increased to 0.001 over 12 epochs and is decayed linearly to almost
zero over the remaining epochs. The results are shown in Figure 15.

We observe that R-Blur significantly improves the robustness of MLP-Mixer models, and achieves
greater accuracy than R-Warp at higher levels of perturbations. These results show that the robustness
endowed to ResNets by R-Blur was not dependent on the model architecture, and they further
strengthen our claim that loss in fidelity due to foveation contributes to the robustness of human and
computer vision.

D Breakdown of Accuracy Against Common Corruption by Corruption Type

In Figure 16 we break down the performance of the models on common corruptions by higher-level
corruption categories. The individual members of each category are listed in Table 2. We see that
in most of the categories, R-Blur achieves the highest median accuracy against the most severe
corruptions. We also note that R-Blur exhibits a remarkable degree of robustness to noise, which is
substantially greater than all the other models we evaluated. It is pertinent to note here that Gaussian
noise was just 1 of the 4 types of noise included in the noise category, and thus the performance of R-
Blur can not be attributed to overfitting on Gaussian noise during training. Furthermore, robustness to
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(a) ResNet-18 (b) MLP-Mixer (c) ViT

Figure 15: The accuracy obtained on Ecoset-10 against adversarial perturbations of various ℓ∞ norms
when R-Blur is used with ResNet, MLP-Mixer and ViT backbones.

Noise Blur Weather Digital
gaussian noise defocus blur snow contrast

shot noise glass blur frost elastic transform
impulse noise motion blur fog pixelate
speckle noise zoom blur brightness jpeg compression

gaussian blur spatter saturate
Table 2: Categories of corruptions used to evaluate robustness to common corruptions. This catego-
rization follows the one from [38]

one type of random noise does not typically generalize to other types of random noise [4]. Therefore,
the fact that R-Blur exhibits improved robustness to multiple types of noise indicates that it is not just
training on Gaussian noise, but rather the synergy of all the components of R-Blur that is likely the
source of its superior robustness.

E Sensitivity Analysis of Hyperparameters in R-Blur

To measure the influence of the various Hyperparameters of R-Blur we conduct a sensitivity analysis.
First, we vary the scale of the Gaussian noise added to the image, the viewing distance during
inference, and the value of β from Section 2.5, which is the scaling factor that maps eccentricity (see
equation 1 to standard deviation, and measure the impact on accuracy on clean as well as adversarially
perturbed data. The results of this analysis are presented in Figure 17. We see that, as expected,
increasing the scale of the noise improves accuracy on adversarially perturbed data, however, this
improvement does not significantly degrade clean accuracy. It appears that the adaptive blurring is
mitigating the deleterious impact of Gaussian noise on clean accuracy. On the other hand, increasing
β beyond 0.01 surprisingly does not have a significant impact on accuracy and robustness. We also
measured the accuracy on clean and perturbed data after varying the viewing distance (see 2.4) and
the number of fixation points over which the logits are aggregated. These results are plotted in Figure
18, and they show that accuracy on clean and perturbed data is maximized when the width of the
in-focus region is 48 (this corresponds to vd = 3) and aggregating over more fixation points improves
accuracy on clean and perturbed data.

F Training Configuration

Table 3 presents the configurations used to train the models used in our evaluation. For all the models
the SGD optimizer was used with Nesterov momentum=0.9.

G Implementation Details

We used Pytorch v1.11 and Python 3.9.12 to for our implementation. We used the implementation of
Auto-PGD from the Torchattacks library (https://github.com/Harry24k/adversarial-attacks-pytorch).
For R-Warp we used the code from the official repo https://github.com/mvuyyuru/adversary.git.
Likewise, for VOneBlock we used the code from https://github.com/dicarlolab/vonenet, and

18

https://github.com/Harry24k/adversarial-attacks-pytorch
https://github.com/mvuyyuru/adversary.git
https://github.com/dicarlolab/vonenet


1 2 3 4 5
Corruption Severity

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

ResNet
5-RandAffine
R-Blur

R-Warp
VOneBlock
AT

1 2 3 4 5
Corruption Severity

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

1 2 3 4 5
Corruption Severity

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

1 2 3 4 5
Corruption Severity

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

(a) Imagenet

1 2 3 4 5
Corruption Severity

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

1 2 3 4 5
Corruption Severity

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

1 2 3 4 5
Corruption Severity

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

1 2 3 4 5
Corruption Severity

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

ResNet
5-RandAffine
R-Warp

VOneBlock
R-Blur
AT

(b) Ecoset

(c) blur (d) noise (e) weather (f) digital

(g) CIFAR-10

Figure 16: The accuracy achieved by R-Blur and baselines on various classes of common corruptions,
proposed in [38]. The boxplot shows the distribution of accuracy values on 4-5 different corruptions
in each class applied at different severity levels (x-axis) with 1 referring to least severe and 5 being
the most severe corruption. R-Blur generally achieves the highest median accuracy on the highest
severity levels.

Figure 17: The impact of the hyperparameters of R-Blur on the accuracy and robustness of models
trained on Ecoset-10. (left) the standard deviation of Gaussian noise, and (right) β from Section 2.5.

for DeepGaze-III models we used the code from https://github.com/matthias-k/DeepGaze.
The training code for DeepGaze-III with R-Blur and R-Warp backbones is based on
https://github.com/matthias-k/DeepGaze/blob/main/train_deepgaze3.ipynb, and can be found in
adversarialML/biologically_inspired_models/src/fixation_prediction/train_deepgaze.py.
Our clones of these repositories are included in the supplementary material. For
multi-gpu training, we used Pytorch Lightning v1.7.6. We used 16-bit mixed pre-
cision training to train most of our models. The code for R-Blur can be found in
adversarialML/biologically_inspired_models/src/retina_preproc.py which is
part of the supplemental material.
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Figure 18: The impact of the size of the in-focus region by varying the viewing distance (left) and
the number of fixation points over which the logits are aggregated (right) on accuracy. The plots are
computed from a R-Blur model trained on Imagenet, and the perturbed data is obtained by conducting
a 25-step APGD attack with ∥δ∥∞ = 0.004. We see that accuracy on clean and perturbed data is
maximized when the width of the in-focus region is 48 (this corresponds to vd = 3) and aggregating
over more fixation points improves accuracy on clean and perturbed data.

Dataset Method Batch Size nEpochs LR LR-Schedule Weight Decay nGPUs
CIFAR-10 ResNet 128 0.4 60 L-Warmup-Decay(0.2) 5e-5 1

AT 128 0.4 60 L-Warmup-Decay(0.2) 5e-5 1
R-Warp 128 0.4 60 L-Warmup-Decay(0.2) 5e-5 1
R-Blur 128 0.4 60 L-Warmup-Decay(0.2) 5e-5 1

G-Noise 128 0.4 60 L-Warmup-Decay(0.2) 5e-5 1
Ecoset-10 ResNet 128 0.4 60 L-Warmup-Decay(0.2) 5e-4 1

AT 128 0.4 60 L-Warmup-Decay(0.2) 5e-4 1
R-Warp 128 0.4 60 L-Warmup-Decay(0.2) 5e-4 1
R-Blur 128 0.1 60 L-Warmup-Decay(0.1) 5e-4 1

VOneBlock 128 0.1 60 L-Warmup-Decay(0.1) 5e-4 1
G-Noise 128 0.4 60 L-Warmup-Decay(0.2) 5e-4 1

Ecoset ResNet 256 0.2 25 L-Warmup-Decay(0.2) 5e-4 2
AT 256 0.2 25 L-Warmup-Decay(0.2) 5e-4 4

R-Warp 256 0.1 25 L-Warmup-Decay(0.2) 5e-4 4
R-Blur 256 0.1 25 C-Warmup-2xDecay(0.1) 5e-4 4

VOneBlock 256 0.1 25 C-Warmup-2xDecay(0.1) 5e-4 4
G-Noise 256 0.1 25 C-Warmup-2xDecay(0.1) 5e-4 4

Imagenet ResNet 256 0.2 25 L-Warmup-Decay(0.2) 5e-4 2
AT 256 0.2 25 L-Warmup-Decay(0.2) 5e-4 4

R-Warp 256 0.1 25 L-Warmup-Decay(0.2) 5e-4 4
R-Blur 256 0.1 25 C-Warmup-2xDecay(0.1) 5e-4 4

VOneBlock 256 0.1 25 C-Warmup-2xDecay(0.1) 5e-4 4
G-Noise 256 0.1 25 C-Warmup-2xDecay(0.1) 5e-4 4

Table 3: The configurations used to train the models used in our evaluation. L-Warmup-Decay(f )
represents a schedule that linearly warms up and decays the learning rate and f represents the fraction
of iterations devoted to warmup. C-Warmup-2xDecay(0.1) is similar except that the warmup and
decay follow a cosine function, and there are two decay phases. Both the schedulers are implemented
using torch.optim.lr_scheduler.OneCycleLR from Pytorch.
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Method Dynamic Fixation # Fixations Train Speed (img/s) Test Speed (img/s)

ResNet ✗ 1 410 370

AT ✗ 1 232 (1.8×) -
VOneBlock ✗ 1 277 (1.5×) 289 (1.3×)

R-Warp ✗ 1 377 (1.1×) 314 (1.2×)
R-Blur ✗ 1 369 (1.1×) 334 (1.1×)
R-Blur ✗ 5 - 111 (3.3×)

R-Warp ✓ 5 - 26 (14.2×)
R-Blur ✓ 1 - 115 (3.2×)
R-Blur ✓ 5 - 29 (12.9×)

Table 4: Training and inference speed on 1 Nvidia 2080Ti, measure in images per second, for each
model. The value in the parentheses indicates the slowdown relative to the unmodified ResNet
computed as the (train/test) speed of the ResNet divided by the speed of the other method. We see
that R-Blur, in and of itself, causes a very minimal slowdown (only 1.1×) during training and testing.
Increasing the number of fixations slows R-Blur only sub-linearly (5 predefined fixations lead to 3x
slowdown). Introducing dynamic fixation prediction has a greater impact on speed because each
image is assigned different fixation points and so R-Blur/R-Warp can not be applied to them as a
single batch. This shortcoming is likely common to most fixation transforms, and is not unique to
R-Blur.

H Hardware Details and Computation Cost

We trained our models on compute clusters with Nvidia GeForce 2080 Ti and V100 GPUs. Most of
the Imagenet and Ecoset models were trained and evaluated on the V100s, while the CIFAR-10 and
Ecoset-10 models were trained and evaluated on the 2080 Ti’s.

H.1 Analysis of Computation Cost

Table 4 presents this comparison and shows that R-Blur causes minimal slowdown (1.1x compared to
the vanilla ResNet) during both training and testing. Also, increasing the number of fixations slows
R-Blur only sub-linearly (5 predefined fixations => 3x slowdown). Introducing dynamic fixation
prediction has a greater impact on speed because each image is assigned different fixation points and
so R-Blur/R-Warp can not be applied to them as a single batch. This shortcoming is likely common
to most fixation transforms, and is not unique to R-Blur. In fact, under dynamic fixation prediction,
R-Blur is faster than R-Warp.
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