
Analyzing Generalization of Neural Networks
through Loss Path Kernels

Yilan Chen
UCSD CSE

yilan@ucsd.edu

Wei Huang
RIEKN AIP

wei.huang.vr@riken.jp

Hao Wang
MIT-IBM Watson AI Lab

hao@ibm.com

Charlotte Loh
MIT EECS

cloh@mit.edu

Akash Srivastava
MIT-IBM Watson AI Lab

akash.srivastava@ibm.com

Lam M. Nguyen
IBM Research

LamNguyen.MLTD@ibm.com

Tsui-Wei Weng∗
UCSD HDSI

lweng@ucsd.edu

Abstract

Deep neural networks have been increasingly used in real-world applications,
making it critical to ensure their ability to adapt to new, unseen data. In this paper,
we study the generalization capability of neural networks trained with (stochastic)
gradient flow. We establish a new connection between the loss dynamics of
gradient flow and general kernel machines by proposing a new kernel, called
loss path kernel. This kernel measures the similarity between two data points by
evaluating the agreement between loss gradients along the path determined by the
gradient flow. Based on this connection, we derive a new generalization upper
bound that applies to general neural network architectures. This new bound is tight
and strongly correlated with the true generalization error. We apply our results to
guide the design of neural architecture search (NAS) and demonstrate favorable
performance compared with state-of-the-art NAS algorithms through numerical
experiments.

1 Introduction

Deep learning models have been increasingly used in applications with significant societal impact.
Therefore, it is crucial to ensure that these models perform well not only on the training data but also
on the new and unseen data. Classical learning theory attributes the generalization ability of machine
learning (ML) models to the small complexity of the hypothesis class [56]. However, modern ML
models, such as deep neural networks (NNs), can have billions of parameters yet still exhibit strong
generalization abilities [26, 9]. This is because various elements of the learning algorithms, including
optimization methods, training data, and neural architectures, can all influence the inductive bias,
which in turn shapes the generalization abilities of neural networks [29, 40]. While the overall
hypothesis class may be large, the “effective domain” of this class, which ultimately determines the
model’s generalization abilities, is often much smaller [54, 24, 50, 15]. Hence, it is vital to develop
algorithmic generalization bounds to capture this effective domain of the hypothesis class.

There has been significant work investigating the generalization of neural networks in their infinite-
width regime through kernel methods [28, 3, 32, 2, 11]. They showed that an infinite-width NN

∗Correspondence to: Yilan Chen and Tsui-Wei Weng.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Table 1: Comparison with existing NTK-based generalization bounds. Θ = Θ(X,X) is the NTK on
training samples and H∞ is the NTK of the first layer. L represents the number of NN layers. We
highlight some unique properties of our results in blue color. “During training” means our bound can
be calculated at any time during training while existing NTK-based bounds only hold for the NNs at
convergence. “Multi-outputs” means our bound holds for NNs with multiple outputs.

Arora et al. [2] Cao & Gu [11] Ours

Bound
√

2Y⊤(H∞)−1Y
n Õ(L ·

√
Y⊤(Θ)−1Y

n) Theorem 3, Theorem 5
Model Ultra-wide two-layer FCNN Ultra-wide FCNN General continuously differentiable NN
Data i.i.d. data with ∥x∥ = 1 i.i.d. data with ∥x∥ = 1 i.i.d. data
Loss Square loss Logistic loss Continuously differentiable & bounded loss
During training No No Yes
Multi-outputs No No Yes
Training algorithm GD SGD (Stochastic) gradient flow

trained by gradient flow and squared loss is equivalent to a kernel regression with neural tangent kernel
(NTK) [28, 3]. Moreover, Arora et al. [2], Cao & Gu [11] further characterized the generalization
behaviors of such ultra-wide NNs by deriving data-dependent and NTK-based generalization bounds.
However, they only considered ultra-wide fully connected NNs with a square (or logistic) loss
function. In practice, NNs are usually not ultra-wide and have more complex architectures such as
CNNs. Hence, it is crucial to establish generalization bounds that hold in a more general setting.

In this paper, we analyze the generalization capability of NNs trained using (stochastic) gradient
flow across a wide range of NN architectures. Our key technical contribution is to establish a new
connection between the loss dynamics of (stochastic) gradient flow and general kernel machines
with a special kernel that we named the loss path kernel. This new kernel calculates the similarity
between two data points by integrating the inner product of the loss gradient evaluated at these
points, along the path determined by the gradient flow. Based on this connection, we develop a novel
generalization bound by analyzing the complexity of kernel machines induced by various training
sets. Our generalization bound is tight and can be applied to a broad class of NN architectures,
not restricted to ultra-wide NNs (see Table 1 for a comparison with existing results derived from
NTK theory). Numerical experiments demonstrate that our bound maintains a strong correlation
with the true generalization error of NNs trained with gradient descent (GD) (see Figure 1 and 2 in
Sec. 6 & 7). Given this observation, we use our generalization bound to guide the design of neural
architecture search (NAS) and demonstrate through numerical experiments that our approach can
achieve a favorable performance compared with state-of-the-art training-free and minimum-training
NAS algorithms [37, 13, 39]. In summary, our contributions are:

• In Sec. 4.1 and 5, we show for the first time that the loss of NNs trained by (stochastic) gradient flow
is equivalent to a general kernel machine. This result enables us to investigate the generalization
capability of NNs from the perspective of kernel theory.

• In Sec. 4.2 and 5, we derive tight generalization bounds for NNs based on the aforementioned
equivalence. Our result is very general as it holds for any continuously differentiable NN architec-
tures including finite-width and infinite-width NNs. Experiments demonstrate that our bounds are
tight (4690× tighter than existing norm-based bounds and 55× tighter than existing NTK-based
bounds as shown in Appendix A.2) and highly correlated with the true generalization error.

• In Sec. 6 and 7, we apply our theory to study special cases including infinite-width NNs, stable
algorithms, and norm-constrained NNs. We apply our bound to guide the design of NAS. Numerical
experiments demonstrate that our approach achieves a favorable performance compared with state-
of-the-art NAS algorithms on NAS-Bench-201 benchmark [19].

2 Related Work

Generalization theory in deep learning. Generalization is a crucial aspect of deep learning theory
and various techniques have been proposed to study it. For example, Bartlett et al. [7] derived tight
bounds for the VC dimension of NNs with ReLU activation functions. There is also a line of work that
measures the capacity of NNs based on different norms, margins [5, 41, 6, 44], and sharpness-based
measures [42, 43, 1] to explain the generalization behaviors of NNs. Additionally, there are theories
studying the generalization of NNs from PAC-Bayes [35, 22] and information-theoretical approach

2

[48, 58]. For example, Dziugaite & Roy [22] numerically evaluated and optimized the PAC-Bayes
bound of stochastic NN and obtained a non-vacuous generalization bound. In contrast, we study the
generalization of NNs by building a new connection between NNs and kernel machines. We refer
readers to Valle-Pérez & Louis [55] for a more comprehensive review of the generalization theory of
NNs.

Neural tangent kernel (NTK). NTK was first introduced in Jacot et al. [28], where the authors
demonstrated that a fully-trained, infinite-width NN follows kernel gradient descent in the function
space with respect to the NTK. Under gradient flow and squared loss, the fully-trained infinite-width
NN is equivalent to kernel regression with the NTK [28, 3]. Chen et al. [14] further established the
equivalence between infinite-width NNs and regularized kernel machines. Arora et al. [2] studied the
generalization capacity of ultra-wide, two-layer NNs trained by GD and square loss, while Cao &
Gu [11] examined the generalization of deep, ultra-wide NNs trained by stochastic gradient descent
(SGD) and logistic loss. Both studies derived generalization bounds of converged NNs based on NTK.
Besides, Huang et al. [27] studied the convergence and generalization of PAC-Bayesian learning for
deep, ultra-wide NNs. Later, Domingos [17] showed that every model trained by gradient flow is a
“kernel machine” with the weights and bias as functions of input data, which however can be much
more complex than a typical kernel machine and our general kernel machine in Definition 2. Chen
et al. [14] showed that every NN trained by gradient flow is a general kernel machine but their kernel
is valid only in very limited cases – when the loss gradient of output is a constant. Otherwise, the
kernel is not symmetric and not valid. In this paper, we consider an equivalence between the loss of
NNs and general kernel machines, which resolves the previous asymmetric problem of the kernel
function and also makes the generalization analysis of multi-outputs easier.

Neural Architecture Search (NAS). NAS aims to automate the discovery of top-performance neural
networks to reduce human efforts. However, most existing NAS algorithms require heavy training
of a supernet or intensive architecture evaluations, suffering from heavy resource consumption
[47, 34, 18, 33]. Thus, it is crucial to develop training-free or minimum-training NAS algorithms to
reduce the computational cost and select the best architecture at the same time [37, 13, 39]. Since our
generalization bound has a strong correlation with the true generalization error, we apply it to design
a new minimum-training NAS algorithm. We demonstrate in Table 2 that with a simple random
search algorithm, our approach can achieve a favorable performance compared with state-of-the-art
training-free and minimum-training NAS algorithms.

3 Kernel Machine and Loss Path Kernel

In this section, we define notation, provide a brief overview of kernel methods, and introduce the
main concept of interest—the loss path kernel.

3.1 Preliminaries

Consider a supervised learning problem where the task is to predict an output variable in Y ⊆ Rk using
a vector of input variables in X ⊆ Rd. Let Z ≜ X × Y . We denote the training set by S ≜ {zi}ni=1

with zi ≜ (xi,yi) ∈ Z . We assume each point is drawn i.i.d. from an underlying distribution µ. Let
X = [x1, · · · ,xn]

T ∈ Rn×d, Y = [y1, · · · ,yn]
T ∈ Rn×k, and Z = [X,Y] ∈ Rn×(d+k).

We express a neural network in a general form f(w,x) : Rp × Rd → Rk where w ∈ Rp represents
its parameters and x ∈ Rd is an input variable. The goal of a learning algorithm is to find a
set of parameters that minimizes a population risk Lµ(w) = Ez∼µ [ℓ(w, z)] where ℓ(w, z) ≜
ℓ(f(w,x),y) is a loss function. Throughout this paper, we assume that ℓ(w, z) ∈ [0, 1] and is
continuously differentiable. In practice, the underlying distribution µ is unknown so the learning
algorithm minimizes an empirical risk on the training set S instead: LS(w) = 1

n

∑n
i=1 ℓ(w, zi). The

generalization gap is defined as Lµ(w)− LS(w). The loss gradient with respect to the parameters
w is ∇wℓ(w, z) = ∇wf(w,x)⊤∇f ℓ(f(w,x),y) ∈ Rp×1. Our analysis only requires that ℓ(w, z)
is continuously differentiable w.r.t. w and z so f can be either a fully connected neural network or a
convolutional network or a residual network.

3

3.2 Kernel Method

Kernel methods [16, 51, 53] search for linear relations in high-dimensional feature space by using
kernel functions. Rather than computing the coordinates in the feature space explicitly, they only
need to calculate the inner product between data pairs, making it computationally easier.

A kernel is a function K : X × X → R, such that for all x,x′ ∈ X , K(x,x′) = ⟨Φ(x),Φ(x′)⟩,
where Φ : X → F is a mapping from X to an (inner product) feature space F .
Proposition 1 (Shawe-Taylor et al. [53]). A function K : X × X → R, which is either continuous
or has a finite domain, is a kernel function if and only if it is a symmetric function and, for any finite
subset of X , x1, · · · ,xn ∈ X , the matrix K(X,X) is positive semi-definite, where K(X,X) is a
n× n matrix whose (i, j)-th entry is K(xi,xj).
Definition 1 (Kernel machine). Let H be the reproducing kernel Hilbert space (RKHS) corresponding
to a kernel K(x,x′) = ⟨Φ(x),Φ(x′)⟩. A kernel machine g : X → R is a linear function in H
such that its weight vector β can be expressed as a linear combination of the training points, i.e.
g(x) = ⟨β,Φ(x)⟩+ b =

∑n
i=1 aiK(xi,x) + b, where β =

∑n
i=1 aiΦ(xi) and b is a constant. The

RKHS norm of g is ∥g∥H = ∥
∑n

i=1 aiΦ(xi)∥ =
√∑

i,j aiajK(xi,xj).

Next, we introduce general kernel machine, which generalizes the concept of kernel machine.
Definition 2 (General kernel machine). A general kernel machine g : X → R with a kernel K(x,x′)
is g(x) =

∑n
i=1 aiK(xi,x) + h(x), where h : X → R is a function of x. When h(x) is a constant,

g(x) reduces to a kernel machine in Definition 1.

3.3 Neural Tangent Kernel and Loss Path Kernel

Neural tangent kernel (NTK) has been introduced by Jacot et al. [28] to establish an equivalence
between infinite-width NNs and kernel regression. After then, there is a growing line of work applying
NTK theory to study properties of over-parameterized NNs, such as optimization convergence [21, 20]
and generalization capability [2, 11]. The neural tangent kernel [28] associated with a NN f(w,x)

at w is defined as Θ̂(w;x,x′) = ∇wf(w,x)∇wf(w,x′)⊤ ∈ Rk×k. Under certain conditions,
such as infinite width limit and NTK parameterization, the NTK converges to a deterministic limit
kernel Θ(x,x′) · Ik that remains constant during training: Θ̂(w;x,x′) → Θ(x,x′) · Ik, where
Θ(x,x′) : Rd × Rd → R is a scalar kernel and Ik is a k × k identity matrix. Next, we introduce the
main concepts of interest in this paper: the loss tangent kernel and the loss path kernel. They are
central to characterizing the generalization behaviors of NNs trained by (stochastic) gradient flow.
Definition 3 (Loss Tangent Kernel (LTK) K̄). The loss tangent kernel associated with the loss
function ℓ(w, z) is defined as K̄(w; z, z′) = ⟨∇wℓ(w, z),∇wℓ(w, z′)⟩ ∈ R.

The LTK K̄ has a natural connection with the NTK Θ̂ by applying the chain rule:

K̄(w; z, z′) = ∇f ℓ(w, z)⊤Θ̂(w;x,x′)∇f ℓ(w, z′).

Next, we introduce the loss path kernel, which integrates the LTK along a given path of the parameters.
Later, we will characterize this path via the gradient flow dynamics.
Definition 4 (Loss Path Kernel (LPK) KT). Suppose the weights follow a continuous path w(t) :
[0, T] → Rp in their domain with a starting point w(0) = w0, where T is a predetermined constant.
This path is determined by the training set S and the training time T . We define the loss path kernel
associated with the loss function ℓ(w, z) along the path as KT (z, z

′;S) ≜
∫ T

0
K̄(w(t); z, z′)dt.

In Appendix B, we show LTK is Riemann integrable so the integral in the above definition is well-
defined. Intuitively, the LTK K̄(w; z, z′) measures the similarity between data points z and z′ by
comparing their loss gradients when evaluated using a fixed neural network parameter w. The LPK
KT (z, z

′;S) measures the overall similarity during the entire training time.

3.4 Rademacher Complexity

Rademacher complexity [52] measures the complexity of a hypothesis class. It takes into account the
data distribution and is a central concept in statistical learning theory. Next, we recall its definition
and a generalization upper bound via Rademacher complexity.

4

Definition 5 (Empirical Rademacher complexity R̂S(G)). Let F =
{
f : X → Rk

}
be a hypothesis

class. We denote G as the set of loss functions associated with each function in F , defined as
G = {g : (x,y) → ℓ(f(x),y), f ∈ F}. The empirical Rademacher complexity of G with respect to
a sample set S is defined as: R̂S(G) = 1

n Eσ

[
supg∈G

∑n
i=1 σig(zi)

]
, where σ = (σ1, . . . , σn) and

σi are independent uniform random variables taking values in {+1,−1}.

Theorem 1 (Theorem 3.3 in Mohri et al. [38]). Let G be a family of functions mapping from Z to
[0, 1]. Then for any δ ∈ (0, 1), with probability at least 1−δ over the draw of an i.i.d. sample set S =

{z1, . . . ,zn}, the following holds for all g ∈ G: Ez [g(z)]− 1
n

∑n
i=1 g(zi) ≤ 2R̂S(G)+3

√
log(2/δ)

2n .

4 Gradient Flow

In this section, we establish a new connection between the loss dynamics of gradient flow and a
general kernel machine equipped with the LPK. Using this result, we introduce a new generalization
bound by analyzing the complexity of the collection of kernel machines induced by all possible
training sets. Our analysis applies to a wide range of neural network architectures, as long as they are
continuously differentiable. Our numerical experiments validate the tightness of our bound and its
strong correlation with the true generalization error.

4.1 Loss Dynamics of Gradient Flow and Its Equivalence with General Kernel Machine

Consider the gradient flow dynamics (gradient descent with infinitesimal step size):

dw(t)

dt
= −∇wLS(w(t)) = − 1

n

n∑
i=1

∇wℓ(w(t), zi). (1)

The above ODE is well-defined for a wide variety of conditions, e.g. local Lipschitz-continuity of the
gradient or semi-convexity of the loss function [49, 23]. Next, we establish its connection with the
general kernel machine (KM) in the following theorem.

Theorem 2 (Equivalence with general KM.). Suppose w(T) = wT is a solution of (1) at time T
with initialization w(0) = w0. Then for any z ∈ Z ,

ℓ(wT , z) =

n∑
i=1

− 1

n
KT (z, zi;S) + ℓ(w0, z),

where KT is defined in Definition 4.

The above theorem demonstrates that the loss of the NN at a certain fixed time is a general kernel
machine. Herein, KT is the LPK and we prove in Appendix C.1 that it is a valid kernel. Unlike
previous NTK works that establish the equivalence between infinite-width NNs and kernel machines,
our equivalence is much more general and holds for any NN that is continuously differentiable. Based
on this equivalence, we characterize the generalization of NNs from the perspective of kernels. Note
that KT is a function of S and this property enables us to establish a data-dependent generalization
bound shortly.

4.2 Generalization Bounds

We introduce the main result in this section: a generalization bound for NNs whose weights follow
gradient flow in (1) at time T . We derive this bound by analyzing the Rademacher complexity of the
function class of kernel machines induced by different training sets with constrained RKHS norms.
Recall that each training set yields a distinct LPK. We define the collection of all such LPKs by

KT ≜ {KT (·, ·;S ′) : S ′ ∈ supp(µ⊗n),
1

n2

∑
i,j

KT (z
′
i, z

′
j ;S ′) ≤ B2}, (2)

where B > 0 is some constant, S ′ = {z′
1, . . . ,z

′
n}, µ⊗n is the joint distribution of n i.i.d. samples

drawn from µ, and supp(µ⊗n) is the support set of µ⊗n. Recall that S = {z1, . . . ,zn} is the training

5

set. Note the set in (2) includes the case of S ′ = S if 1
n2

∑
i,j KT (zi, zj ;S) ≤ B2. Then we

introduce a class of general kernel machines, corresponding to all different kernels in KT .

GT ≜

{
g(z) =

n∑
i=1

− 1

n
K(z, z′

i;S ′) + ℓ(w0, z) : K(·, ·;S ′) ∈ KT

}
.

Note that g(z) ∈ GT corresponds to ℓ(wT , z) trained from one possible dataset S ′ ∈ supp(µ⊗n).
Next, we compute the Rademacher complexity of GT and use it to obtain a generalization bound.

Theorem 3. R̂S(GT) ≤ min{U1, U2}. Here

U1 =
B

n

√
sup

K(·,·;S′)∈KT

Tr(K(Z,Z;S ′)) +
∑
i ̸=j

∆(zi, zj),

U2 = inf
ϵ>0

(
ϵ

n
+

√
2 lnN (GS

T , ϵ, ∥∥1)
n

)
,

where GS
T = {g(Z) = (g(z1), . . . , g(zn)) : g ∈ GT }, N (GS

T , ϵ, ∥∥1) is the covering number of GS
T

with the ℓ1-norm and

∆(zi, zj) =
1

2

[
sup

K(·,·;S′)∈KT

K(zi, zj ;S ′)− inf
K(·,·;S′)∈KT

K(zi, zj ;S ′)

]
.

The term U1 is composed by two components supK(·,·;S′)∈KT
Tr(K(Z,Z;S ′)) and ∆(zi, zj). The

first component, according to the definition of LPK, quantifies the maximum magnitude of the loss
gradient in KT evaluated with the set S throughout the training trajectory. The second component
assesses the range of variation of LPK within the set KT . The term U2 is obtained from analyzing
the covering number of GT . It shows that if the variation of the loss dynamics of gradient flow
with different training data is small, then the complexity of GT will also be small. The norm
constraint 1

n2

∑
i,j KT (z

′
i, z

′
j ;S ′) ≤ B2 balances a tradeoff between the tightness of the bound and

the expressiveness of the set GT (the number of datasets covered). Combining these two bounds with
Theorem 1, we obtain the following generalization bound.

Corollary 1 (Generalization bound for NN). Fix B > 0. Let R̂gf
S (GT) = min (U1, U2) where U1

and U2 are defined in Theorem 3. For any δ ∈ (0, 1), with probability at least 1− δ over the draw of
an i.i.d. sample set S = {zi}ni=1, if 1

n2

∑
i,j KT (zi, zj ;S) ≤ B2, the following holds for ℓ(wT , z)

that trained from S,

Lµ(AT (S))− LS(AT (S)) ≤ 2R̂gf
S (GT) + 3

√
log(2/δ)

2n
,

where wT = AT (S) is the output from the gradient flow (1) at time T by using S as input.

Our result owns many compelling properties.

• First, our bound holds in a general setting as it does not hedge on a special NN architecture. In
contrast, existing works [2, 11] only consider fully connected NNs and require NN to be ultra-wide.

• Our bound depends on the data distribution through the quantities in U1 and U2. This property not
only significantly tightens our bound but can also help explain some empirical observations of NNs.
For example, different from classical generalization theory, e.g. VC dimension, our complexity
bounds depend on the labels directly, which helps explain the random label phenomenon [59] as
shown in Figure 3 in Sec. 7.

• Our experiments in Sec. 7 (Figure 2) demonstrate the tightness of the generalization bound.
Intuitively, our bound is tight because (1) instead of considering the entire hypothesis class, we
focus on the subset of interest characterized by running gradient flow from a starting point w0;
(2) we get the bound from an equivalence between NNs and general kernel machines, whose
generalization bounds are tighter. Finally, we compare our generalization bound with two existing
NTK-based bounds in Table 1.

6

5 Stochastic Gradient Flow

In the previous section, we derived a generalization bound for NNs trained from full-batch gradient
flow. Here we extend our analysis to stochastic gradient flow and derive a corresponding generalization
bound. To start with, we recall the dynamics of stochastic gradient flow (SGD with infinitesimal step
size). Let St ⊆ {1, . . . , n} be the indices of batch data used in time interval [t, t+ 1] and |St| = m
be the batch size. We establish a new connection between the loss dynamics of stochastic gradient
flow and a general kernel machine. Then we investigate the complexity of the collection of such
kernel machines that can be induced by various training sets.

Theorem 4. Suppose w(T) = wT is a solution of stochastic gradient flow at time T ∈ N with
initialization w(0) = w0. Then for any z ∈ Z ,

ℓ(wT , z) =

T−1∑
t=0

∑
i∈St

− 1

m
Kt,t+1(z, zi;S) + ℓ(w0, z),

where Kt,t+1(z, zi;S) =
∫ t+1

t
K̄(w(t); z, zi)dt with K̄ defined in Definition 3.

The above theorem shows that the loss of the NN in stochastic gradient flow dynamics can be
characterized by a sum of general kernel machines. In particular, when we use the full batch at each
time interval (i.e., m = n), the above result recovers Theorem 2. To study its generalization behavior,
we introduce the class of kernel machines induced by different training sets S ′ ∈ supp(µ⊗n) with
constrained RKHS norms. Specifically, given Bt > 0 for t = 0, · · · , T − 1, we define

KT = {(K0,1(·, ·;S ′), · · · ,KT−1,T (·, ·;S ′)) : S ′ ∈ supp(µ⊗n),
1

m2

∑
i,j∈St

Kt,t+1(z
′
i, z

′
j ;S ′) ≤ B2

t }.

Note this set includes the kernel induced by the training set S if it satisfies the constraints. Then
ℓ(wT , z) trained from all feasible S ′ ∈ supp(µ⊗n) form a function class

GT ≜
{ T−1∑

t=0

∑
i∈St

− 1

m
Kt,t+1(z, z

′
i;S ′) + ℓ(w0, z) : K(·, ·;S ′) ∈ KT

}
. (3)

Next, we upper bound the Rademacher complexity of the function class GT . This bound can naturally
translate into a generalization bound by equipping with Theorem 1.

Theorem 5. The Rademacher complexity of GT defined in (3) has an upper bound:

R̂S(GT) ≤
T−1∑
t=0

Bt

n

√
sup

K(·,·;S′)∈KT

Tr(Kt,t+1(Z,Z);S ′) +
∑
i ̸=j

∆t(zi, zj).

where ∆t(zi, zj) =
1
2

[
supK(·,·;S′)∈KT

Kt,t+1(zi, zj ;S ′)− infK(·,·;S′)∈KT
Kt,t+1(zi, zj ;S ′)

]
.

We assumed that mini-batches indices St are chosen before training. However, our analysis can be
extended to accommodate random mini-batch selections of any sampling strategy by enumerating all
potential St in KT .

6 Case Study & Use Case

In the previous sections, we derived generalization bounds for NNs trained with (stochastic) gradient
flow. These bounds may initially appear complex due to their dependence on the training process.
Here we show that these bounds can be significantly simplified by applying them to infinite-width
NNs (and stable algorithms in Appendix E.2, norm-constraint NNs in Appendix E.3). Moreover, we
demonstrate that our generalization bounds maintain a high correlation with the true generalization
error. As a result, we use them to guide the design of NAS, and our experimental results demonstrate
that this approach has a favorable performance compared with state-of-the-art algorithms.

7

6.1 Infinite-width NN

In this subsection, we consider a special case of infinite-width NNs trained by gradient flow and derive
pre-computed generalization bounds. We focus on gradient flow to simplify the presentations but our
results can be directly extended to stochastic gradient flow. For an infinite-width NN, under certain
conditions, the neural tangent kernel keeps unchanged during training: Θ̂(wt;x,x

′) → Θ(x,x′) · Ik.
Consider a ρ-Lipschitz loss function, i.e. ∥∇f ℓ(w, z)∥ ≤ ρ. The Rademacher complexity in
Theorem 3 can be bounded by R̂S(GT) ≤ U∞, where

U∞ =
ρB

√
T

n

√∑
i,j

|Θ(xi,xj)|. (4)

In this infinite-width regime, our bound has no dependence on the initialization w0 since the NTK
converges to a deterministic limit and has no dependence on the parameters. That means the bound
holds for all possible w0 of infinite-width NNs trained by gradient flow from initialization. Compared

with the bound Õ(L ·
√

Y⊤(Θ)−1Y
n) in [11], U∞ has several advantages: (1) it has no dependence

on the number of layers L; (2) it holds for NNs with multiple outputs.

6.2 Correlation Analysis and NAS

As a practical application, we apply our generalization bounds to guide the design of NAS. We first
introduce a quantity Usgd simplified from the bound in Theorem 5, defined as

Usgd =

T−1∑
t=0

1

n

√
1

m2

∑
i,j∈St

Kt,t+1(zi, zj ;S)
√

Tr(Kt,t+1(Z,Z);S).

Usgd can be computed along with training a NN via SGD on a training set S. Combining it with the
training loss, we define the following quantity as an estimate of the population loss:

Gene(w,S) = LS(w) + 2Usgd. (5)

Figure 1: Correlation between Gene(w,S) and the
test error on CIFAR-100 at epoch 1 and epoch 2.
Kendall’s tau shows they have a strong positive corre-
lation.

We analyze the correlation between Gene(w,S)
and the true generalization error by randomly sam-
pling 100 NN architectures from NAS-Bench-201
[19]. For each, we compute both Gene(w,S)
and the true generalization error. Since solving
the gradient flow ODE is computationally infea-
sible for the large NNs in NAS-Bench-201, we
apply a trapezoidal rule to approximate the integra-
tion in LPK Kt,t+1. This approximation enables
us to compute Usgd efficiently. Figure 1 demon-
strates the correlation between Gene(w,S) and
the test error. The left figures plot the test error at
epoch 1 or 2 against Gene(w,S) of the respective
epochs, showing a strong positive correlation be-
tween them. The right figures plot the test error
at convergence against Gene(w,S) at epoch 1 or
2, which also demonstrate a positive correlation.
The outlier is caused by some architecture with
large loss gradients. This experiment shows that
Gene(w,S) at the initial training stage can predict
the performance of NNs at convergence. Based
on this observation, we use Gene(w,S) as a metric in NAS for selecting architectures at the initial
training stage (see Table 2). This approach significantly reduces computational costs compared with
training-based NAS algorithms [47, 34, 18, 33].

8

Figure 2: Experiment (I). (a) shows the dynamics of logistic loss for 5 randomly selected training samples for
NN trained by gradient flow (NN GF), NN trained by GD (NN GD), and the equivalent general kernel machine
(KM) in Theorem 2. The dynamics of NN GF and KM overlap and thus verify the equivalence in Theorem 2.
The dynamics of NN GF and NN GD are consistently close throughout the training process. (b) shows NN GF’s
training loss, test loss, test error, and upper bound for Lµ(wT) in Corollary 1. (c) shows that the complexity
bound R̂gf

S (GT) in Corollary 1 captures the generalization gap Lµ(wT)− LS(wT) well. It first increases and
then converges after sufficient training time.

7 Numerical Experiments

We conduct comprehensive numerical experiments to demonstrate our generalization bounds. We
observe that our complexity bounds are tight with respect to the generalization gap and can capture
how noisy label influences the generalization behaviors of NNs. Moreover, we apply Gene(w,S)
in (5) to NAS and demonstrate favorable performance compared with state-of-the-art algorithms.

(I) Generalization bound in Corollary 1. In Figure 2 (more detailed in Figure A.4), we use a logistic
loss to train a two-layer NN with 100 hidden nodes for binary classification on MNIST 1 and 7 [31]
by full-batch gradient flow and compute its generalization bound. Due to the computational cost of
solving the gradient flow ODE and computing the kernel, we only train and calculate the bound on
n = 1000 training samples. The bound would be tighter with more training samples. The NN is
initialized using the NTK parameterization [28]. We use the Softplus activation function, defined as
Softplus(x) = 1

β ln(1 + eβx). This function is continuously differentiable and serves as a smooth
approximation to the ReLU activation function. In our experiments, we set β = 10. To train the
NN via gradient flow, we solve the gradient flow ODE given by (1) to decide the NN parameters.
For the equivalent general KM, we compute the LTK using the NN parameters and integrate it to
get the LPK KT . These ODEs are computed with torchdiffeq [12]. To estimate the generalization
bound, we train the NN on (20, 50, 100) independently sampled training sets S ′ to estimate the KT

and GT , and the supremum in the bound U1 is estimated by taking the maximum over the finite set
KT . For U2, we compute an upper bound of it by setting ϵ as the largest ℓ1 distance between any two
g(Z) ∈ GS

T and N (GS
T , ϵ, ∥∥1) = 1 because in this case any g(Z) ∈ GS

T will satisfy as an ϵ-cover. We
run each experiment five times and plot the mean and standard deviation. The numerical experiments
demonstrate that our complexity bound is tight and can capture the generalization gap well. As
the number of S ′ increases, our bound converges to the true supremum value. To estimate the true
supremum value, we apply the extreme value theory in Appendix A.3 and show the gap between the
finite maximum and supremum is small, validating using a finite maximum as an estimate for our
bound.

We train the NN using GD with a finite learning rate η = 10 to compare with the NN trained by
gradient flow. The training time t = η × training steps. In Figure 2 (a) and Figure A.4 (a)(b), we
observe that the loss of the NN trained by GD and that trained by gradient flow are consistently close
throughout the entire training process. Consequently, while we established upper bounds for NNs
trained by gradient flow, these results can serve as an (approximate) upper bound for NNs trained by
GD with a finite learning rate.

Notably, for the NN in this experiment, the VC dimension [7] is 55957.3, the norm-based bound in
[6] is 140.7 at T = 1000, and the NTK-based bound for an ultra-wide NN in [11] is 1.44, which are
all vacuous (larger than 1), while our bound is tight (0.03 at T = 1000). See a detailed comparison in
Appendix A.2. We also conduct an experiment of three-layer NN (3072-100-100-1) trained on binary
CIFAR-10 (cat and dog) [30] in Figure A.5, where there is a larger generalization gap.

9

Figure 3: Experiment (II). Generalization
bound with label noise at T = 20000.

Table 2: Experiment (III). Comparison with state-of-the-art
training-free/minimum-training NAS methods on NAS-Bench-201.
Test accuracy with mean and deviation are reported. “Best” is the
best accuracy over the four runs. “Optimal” indicates the best test
accuracy achievable in NAS-Bench-201 search space. RS: ran-
domly sample 100 architectures and select the one with the best
metric value.

CIFAR-10 CIFAR-100
Algorithm Accuracy Best Accuracy Best

Baselines
TENAS [13] 93.08±0.15 93.25 70.37±2.40 73.16
RS + LGA3 [39] 93.64 69.77

Ours
RS + Gene(w,S)1 93.68±0.12 93.84 72.02±1.43 73.15
RS + Gene(w,S)2 93.79±0.18 94.02 72.76±0.33 73.15

Optimal 94.37 73.51

(II) Generalization bound with label noise. The settings are similar to Experiment (I) except we
corrupt the labels with different portions of noise and calculate the bound after training NN until
T = 20000. We estimate the bound with 20 training sets S ′. The results in Figure 3 show that our
bound has a strong correlation with the generalization gap and increases with the portion of label
noise. Unlike classical generalization theory, e.g. VC dimension, our generalization bound can help
explain the random label phenomenon [59].

(III) Neural architecture search (NAS). We apply Gene(w,S) in Eq. (5) to guide the design of
NAS. The results are shown in Table 2. We use a simple random search (RS) with Gene(w,S),
where 100 architectures are sampled from the search space for evaluation, and the architecture with
smallest Gene(w,S) is selected. Usgd is estimated with a batch of data of size 600. Build upon
Sec. 6.2, we apply Gene(w,S)1 and Gene(w,S)2 (Gene(w,S) after training 1 and 2 epochs) to
select NN architectures at the initial training stage in order to reduce computational costs. We
compare our method with state-of-the-art training-free/minimum-training NAS algorithms [13, 39].
We run the experiments four times with different random seeds and report the mean and standard
deviation. We reproduce the results in Chen et al. [13] using their released code and directly adopt
the results reported in Mok et al. [39] as they did not release the code. The results show our
approach of RS + Gene(w,S) can achieve favorable performance compared with state-of-the-art
training-free/minimum-training NAS algorithms.

8 Conclusion and Future Work

In this paper, we establish a new connection between the loss dynamics of (stochastic) gradient flow
and a general kernel machine. Building upon this result, we introduce generalization bounds for
NNs trained from (stochastic) gradient flow. Our bounds hold for any continuously differentiable
NN architectures (both finite-width and ultra-wide) and are generally tighter than existing bounds.
Moreover, for infinite-width NNs, we obtain a pre-computed generalization bound for the whole
training process. Finally, we apply our results to NAS and demonstrate favorable performance
compared with state-of-the-art NAS algorithms.

There are several directions for future research. First, evaluating our generation bounds relies on
the loss gradient, which may contain private and sensitive information. One potential fix would be
accessing such information in a differentially private manner and it would be interesting to investigate
how this “noisy” observation of gradient information influences our generalization bounds. Second,
it is worth exploring how other optimization algorithms and different model architectures influence
the generalization bounds. Finally, our bounds provide worst-case guarantees to the generalization of
NNs and it would be interesting to extend our results to obtain expected bounds for further sharpening
the results.

10

9 Acknowledgement

We thank the anonymous reviewers for valuable suggestions to improve the paper. We also thank
the San Diego Supercomputer Center and the MIT-IBM Watson AI Lab for computing resources. Y.
Chen and T.-W. Weng are supported by National Science Foundation under Grant No. 2107189 and
2313105.

References
[1] Arora, S., Ge, R., Neyshabur, B., and Zhang, Y. Stronger generalization bounds for deep nets

via a compression approach. arXiv preprint arXiv:1802.05296, 2018.

[2] Arora, S., Du, S., Hu, W., Li, Z., and Wang, R. Fine-grained analysis of optimization and
generalization for overparameterized two-layer neural networks. In International Conference
on Machine Learning, pp. 322–332. PMLR, 2019.

[3] Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R. R., and Wang, R. On exact computation
with an infinitely wide neural net. Advances in Neural Information Processing Systems, 32,
2019.

[4] Awasthi, P., Frank, N., and Mohri, M. On the rademacher complexity of linear hypothesis sets.
arXiv preprint arXiv:2007.11045, 2020.

[5] Bartlett, P. L. and Mendelson, S. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

[6] Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. Spectrally-normalized margin bounds for
neural networks. Advances in neural information processing systems, 30, 2017.

[7] Bartlett, P. L., Harvey, N., Liaw, C., and Mehrabian, A. Nearly-tight vc-dimension and
pseudodimension bounds for piecewise linear neural networks. The Journal of Machine
Learning Research, 20(1):2285–2301, 2019.

[8] Bassily, R., Feldman, V., Guzmán, C., and Talwar, K. Stability of stochastic gradient descent on
nonsmooth convex losses. Advances in Neural Information Processing Systems, 33:4381–4391,
2020.

[9] Belkin, M., Hsu, D., Ma, S., and Mandal, S. Reconciling modern machine-learning practice
and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences,
116(32):15849–15854, 2019.

[10] Boucheron, S., Lugosi, G., and Massart, P. Concentration inequalities: A nonasymptotic theory
of independence. Oxford university press, 2013.

[11] Cao, Y. and Gu, Q. Generalization bounds of stochastic gradient descent for wide and deep
neural networks. Advances in neural information processing systems, 32, 2019.

[12] Chen, R. T. Q. torchdiffeq, 2018. URL https://github.com/rtqichen/torchdiffeq.

[13] Chen, W., Gong, X., and Wang, Z. Neural architecture search on imagenet in four gpu hours: A
theoretically inspired perspective. arXiv preprint arXiv:2102.11535, 2021.

[14] Chen, Y., Huang, W., Nguyen, L., and Weng, T.-W. On the equivalence between neural network
and support vector machine. Advances in Neural Information Processing Systems, 34, 2021.

[15] Chizat, L. and Bach, F. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. In Conference on Learning Theory, pp. 1305–1338. PMLR, 2020.

[16] Cristianini, N., Shawe-Taylor, J., et al. An introduction to support vector machines and other
kernel-based learning methods. Cambridge university press, 2000.

[17] Domingos, P. Every model learned by gradient descent is approximately a kernel machine.
arXiv preprint arXiv:2012.00152, 2020.

11

https://github.com/rtqichen/torchdiffeq

[18] Dong, X. and Yang, Y. Searching for a robust neural architecture in four gpu hours. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1761–1770, 2019.

[19] Dong, X. and Yang, Y. Nas-bench-201: Extending the scope of reproducible neural architecture
search. arXiv preprint arXiv:2001.00326, 2020.

[20] Du, S., Lee, J., Li, H., Wang, L., and Zhai, X. Gradient descent finds global minima of deep
neural networks. In International conference on machine learning, pp. 1675–1685. PMLR,
2019.

[21] Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient descent provably optimizes over-
parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

[22] Dziugaite, G. K. and Roy, D. M. Computing nonvacuous generalization bounds for deep
(stochastic) neural networks with many more parameters than training data. arXiv preprint
arXiv:1703.11008, 2017.

[23] Grant, C. P. Theory of ordinary differential equations. Brigham Young University, 2014.

[24] Gunasekar, S., Lee, J. D., Soudry, D., and Srebro, N. Implicit bias of gradient descent on linear
convolutional networks. Advances in Neural Information Processing Systems, 31, 2018.

[25] Hardt, M., Recht, B., and Singer, Y. Train faster, generalize better: Stability of stochastic
gradient descent. In International conference on machine learning, pp. 1225–1234. PMLR,
2016.

[26] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778,
2016.

[27] Huang, W., Liu, C., Chen, Y., Da Xu, R. Y., Zhang, M., and Weng, T.-W. Analyzing deep
pac-bayesian learning with neural tangent kernel: Convergence, analytic generalization bound,
and efficient hyperparameter selection. Transactions on Machine Learning Research, 2023.

[28] Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel: Convergence and generalization
in neural networks. Advances in neural information processing systems, 31, 2018.

[29] Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and Tang, P. T. P. On large-
batch training for deep learning: Generalization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016.

[30] Krizhevsky, A., Hinton, G., et al. Learning multiple layers of features from tiny images. 2009.

[31] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[32] Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-Dickstein, J., and Pennington, J.
Wide neural networks of any depth evolve as linear models under gradient descent. Advances in
neural information processing systems, 32, 2019.

[33] Li, L. and Talwalkar, A. Random search and reproducibility for neural architecture search. In
Uncertainty in artificial intelligence, pp. 367–377. PMLR, 2020.

[34] Liu, H., Simonyan, K., and Yang, Y. Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018.

[35] Maurer, A. A note on the pac bayesian theorem. arXiv preprint cs/0411099, 2004.

[36] McDiarmid, C. et al. On the method of bounded differences. Surveys in combinatorics, 141(1):
148–188, 1989.

[37] Mellor, J., Turner, J., Storkey, A., and Crowley, E. J. Neural architecture search without training.
In International Conference on Machine Learning, pp. 7588–7598. PMLR, 2021.

12

[38] Mohri, M., Rostamizadeh, A., and Talwalkar, A. Foundations of machine learning. MIT press,
2018.

[39] Mok, J., Na, B., Kim, J.-H., Han, D., and Yoon, S. Demystifying the neural tangent kernel from
a practical perspective: Can it be trusted for neural architecture search without training? In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
11861–11870, 2022.

[40] Neyshabur, B., Tomioka, R., and Srebro, N. In search of the real inductive bias: On the role of
implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

[41] Neyshabur, B., Tomioka, R., and Srebro, N. Norm-based capacity control in neural networks.
In Conference on Learning Theory, pp. 1376–1401. PMLR, 2015.

[42] Neyshabur, B., Bhojanapalli, S., McAllester, D., and Srebro, N. Exploring generalization in
deep learning. Advances in neural information processing systems, 30, 2017.

[43] Neyshabur, B., Bhojanapalli, S., and Srebro, N. A pac-bayesian approach to spectrally-
normalized margin bounds for neural networks. arXiv preprint arXiv:1707.09564, 2017.

[44] Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y., and Srebro, N. The role of over-
parametrization in generalization of neural networks. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=BygfghAcYX.

[45] Novak, R., Xiao, L., Hron, J., Lee, J., Alemi, A. A., Sohl-Dickstein, J., and Schoenholz, S. S.
Neural tangents: Fast and easy infinite neural networks in python. In International Conference on
Learning Representations, 2020. URL https://github.com/google/neural-tangents.

[46] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems, 32, 2019.

[47] Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. Efficient neural architecture search via
parameters sharing. In International conference on machine learning, pp. 4095–4104. PMLR,
2018.

[48] Russo, D. and Zou, J. Controlling bias in adaptive data analysis using information theory. In
Artificial Intelligence and Statistics, pp. 1232–1240. PMLR, 2016.

[49] Santambrogio, F. {Euclidean, metric, and Wasserstein} gradient flows: an overview. Bulletin of
Mathematical Sciences, 7:87–154, 2017.

[50] Savarese, P., Evron, I., Soudry, D., and Srebro, N. How do infinite width bounded norm
networks look in function space? In Conference on Learning Theory, pp. 2667–2690. PMLR,
2019.

[51] Schölkopf, B., Smola, A. J., Bach, F., et al. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

[52] Shalev-Shwartz, S. and Ben-David, S. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

[53] Shawe-Taylor, J., Cristianini, N., et al. Kernel methods for pattern analysis. Cambridge
university press, 2004.

[54] Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and Srebro, N. The implicit bias of gradient
descent on separable data. The Journal of Machine Learning Research, 19(1):2822–2878, 2018.

[55] Valle-Pérez, G. and Louis, A. A. Generalization bounds for deep learning. arXiv preprint
arXiv:2012.04115, 2020.

[56] Vapnik, V. and Chervonenkis, A. Y. On the uniform convergence of relative frequencies of
events to their probabilities. Theory of Probability and its Applications, 16(2):264, 1971.

13

https://openreview.net/forum?id=BygfghAcYX
https://github.com/google/neural-tangents

[57] Weng, T.-W., Zhang, H., Chen, P.-Y., Yi, J., Su, D., Gao, Y., Hsieh, C.-J., and Daniel, L. Evalu-
ating the robustness of neural networks: An extreme value theory approach. In International
Conference on Learning Representations, 2018. URL https://openreview.net/forum?
id=BkUHlMZ0b.

[58] Xu, A. and Raginsky, M. Information-theoretic analysis of generalization capability of learning
algorithms. Advances in Neural Information Processing Systems, 30, 2017.

[59] Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. Understanding deep learning (still)
requires rethinking generalization. Communications of the ACM, 64(3):107–115, 2021.

14

https://openreview.net/forum?id=BkUHlMZ0b
https://openreview.net/forum?id=BkUHlMZ0b

Appendices
A Additional Experiments

Figure A.4: Experiment (I). (a) shows the dynamics of logistic loss for 5 randomly selected training
samples for NN trained by gradient flow (NN GF), NN trained by gradient descent (NN GD), and the
equivalent general kernel machine (KM) in Theorem 2. The dynamics of NN GF and KM overlap
and verify the equivalence in Theorem 2. The dynamics of NN GF and NN GD are consistently
close throughout the training process. (b) shows the differences between NN GF and KM are 0,
which verifies our equivalence in Theorem 2. The differences between NN GD and KM are also
small. (c) shows NN GF’s training loss, test loss, test error, and population loss bounds we estimated.
Bound with U1/U2 is the bound for Lµ(w) by applying U1/U2 in Corollary 1. (d) shows U1 and U2

in Theorem 3 first increase then converge after sufficient training time. The numerical experiments
demonstrate that our complexity bound is tight and can capture the generalization gap well. As the
number of S ′ increases, our bound converges to the true supremum value.

Experiments are implemented with PyTorch [46] on 24G A5000 and 32G V100 GPUs.

A.1 Computation Cost of Experiments

In Experiment (I), estimating the bound with 20 S′ (solving 20 gradient flow ODE) costs 500s and
training NN costs 0.29s. The GPU memory required by estimating the bound is 2406MB and training
NN requires 1044MB.

GPU hours CIFAR-10 CIFAR-100

RS + Gene(w,S) (Ours) 0.036 0.037
Training one NN architecture to convergence 1.83 2.56

Table 3: Averaged computational cost (GPU hours) for one architecture in Experiment (III).

For Experiment (III), we report the averaged computational cost (GPU hours) of our approach
for one architecture and the computational cost of training one NN architecture to convergence in

15

Figure A.5: Experiment (I) on CIFAR-10. Generalization bound for three-layer NN (3072-100-
100-1) trained on binary CIFAR-10 (cat and dog). The experiment demonstrates that our complexity
bound is tight and can capture the generalization gap well.

Table 3. Note our approach calculates Gene(w,S) only after training for 1 or 2 epochs, which saves
computational cost a lot.

A.2 Comparison with Existing Generalization Bounds

To make a stronger comparison with existing work, we have conducted two additional experiments
below to show that our bound is much tighter than prior work on both finite-width NNs and infinite-
width NNs.

(1) For the finite-width NN, we compare with previous uniform convergence bounds (VC dimension
[7] and norm-based bounds [6]) as the NTK-based bounds [2, 11] are limited to infinite or ultra-wide
NNs. Note our bounds are also uniform convergence bounds. We follow the same setting in our
Experiment I, and calculate the bound for two-layer NN with 100 hidden nodes (finite-width) at
training time T=1000 and sample size n=1000. Here L is the number of layers, p is the number of
parameters, W i is the weight matrix for the i-th layer, and m is the largest width of NN including the
input dimension. Constants in big O are ignored in the calculation. The results in Table 4 show that
our bound is much tighter than previous VC dimensions and norm-based bounds.

Finally, we remark that existing works have observed that VC dimension and norm-based bounds are
mostly vacuous (see e.g., Figure 5 of [44] and Figure 4 in [1]) while our bound is non-vacuous as
shown above and in Figure 2 and Figure A.5.

(2) For the infinite-width NN, we compare with the NTK-based bound in Cao & Gu [11] in a similar
setting as Experiment I – two-layer NN and binary MNIST (1 vs. 7) with n=1000. Note that their
bound only holds for an ultra-wide NN. We compute the infinite-width NTK using Neural Tangents
[45] and calculate their bound accordingly. For our bound, we train a two-layer NN with 1000 hidden
nodes (to approximate an ultra-wide NN) and compute our bound at T = 1000 (almost convergence).
Constants in big O are ignored in the calculation. The results in Table 5 show that our bound is much
tighter than previous NTK-based bounds.

16

Table 4: Comparison with existing uniform convergence bounds (VC dimension [7] and norm-based
bounds [6]). “Finite sample estimate”: Bound estimated from 100 S ′. “Extreme value estimate”:
Bound estimated from extreme value theory. See more detail in Appendix A.3.

Method Bound Value Tighter over [6]

VC dimension [7] O(Lplog(p)√
n

) 55957.3 -

Norm-based bound [6] Õ

 1√
n

∏L
i=1

∥∥W i
∥∥
2

(∑L
i=1

∥W i⊤∥2/3

2,1

∥W i∥2/3
2

)3/2

ln(m)

 140.7 -

Ours
Finite sample estimate R̂gf

S (GT) 0.03 4690×
Extreme value estimate R̂gf

S (GT) 0.06 2345×

Table 5: Comparison with NTK-based bounds [11].
Method Bound Value Tighter over [11]

Cao & Gu [11] Õ(L ·
√

Y ⊤(Θ)−1Y
n) 1.44 -

Ours
Finite sample estimate R̂gf

S (GT) 0.026 55.38×
Extreme value estimate R̂gf

S (GT) 0.08 18.00×

A.3 Estimate Supremum with Extreme Value Theory

In the all above experiments, we estimate the supremum in the Rademacher bound in Theorem 3 with
the maximum over a finite set. To get the true supremum value of the bound, we apply the extreme
value theory to estimate it, similar to estimating the local Lipschitz of NN in [57]. We show the finite
maximum is close to the true supremum value, validating using a finite maximum as an estimate for
our bound. We first state the following result from extreme value theory and then explain how we can
apply it to estimate our bounds.
Theorem 6 (Fisher–Tippett–Gnedenko theorem). Let X1, X2, · · · , Xm be a sequence of independent
and identically-distributed random variables with cumulative distribution function F . Suppose that
there exist two sequences of real numbers am > 0 and bm ∈ R such that the following limits converge
to a non-degenerate distribution function:

lim
m→∞

P(
max {X1, X2, · · · , Xm} − am

bm
≤ x) = G(x).

Then the limit distribution G belongs to either the Gumbel class (Type I), the Fréchet class (Type II),
or the Reverse Weibull class (Type III):

Gumbel class (Type I): G(x) = exp
{
−exp

(
−x− aw

bw

)}
, x ∈ R,

Fréchet class (Type II): G(x) =


0, x < aw,

exp
{
−
(

x−aw

bw

)−cw
}
, x ≥ aw,

Reverse Weibull class (Type III): G(x) =

 exp
{
−
(

aw−x
bw

)−cw
}
, x < aw,

1, x ≥ aw,

where aw ∈ R, bw > 0 and cw > 0 are the location, scale, and shape parameters, respectively.

Our bounds are finite as long as ℓ(w, z) is Lℓ-Lipschitz (will explain in detail later). Thus we are
particularly interested in the reverse Weibull class, as its CDF has a finite right end-point (denoted as
aw). The right end-point reveals the upper limit of the distribution, known as the extreme value. In
our case, the extreme value is exactly the supermum we want to estimate.

17

To compute U2, we compute an upper bound of it by setting ϵ as the largest ℓ1 distance between any
two g(Z) ∈ GS

T and N (GS
T , ϵ, ∥∥1) = 1 because in this case any g(Z) ∈ GS

T will satisfy as an ϵ cover.

U2 = inf
ϵ>0

(
ϵ

n
+

√
2 lnN (GS

T , ϵ, ∥∥1)
n

)
≤ sup

g1,g2∈GT

1

n
∥g1(Z)− g2(Z)∥1

Denote the right hand side as U∗
2 . Since each K(zi, zj ;S ′) ≤ LℓT

2, U∗
2 ≤ 2LℓT

2.

Note Z is fixed. Then for all g1, g2 ∈ GT , ∥g1(Z)− g2(Z)∥1 are i.i.d. random variables, because
g ∈ GT are trained from i.i.d. S ′. Consider a finite set GNg ⊂ GT with size Ng =

∣∣GNg

∣∣. As
Ng → ∞,

Û2 ≜ max
g1,g2∈GNg

∥g1(Z)− g2(Z)∥1
P→ U∗

2 , Ng → ∞.

Then we can apply extreme value theory to estimate U∗
2 . We generate Nb batch of GNg , compute their

Û2 and store them in a set. Then with these Û2’s, we perform a maximum likelihood estimation of
reverse Weibull distribution parameters, and the location estimate aw is used as an estimate of the U∗

2 .
To validate that reverse Weibull distribution is a good fit for the empirical distribution of the Û2’s, we
conduct Kolmogorov-Smirnov goodness-of-fit test (a.k.a. K-S test) to calculate the K-S test statistics
D and corresponding p-values. The null hypothesis is that Û2’s follow a reverse Weibull distribution.

We follow the same setting as Experiment I and want to estimate U∗
2 at T = 1000. Figure A.6 shows

a result of estimating U∗
2 with Nb = 50 and Ng = 1000. The estimated U∗

2 = 0.06 is quite close to
the finite maximum, validating using a finite maximum as an estimate for our bound.

Figure A.6: Estimating U∗
2 with Nb = 50 finite maximum over sets of size Ng = 1000. The red

line is the fitted probability distribution function (PDF) of the reverse Weibull distribution. The
small D-statistics of K-S test (ks) and large p-values (pval) show the hypothesized reverse Weibull
distribution fits the empirical distribution of Û2 well. The estimated U∗

2 = 0.06 is quite close to the
finite maximum, validating using a finite maximum as an estimate for our bound.

For U1,

U1 =
B

n

√
sup

K(·,·;S′)∈KT

Tr(K(Z,Z;S ′)) +
∑
i ̸=j

∆(zi, zj)

where

∆(zi, zj) =
1

2

[
sup

K(·,·;S′)∈KT

K(zi, zj ;S ′)− inf
K(·,·;S′)∈KT

K(zi, zj ;S ′)

]
.

Tr(K(Z,Z;S ′)) and K(zi, zj ;S ′) for i, j ∈ [n] are random variables that only depends on S ′. For
different S ′,S ′′ ∈ supp(µ⊗n), Tr(K(Z,Z;S ′)) and Tr(K(Z,Z;S ′′)) are i.i.d. random variables.
Similarly for K(zi, zj ;S ′), i, j ∈ [n]. We assume the finite maximum of each random variable
follows a reverse Weibull distribution and estimate their supremum then sum them together to get

18

(a) Estimating supK(·,·;S′)∈KT
Tr(K(Z,Z;S ′)). (b) Estimating supK(·,·;S′)∈KT

K(z1,z2;S ′).

Figure A.7: Estimating the components in U1 with Nb = 50 finite maximum over sets of size
Ng = 1000. The estimated extreme values are close to the finite maximum, validating using a finite
maximum as an estimate for our bound.

U1. Figure A.7 shows estimating supK(·,·;S′)∈KT
Tr(K(Z,Z;S ′)) and supK(·,·;S′)∈KT

K(z1, z2;S ′).
The estimated extreme values are close to the finite maximum, validating using a finite maximum as
an estimate for our bound. Due to the computational cost of estimating n2 extreme values, we leave
estimating U1 as future work.

19

B Integrability of Loss Tangent Kernel

By the assumption that the loss is continuously differentiable, the loss gradient ∇wℓ(w(t), z) is
continuous w.r.t. w(t). Together with w(t) is continuous w.r.t. t, ∇wℓ(w(t), z) is continuous w.r.t.
t. After the inner product, the LTK K̄(w(t); z, z′) is still continuous w.r.t. t. By the continuity of
LTK on the compact set [0, T], LTK is bounded and Riemann integrable on [0, T]. Therefore, the
integral in LPK is well-defined.

For the full-batch gradient flow (1) we considered in this paper, w(t) is differentiable therefore
continuous w.r.t. t by the gradient flow equation. Hence, the integral in LPK is well-defined.

For stochastic gradient flow, the continuity of the path w(t) can be argued as follows. For each time
interval [t, t+ 1], we assume that the same batch of data is used. Within this time interval, w(t) is
continuous w.r.t. t. For the next time interval [t + 1, t + 2], even if a different data batch is used,
the gradient flow ODE initializes the w(t+ 1) with the solution from the end point of the previous
interval, [t, t + 1]. This ensures the continuity of w(t) across distinct time intervals. In short, the
continuity of w(t) within each time interval, combined with the initialization of the ODE, will ensure
the continuity of w(t) in the entire time interval [0, T].

C Complete Proofs for Gradient Flow

C.1 Proof of Theorem 2

Theorem 2. Suppose w(T) = wT is a solution of (1) at time T with initialization w(0) = w0.
Then for any z ∈ Z ,

ℓ(wT , z) =

n∑
i=1

− 1

n
KT (z, zi;S) + ℓ(w0, z),

where KT is defined in Definition 4.

Proof. Consider the gradient flow:

dwt

dt
= −∇wLS(wt) = − 1

n

n∑
i=1

∇wℓ(wt, zi). (6)

For any differentiable loss function ℓ(w, z), by chain rule,

dℓ(wt, z)

dt
=

〈
∇wℓ(wt, z),

dwt

dt

〉
. (7)

Plug in the gradient flow expression of dwt

dt in (6) into (7). We have

dℓ(wt, z)

dt
= ⟨∇wℓ(wt, z),−∇wLS(wt)⟩

=

〈
∇wℓ(wt, z),−

1

n

n∑
i=1

∇wℓ(wt, zi)

〉
(by definition of LS(wt))

= − 1

n

n∑
i=1

⟨∇wℓ(wt, z),∇wℓ(wt, zi)⟩ (by the linearity of inner product)

= − 1

n

n∑
i=1

K̄(wt; z, zi). (by Definition 3 of the LTK)

20

Integrate both sides from 0 to T over the path w(t) taken by the parameters during the gradient flow,

ℓ(wT , z)− ℓ(w0, z) =

∫ T

0

− 1

n

n∑
i=1

K̄(wt; z, zi)dt

= − 1

n

n∑
i=1

∫ T

0

K̄(wt; z, zi)dt (By linearity of integration)

=

n∑
i=1

− 1

n
KT (z, zi;S). (By Definition 4 of LPK)

Thus we have

ℓ(wT , z) =

n∑
i=1

− 1

n
KT (z, zi;S) + ℓ(w0, z).

Below, we prove that KT (z, z
′;S) : Z × Z → R is a valid kernel. We can show KT (z, z

′;S) is a
valid kernel by proving KT (z, z

′;S) is continuous and the kernel matrix KT (Z,Z;S) ∈ Rn×n is
positive semi-definite (PSD) for any finite subset of Z , z1, · · · , zn ∈ Z [53]. By Definition 4 of the
loss path kernel,

KT (z, z
′;S) =

∫ T

0

K̄(wt; z, z
′)dt

=

∫ T

0

⟨∇wℓ(wt, z),∇wℓ(wt, z
′)⟩ dt.

Since ℓ(wt, z) is continuously differentiable for wt and z, ∇wℓ(wt, z) is continuous for z. After
the inner product and integration, it is still a continuous function. Thus KT (z, z

′;S) is a continuous
function for z.

Denote Φt(z) = ∇wℓ(wt, z), then by Definition 4 of the loss path kernel,

KT (z, z
′;S) =

∫ T

0

K̄(wt; z, z
′)dt

=

∫ T

0

⟨∇wℓ(wt, z),∇wℓ(wt, z
′)⟩ dt

=

∫ T

0

⟨Φt(z),Φt(z
′)⟩ dt.

For ∀u ∈ Rn and ∀ {zi}ni=1 ⊆ Z ,

uTKT (Z,Z;S)u =

n∑
i=1

n∑
j=1

uiujKT (zi, zj ;S)

=

n∑
i=1

n∑
j=1

uiuj

∫ T

0

⟨Φt(zi),Φt(zj)⟩ dt

=

∫ T

0

n∑
i=1

n∑
j=1

uiuj ⟨Φt(zi),Φt(zj)⟩ dt

=

∫ T

0

〈
n∑

i=1

uiΦt(zi),

n∑
j=1

ujΦt(zj)

〉
dt

=

∫ T

0

∥∥∥∥∥
n∑
i

uiΦt(zi)

∥∥∥∥∥
2

dt

≥ 0.

Thus the matrix KT (Z,Z;S) is PSD and KT (z, z
′;S) is therefore a valid kernel.

21

C.2 Proof of Theorem 3

Theorem 3. R̂S(GT) ≤ min{U1, U2}. Here

U1 =
B

n

√
sup

K(·,·;S′)∈KT

Tr(K(Z,Z;S ′)) +
∑
i ̸=j

∆(zi, zj),

U2 = inf
ϵ>0

(
ϵ

n
+

√
2 lnN (GS

T , ϵ, ∥∥1)
n

)
,

where GS
T = {g(Z) = (g(z1), . . . , g(zn)) : g ∈ GT }, N (GS

T , ϵ, ∥∥1) is the covering number of GS
T

with the ℓ1-norm and

∆(zi, zj) =
1

2

[
sup

K(·,·;S′)∈KT

K(zi, zj ;S ′)− inf
K(·,·;S′)∈KT

K(zi, zj ;S ′)

]
.

C.2.1 Proof of U1

Proof. Recall the definition of GT ,

GT = {g(z) =
n∑

i=1

− 1

n
K(z, z′

i;S ′) + ℓ(w0, z) : K(·, ·;S ′) ∈ KT }.

where

KT = {KT (·, ·;S ′) : S ′ ∈ supp(µ⊗n),
1

n2

∑
i,j

KT (z
′
i, z

′
j ;S ′) ≤ B2}.

Suppose K(z, z′;S ′) = ⟨ΦS′(z),ΦS′(z′)⟩. Define

GU
T = {g(z) = ⟨β,ΦS′(z)⟩+ ℓ(w0, z) : ∥β∥ ≤ B,K(·, ·;S ′) ∈ KT }.

We first show GT ⊆ GU
T . For ∀g(z) ∈ GT ,

g(z) =

n∑
i=1

− 1

n
K(z, z′

i;S ′) + ℓ(w0, z)

=

n∑
i=1

− 1

n
⟨ΦS′(z),ΦS′(z′

i)⟩+ ℓ(w0, z) (by definition K(z, z′;S ′) = ⟨ΦS′(z),ΦS′(z′)⟩)

=

〈
ΦS′(z),

n∑
i=1

− 1

n
ΦS′(z′

i)

〉
+ ℓ(w0, z)

= ⟨ΦS′(z),βS′⟩+ ℓ(w0, z) (denote βS′ =
∑n

i=1 −
1
nΦS′(z′

i))

= ⟨βS′ ,ΦS′(z)⟩+ ℓ(w0, z)

We know by definition of GT , ∥βS′∥2 = 1
n2

∑
i,j K(z

′
i, z

′
j ;S ′) ≤ B2. Thus g(z) ∈ GU

T . Since
∀g(z) ∈ GT , g(z) ∈ GU

T , GT ⊆ GU
T . But GU

T is strictly larger than GT because βS′ is a fixed vector
for a fixed K(·, ·;S ′) while β in GU

T is a vector of any direction.

22

Then by the property of Rademacher complexity,

R̂S(GT) ≤ R̂S(GU
T)

=
1

n
E
σ

[
sup
g∈GU

T

n∑
i=1

σig(zi)

]

=
1

n
E
σ

[
sup

K(·,·;S′)∈KT

n∑
i=1

σi (⟨β,ΦS′(zi)⟩+ ℓ(w0, zi))

]

=
1

n
E
σ

[
sup

K(·,·;S′)∈KT

n∑
i=1

σi ⟨β,ΦS′(zi)⟩

]
+

1

n
E
σ

[
sup

K(·,·;S′)∈KT

n∑
i=1

σiℓ(w0, zi)

]

=
1

n
E
σ

[
sup

K(·,·;S′)∈KT

〈
β,

n∑
i=1

σiΦS′(zi)

〉]

=
B

n
E
σ

[
sup

K(·,·;S′)∈KT

∥∥∥∥∥
n∑

i=1

σiΦS′(zi)

∥∥∥∥∥
]

=
B

n
E
σ

 sup
K(·,·;S′)∈KT

 n∑
i=1

n∑
j=1

σiσjK(zi, zj ;S ′)

 1
2


=

B

n
E
σ


 sup

K(·,·;S′)∈KT

n∑
i=1

n∑
j=1

σiσjK(zi, zj ;S ′)

 1
2


≤ B

n

E
σ

 sup
K(·,·;S′)∈KT

n∑
i=1

n∑
j=1

σiσjK(zi, zj ;S ′)

 1
2

(Jensen’s inequality)

=
B

n

E
σ

 sup
K(·,·;S′)∈KT

 n∑
i=1

K(zi, zi) +
∑
i ̸=j

σiσjK(zi, zj ;S ′)

 1
2

≤ B

n

E
σ

 sup
K(·,·;S′)∈KT

n∑
i=1

K(zi, zi) + sup
K(·,·;S′)∈KT

∑
i ̸=j

σiσjK(zi, zj ;S ′)

 1
2

=
B

n

 sup
K(·,·;S′)∈KT

Tr(K(Z,Z;S ′)) + E
σ

 sup
K(·,·;S′)∈KT

∑
i ̸=j

σiσjK(zi, zj ;S ′)

 1
2

.

The second term in the square root is

23

E
σ

 sup
K(·,·;S′)∈KT

∑
i ̸=j

σiσjK(zi, zj ;S ′)


≤ E

σ

∑
i ̸=j

sup
K(·,·;S′)∈KT

σiσjK(zi, zj ;S ′)


=
∑
i ̸=j

E
σ

[
sup

K(·,·;S′)∈KT

σiσjK(zi, zj ;S ′)

]

=
∑
i ̸=j

(
P (σiσj = +1)

[
sup

K(·,·;S′)∈KT

K(zi, zj ;S ′)

]
+ P (σiσj = −1)

[
sup

K(·,·;S′)∈KT

−K(zi, zj ;S ′)

])

=
∑
i ̸=j

1

2

[
sup

K(·,·;S′)∈KT

K(zi, zj ;S ′)− inf
K(·,·;S′)∈KT

K(zi, zj ;S ′)

]
=
∑
i̸=j

∆(zi, zj)

where we define ∆(zi, zj) = 1
2

[
supK(·,·;S′)∈KT

K(zi, zj ;S ′)− infK(·,·;S′)∈KT
K(zi, zj ;S ′)

]
.

Thus in total,

R̂S(GT) ≤ R̂S(GU
T) ≤ B

n

 sup
K(·,·;S′)∈KT

Tr(K(Z,Z;S ′)) +
∑
i ̸=j

∆(zi, zj)

 1
2

C.2.2 Proof of U2

Proof. To simplify the notation, denote KS′(·, ·) = KT (·, ·;S ′). Denote gKS′ (z) =∑n
i=1 −

1
nKS′(z, z′

i) + ℓ(w0, z) for a fixed KS′ , which is a singleton hypothesis class. Then GT is a
union set of such function classes with different kernels,

GT =

{
gKS′ (z) =

n∑
i=1

− 1

n
KS′(z, z′

i) + ℓ(w0, z) : KS′ ∈ KT

}
=

⋃
KS′∈KT

{
gKS′ (z)

}
Then we can rewrite GS

T =
{
gKS′ (Z) = (gKS′ (z1), . . . , gKS′ (zn)) : KS′ ∈ KT

}
. Suppose Gϵ

T ⊆ GS
T

is a minimal ϵ-cover of GS
T with ∥∥1. Denote g̃KS′ (Z) = (g̃KS′ (z1), . . . , g̃KS′ (zn)) ∈ Gϵ

T as the
closest element to gKS′ (Z) ∈ GS

T and g̃KS′ (z) =
∑n

i=1 −
1
nK̃S′(z, z′

i) + ℓ(w0, z) = gK̃S′
(z)

with K̃S′ ∈ KT . Denote the set of all K̃S′ as Kϵ
T . Since one g̃KS′ corresponds to one K̃S′ ,

|Kϵ
T | = |Gϵ

T | = N (GS
T , ϵ, ∥∥1).

Based on the above, we can write the Rademacher complexity of GT as

R̂S(GT) =
1

n
E
σ

[
sup

KS′∈KT

n∑
i=1

σigKS′ (zi)

]
.

For any λ > 0, by Jensen’s inequality,

eλR̂S(GT) ≤ E
σ

[
e
λ
[

1
n supKS′∈KT

∑n
i=1 σigKS′ (zi)

]]
= E

σ

[
sup

KS′∈KT

eλ[
1
n

∑n
i=1 σigKS′ (zi)]

]
. (8)

24

Utilizing the definition of ϵ-covering, the quantity on the exponent in Eq. (8) is

1

n

n∑
i=1

σigKS′ (zi)

=
1

n

n∑
i=1

σi

(
gKS′ (zi)− g̃KS′ (zi) + g̃KS′ (zi)

)
=

1

n

n∑
i=1

σig̃KS′ (zi) +
1

n

n∑
i=1

σi

(
gKS′ (zi)− g̃KS′ (zi)

)
≤ 1

n

n∑
i=1

σig̃KS′ (zi) +
1

n

n∑
i=1

∣∣gKS′ (zi)− g̃KS′ (zi)
∣∣

=
1

n

n∑
i=1

σig̃KS′ (zi) +
1

n

∥∥gKS′ (Z)− g̃KS′ (Z)
∥∥
1

≤ 1

n

n∑
i=1

σig̃KS′ (zi) +
ϵ

n
. (by the definition of the ϵ-covering)

Substitute this inequality into Eq. (8). We have

eλR̂S(GT) ≤ E
σ

[
sup

KS′∈KT

eλ[
1
n

∑n
i=1 σig̃KS′ (zi)+

ϵ
n]

]

= e
λϵ
n E

σ

[
sup

KS′∈KT

e
λ
[

1
n

∑n
i=1 σigK̃S′

(zi)
]]

(g̃KS′ (zi) = gK̃S′
(zi))

(i)
= e

λϵ
n E

σ

[
max

K̃S′∈Kϵ
T

e
λ
[

1
n

∑n
i=1 σigK̃S′

(zi)
]]

≤ e
λϵ
n

∑
K̃S′∈Kϵ

T

E
σ

[
e
λ
[

1
n

∑n
i=1 σigK̃S′

(zi)
]]

(9)

where (i) is because we only use the gK̃S′
instead of gKS′ , which corresponds to K̃S′ ∈ Kϵ

T instead

of KS′ ∈ KT , so it is equivalent to take the maximum over K̃S′ ∈ Kϵ
T . Denote ξ(σ1, . . . , σn) =

1
n

∑n
i=1 σigK̃S′

(zi). Note gK̃S′
(zi) ∈ [0, 1] for i ∈ [n]. Then for all i ∈ [n],

sup
σ

|ξ(σ1, · · · , σi, · · · , σn)− ξ(σ1, · · · ,−σi, · · · , σn)|

≤ sup
σ

∣∣∣∣ 2nσigK̃S′
(zi)

∣∣∣∣
≤ 2

n
.

Thus ξ(σ1, · · · , σn) satisfies the bounded difference property. Let ci = 2
n . By [36, 10], ξ is a

sub-Gaussian variable and satisfies

E
[
eλξ
]
≤ e

λ2

8

∑n
i=1 c2i eλE[ξ]

= e
λ2

2n eλE[ξ].

Since gK̃S′
is a singleton function, E [ξ] = 1

n Eσ

[∑n
i=1 σigK̃S′

(zi)
]
= 0. Thus

E
[
eλξ
]
≤ e

λ2

2n .

Take this into Eq. (9), in total, we have

eλR̂S(GT) ≤ e
λϵ
n

∑
K̃S′∈Kϵ

T

e
λ2

2n = e
λϵ
n +λ2

2n |Kϵ
T | .

25

Take the logarithm on both sides of the equation,

λR̂S(GT) ≤
λϵ

n
+

λ2

2n
+ ln |Kϵ

T | .

Divide λ on both sides,

R̂S(GT) ≤
ϵ

n
+

λ

2n
+

1

λ
ln |Kϵ

T |

By taking λ =
√
2n ln |Kϵ

T |, we get

R̂S(GT) ≤
ϵ

n
+

√
2 ln |Kϵ

T |
n

.

Take the infimum over ϵ > 0 and note |Kϵ
T | = |Gϵ

T | = N (GS
T , ϵ, ∥∥1). We get

R̂S(GT) ≤ inf
ϵ>0

(
ϵ

n
+

√
2 lnN (GS

T , ϵ, ∥∥1)
n

)
.

C.3 A lower bound of R̂S(GU
T)

Here we give a lower bound of R̂S(GU
T). Similar lower bounds for a linear model were proved in

[4, 6] without the supremum. Our lower bound match the trace term in the upper bound U1, which
shows the upper bound U1 is relatively tight.

Theorem 7.

R̂S(GU
T) ≥ B√

2n
sup

KS′∈KT

√
Tr(KS′(Z,Z)).

Proof. Recall

GU
T = {g(z) = ⟨β,ΦS′(z)⟩+ ℓ(w0, z) : ∥β∥ ≤ B,KS′ ∈ KT }.

26

The Rademacher complexity of GU
T is

R̂S(GU
T) =

1

n
E
σ

[
sup
g∈GU

T

n∑
i=1

σig(zi)

]

=
1

n
E
σ

[
sup

KS′∈KT

sup
∥β∥≤B

n∑
i=1

σi (⟨β,ΦS′(zi)⟩+ ℓ(w0, zi))

]

=
1

n
E
σ

[
sup

KS′∈KT

sup
∥β∥≤B

〈
β,

n∑
i=1

σiΦS′(zi)

〉]
+ E

σ

[
n∑

i=1

σiℓ(w0, zi)

]

=
1

n
E
σ

[
sup

KS′∈KT

sup
∥β∥≤B

〈
β,

n∑
i=1

σiΦS′(zi)

〉]

=
B

n
E
σ

[
sup

KS′∈KT

∥∥∥∥∥
n∑

i=1

σiΦS′(zi)

∥∥∥∥∥
]

(dual norm property)

≥ B

n
sup

KS′∈KT

E
σ

[∥∥∥∥∥
n∑

i=1

σiΦS′(zi)

∥∥∥∥∥
]

≥ B

n
sup

KS′∈KT

∥∥∥∥∥Eσ
[∣∣∣∣∣

n∑
i=1

σiΦS′(zi)

∣∣∣∣∣
]∥∥∥∥∥ (norm sub-additivity)

=
B

n
sup

KS′∈KT

∑
j∈N+

(
E
σ

[∣∣∣∣∣
n∑

i=1

σi[ΦS′(zi)]j

∣∣∣∣∣
])2

 1
2

(by the definition of 2-norm)

≥ B

n
sup

KS′∈KT

∑
j∈N+

 1√
2

∣∣∣∣∣
n∑

i=1

[ΦS′(zi)]
2
j

∣∣∣∣∣
1
2

2


1
2

(Khintchine-Kahane inequality)

=
B√
2n

sup
KS′∈KT

∑
j∈N+

∣∣∣∣∣
n∑

i=1

[ΦS′(zi)]
2
j

∣∣∣∣∣
 1

2

=
B√
2n

sup
KS′∈KT

 n∑
i=1

∑
j∈N+

[ΦS′(zi)]
2
j

 1
2

(rearrange the summations)

=
B√
2n

sup
KS′∈KT

(
n∑

i=1

∥ΦS′(zi)∥2
) 1

2

=
B√
2n

sup
KS′∈KT

(
n∑

i=1

KS′(zi, zi)

) 1
2

=
B√
2n

sup
KS′∈KT

√
Tr(KS′(Z,Z)).

C.4 Proof of Corollary 1

Corollary 1. Fix B > 0. Let R̂gf
S (GT) = min (U1, U2) where U1 and U2 are defined in Theorem 3.

For any δ ∈ (0, 1), with probability at least 1− δ over the draw of an i.i.d. sample set S = {zi}ni=1,
if 1

n2

∑
i,j KT (zi, zj ;S) ≤ B2, the following holds for ℓ(wT , z) that trained from S,

Lµ(AT (S))− LS(AT (S)) ≤ 2R̂gf
S (GT) + 3

√
log(2/δ)

2n
,

27

where wT = AT (S) is the output from the gradient flow (1) at time T by using S as input.

Proof. Apply Theorem 1 to GT and S, for all g ∈ GT

E
z
[g(z)]− 1

n

n∑
i=1

g(zi) ≤ 2R̂S(GT) + 3

√
log(2/δ)

2n
.

Since g(z) ∈ GT corresponds to ℓ(AT (S ′), z) for all S ′ ∈ supp(µ⊗n) that 1
n2

∑
i,j KT (z

′
i, z

′
j ;S ′) ≤

B2, it holds for all these feasible S ′ ∈ supp(µ⊗n) that

E
z
[ℓ(AT (S ′), z)]− 1

n

n∑
i=1

ℓ(AT (S ′), zi)

= Lµ(AT (S ′))− LS(AT (S ′)) (by definition of LS(w) and Lµ(w))

≤ 2R̂S(GT) + 3

√
log(2/δ)

2n
.

From Theorem 3, we have R̂S(GT) ≤ min (U1, U2). Define R̂gf
S (GT) = min (U1, U2) and take into

above inequality,

Lµ(AT (S ′))− LS(AT (S ′)) ≤ 2R̂S(GT) + 3

√
log(2/δ)

2n

≤ 2R̂gf
S (GT) + 3

√
log(2/δ)

2n
.

Since above holds for all S ′ ∈ supp(µ⊗n) that 1
n2

∑
i,j KT (z

′
i, z

′
j ;S ′) ≤ B2, and S is also in

supp(µ⊗n), then if 1
n2

∑
i,j KT (zi, zj ;S) ≤ B2, we have

Lµ(AT (S))− LS(AT (S)) ≤ 2R̂gf
S (GT) + 3

√
log(2/δ)

2n
.

D Complete Proofs for Stochastic Gradient Flow

D.1 Proof of Theorem 4

Theorem 4. Suppose w(T) = wT is a solution of stochastic gradient flow at time T ∈ N with
initialization w(0) = w0. Then for any z ∈ Z ,

ℓ(wT , z) =

T−1∑
t=0

∑
i∈St

− 1

m
Kt,t+1(z, zi;S) + ℓ(w0, z),

where Kt,t+1(z, zi;S) =
∫ t+1

t
K̄(w(t); z, zi)dt with K̄ defined in Definition 3.

Proof. For each time interval [t, t+ 1] and data batch St, Stochastic gradient flow can be treated as
full-batch gradient flow. Applying Theorem 2 for each [t, t+ 1] and data batch St, we have

ℓ(wt+1, z) =
∑
i∈St

− 1

m
Kt,t+1(z, zi;S) + ℓ(wt, z), (10)

where

Kt,t+1(z, zi;S) =
∫ t+1

t

K̄(wt; z, zi)dt.

28

For time T ∈ N,

ℓ(wT , z)− ℓ(w0, z) =

T−1∑
t=0

ℓ(wt+1, z)− ℓ(wt, z)

=

T−1∑
t=0

∑
i∈St

− 1

m
Kt,t+1(z, zi;S). (takes in Eq. (10))

D.2 Proof of Theorem 5

Theorem 5. The Rademacher complexity of GT defined in (3) has an upper bound:

R̂S(GT) ≤
T−1∑
t=0

Bt

n

√
sup

K(·,·;S′)∈KT

Tr(Kt,t+1(Z,Z);S ′) +
∑
i ̸=j

∆t(zi, zj).

where ∆t(zi, zj) =
1
2

[
supK(·,·;S′)∈KT

Kt,t+1(zi, zj ;S ′)− infK(·,·;S′)∈KT
Kt,t+1(zi, zj ;S ′)

]
.

Proof. Recall,

GT = {g(z) =
T−1∑
t=0

∑
i∈St

− 1

m
Kt,t+1(z, z

′
i;S ′) + ℓ(w0, z) : K(·, ·;S ′) ∈ KT }.

where

KT = {(K0,1(·, ·;S ′), · · · ,KT−1,T (·, ·;S ′)) : S ′ ∈ supp(µ⊗n),
1

m2

∑
i,j∈St

Kt,t+1(z
′
i, z

′
j ;S ′) ≤ B2

t }.

For t = 0, 1, · · · , T − 1, let

Gt = {g(z) =
∑
i∈St

− 1

m
Kt,t+1(z, z

′
i;S ′) : K(·, ·;S ′) ∈ KT },

Then we have
GT ⊆ G0 ⊕ G1 ⊕ · · · ⊕ GT−1 ⊕ {ℓ(w0, z)} .

Since the set on the RHS involves combinations of kernels induced from distinct training set S ′, it is
a strictly larger set than the LHS. Apply Theorem 3 bound U1 for each Gt on S,

R̂S(Gt) ≤
Bt

n

 sup
K(·,·;S′)∈KT

Tr(Kt,t+1(Z,Z);S ′) +
∑
i ̸=j

∆t(zi, zj)

 1
2

, (11)

where ∆t(zi, zj) =
1
2

[
supK(·,·;S′)∈KT

Kt,t+1(zi, zj ;S ′)− infK(·,·;S′)∈KT
Kt,t+1(zi, zj ;S ′)

]
.

By the monotonicity and linear combination of Rademacher complexity [38] and take in (11),

R̂S(GT) ≤ R̂S(G0 ⊕ G1 ⊕ · · · ⊕ GT−1 ⊕ {ℓ(w0, z)})

=

T−1∑
t=0

R̂S(Gt) + R̂S({ℓ(w0, z)})

≤
T−1∑
t=0

Bt

n

 sup
K(·,·;S′)∈KT

Tr(Kt,t+1(Z,Z);S ′) +
∑
i ̸=j

∆t(zi, zj)

 1
2

.

29

E Complete Proofs for Case Study

E.1 Generalization bounds for Infinite-width NNs

E.1.1 Proof of Eq. (4)

Proof. We bound U1 in Theorem 3 for an infinite-width NN. For an infinite-width NN, the NTK
keeps unchanged during training:

Θ̂(wt;x,x
′) → Θ(x,x′) · Ik.

Then for our loss path kernel, for any z, z′ ∈ Z and any K(·, ·;S ′) ∈ KT ,

K(z, z′;S ′) =

∫ T

0

K̄(wt; z, z
′)dt

=

∫ T

0

∇f ℓ(wt, z)
⊤Θ̂(wt;x,x

′)∇f ℓ(wt, z
′) dt

=

∫ T

0

∇f ℓ(wt, z)
⊤Θ(x,x′) · Ik∇f ℓ(wt, z

′) dt

= Θ(x,x′) ·
∫ T

0

∇f ℓ(wt, z)
⊤∇f ℓ(wt, z

′) dt.

(12)

Consider a ρ-Lipschitz loss function, i.e. ∥∇f ℓ(wt, z)∥ ≤ ρ, e.g. ρ = 1 for hinge loss and logistic
loss, ρ =

√
2 for cross-entropy loss with one-hot labels. Then we have

−ρ2 ≤ ∇f ℓ(wt, z)
⊤∇f ℓ(wt, z

′) ≤ ρ2.

Thus

−ρ2T ≤
∫ T

0

∇f ℓ(wt, z)
⊤∇f ℓ(wt, z

′) dt ≤ ρ2T.

Then by this inequality and Eq. (12),

−ρ2T |Θ(x,x′)| ≤ K(z, z′;S ′) ≤ ρ2T |Θ(x,x′)| .

Since Θ(xi,xi) ≥ 0 for i ∈ [n], K(zi, zi;S ′) ≤ ρ2T · Θ(xi,xi) and Tr(K(Z,Z);S ′) ≤ Tr(ρ2T ·
Θ(X,X)).

∆(zi, zj) =
1

2

[
sup

K(·,·;S′)∈KT

K(zi, zj ;S ′)− inf
K(·,·;S′)∈KT

K(zi, zj ;S ′)

]

≤ 1

2

[
ρ2T |Θ(xi,xj)| − (−ρ2T |Θ(x,xi)|)

]
= ρ2T |Θ(xi,xj)|

Take these terms into U1,

R̂S(GT) ≤
B

n

√
sup

K(·,·;S′)∈KT

Tr(K(Z,Z;S ′)) +
∑
i ̸=j

∆(zi, zj)

≤ B

n

√
Tr(ρ2T ·Θ(X,X)) +

∑
i ̸=j

ρ2T |Θ(xi,xj)|

=
ρB

√
T

n

√∑
i,j

|Θ(xi,xj)|.

(13)

30

E.2 Generalization bound for stable algorithms

Let S ′ and S′
1 be two datasets that only differ in one data point. We make the following stability

assumption for gradient decent.

Assumption 1 (uniform stability of GD.). Assume ∥At(S ′)−At(S
′
1)∥ = ct

n for some con-
stant c > 0. Assume ℓ(w, z) is Lℓ-Lipschitz and βℓ-smooth for any z ∈ Z . Then
∥∇wℓ(At(S ′), z)−∇wℓ(At(S

′
1), z)∥ ≤ βℓ ∥At(S ′)−At(S

′
1)∥ = cβℓ

t
n .

This kind of stability results of GD and SGD are proved in [8, 25]. Under these stability and
smoothness assumptions, we can bound the deviation of g(zi) from its expectation with high
probability and further bound the complexity based on Theorem 3.

Theorem 8. For any δ ∈ (0, 1), let Gδ
T ⊂ GT be a 1 − δ subset of GT , i.e.

∣∣Gδ
T

∣∣ = (1 − δ) |GT |.
Under Assumption 1, we have at least one of such Gδ

T ,

R̂S(Gδ
T) ≤

(
2L2

ℓT + cLℓβℓT
2
)√2 log(2nδ)

n
.

This bound will naturally translate into a generalization bound by equipping with Theorem 1. This
bound has a convergence rate of Õ(1/

√
n). It shows that the complexity of NN trained by GD has a

polynomial dependence on Lℓ, βℓ, and training time T .

Proof. Let Gδ,S
T =

{
g(Z) = (g(z1), . . . , g(zn)) : g ∈ Gδ

T

}
. Then similar bound as U2 in Theorem 3

holds for Gδ
T ,

R̂S(Gδ
T) ≤ inf

ϵ>0

 ϵ

n
+

√
2 lnN (Gδ,S

T , ϵ, ∥∥1)
n

 (14)

We consider the covering of Gδ
T and upper bound the right hand side. Without loss of generality,

suppose S ′ and S′
1 differ in the first sample. That is S ′ = {z′

1, . . . ,z
′
n} and S′

1 = {ẑ′
1, . . . ,z

′
n}. For

any fixed i ∈ [n] and gKS′
1
, gKS′ ∈ GT ,

gKS′
1
(zi)− gKS′ (zi)

=
1

n
KS′(zi, z

′
1)−

1

n
KS′

1
(zi, ẑ

′
1) +

n∑
j=2

1

n
KS′(zi, z

′
j)−

n∑
j=2

1

n
KS′

1
(zi, z

′
j)

The first two terms are

1

n
KS′(zi, z

′
1)−

1

n
KS′

1
(zi, ẑ

′
1)

=
1

n

∫ T

0

⟨∇wℓ(At(S ′), zi),∇wℓ(At(S ′), z′
1)⟩ dt−

1

n

∫ T

0

⟨∇wℓ(At(S
′
1), zi),∇wℓ(At(S

′
1), ẑ

′
1)⟩ dt

=
1

n

∫ T

0

⟨∇wℓ(At(S ′), zi),∇wℓ(At(S ′), z′
1)⟩ − ⟨∇wℓ(At(S

′
1), zi),∇wℓ(At(S

′
1), ẑ

′
1)⟩ dt

≤ 1

n

∫ T

0

∥∇wℓ(At(S ′), zi)∥ ∥∇wℓ(At(S ′), z′
1)∥+ ∥∇wℓ(At(S

′
1), zi)∥ ∥∇wℓ(At(S

′
1), ẑ

′
1)∥ dt

≤ 1

n

∫ T

0

L2
ℓ + L2

ℓdt

=
1

n
2L2

ℓT

31

The last two terms are
n∑

j=2

1

n
KS′(zi, z

′
j)−

n∑
j=2

1

n
KS′

1
(zi, z

′
j)

=
1

n

n∑
j=2

KS′(zi, z
′
j)− KS′

1
(zi, z

′
j)

=
1

n

n∑
j=2

∫ T

0

〈
∇wℓ(At(S ′), zi),∇wℓ(At(S ′), z′

j)
〉
dt−

∫ T

0

〈
∇wℓ(At(S

′
1), zi),∇wℓ(At(S

′
1), z

′
j)
〉
dt

=
1

n

n∑
j=2

∫ T

0

〈
∇wℓ(At(S ′), zi),∇wℓ(At(S ′), z′

j)
〉
−
〈
∇wℓ(At(S

′
1), zi),∇wℓ(At(S

′
1), z

′
j)
〉
dt

=
1

n

n∑
j=2

∫ T

0

〈
∇wℓ(At(S ′), zi),∇wℓ(At(S ′), z′

j)
〉
−
〈
∇wℓ(At(S ′), zi),∇wℓ(At(S

′
1), z

′
j)
〉

+
〈
∇wℓ(At(S ′), zi),∇wℓ(At(S

′
1), z

′
j)
〉
−
〈
∇wℓ(At(S

′
1), zi),∇wℓ(At(S

′
1), z

′
j)
〉
dt

=
1

n

n∑
j=2

∫ T

0

〈
∇wℓ(At(S ′), zi),∇wℓ(At(S ′), z′

j)−∇wℓ(At(S
′
1), z

′
j)
〉

+
〈
∇wℓ(At(S ′), zi)−∇wℓ(At(S

′
1), zi),∇wℓ(At(S

′
1), z

′
j)
〉
dt

≤ 1

n

n∑
j=2

∫ T

0

∥∇wℓ(At(S ′), zi)∥
∥∥∇wℓ(At(S ′), z′

j)−∇wℓ(At(S
′
1), z

′
j)
∥∥

+ ∥∇wℓ(At(S ′), zi)−∇wℓ(At(S
′
1), zi)∥

∥∥∇wℓ(At(S
′
1), z

′
j)
∥∥ dt

≤ 1

n

n∑
j=2

∫ T

0

Lℓβℓ
ct

n
+ βℓ

ct

n
Lℓdt (by Assumption 1)

=

(
1− 1

n

)
cLℓβℓ

T 2

n

In total,
gKS′

1
(zi)− gKS′ (zi)

≤ 1

n
2L2

ℓT +

(
1− 1

n

)
cLℓβℓ

T 2

n

=
1

n

(
2L2

ℓT +

(
1− 1

n

)
cLℓβℓT

2

)
≤ 1

n

(
2L2

ℓT + cLℓβℓT
2
)

Similarly gKS′ (zi) − gKS′
1
(zi) ≤ 1

n

(
2L2

ℓT + cLℓβℓT
2
)
. Thus

∣∣∣gKS′ (zi)− gKS′
1
(zi)

∣∣∣ ≤
1
n

(
2L2

ℓT + cLℓβℓT
2
)
. Then by McDiarmid’s inequality, for any δ ∈ (0, 1), with probability at

least 1− δ, ∣∣∣∣gKS′ (zi)− E
S′

[
gKS′ (zi)

]∣∣∣∣ ≤ (2L2
ℓT + cLℓβℓT

2
)√ log(2δ)

2n

Then, by a union bound, with probability at least 1− δ, for all i ∈ [n],∣∣∣∣gKS′ (zi)− E
S′

[
gKS′ (zi)

]∣∣∣∣ ≤ (2L2
ℓT + cLℓβℓT

2
)√ log(2nδ)

2n

This means that with probability at least 1− δ, for all i ∈ [n],

gKS′ (zi) ∈

E
S′

[
gKS′ (zi)

]
−
(
2L2

ℓT + cLℓβℓT
2
)√ log(2nδ)

2n
, E
S′

[
gKS′ (zi)

]
+
(
2L2

ℓT + cLℓβℓT
2
)√ log(2nδ)

2n


32

Use the gKS′ in this range to construct the Gδ
T . Then for any g1(Z), g2(Z) ∈ Gδ,S

T ,

g1(Z)− g2(Z) =

n∑
i=1

|g1(zi)− g2(zi)|

≤
n∑

i=1

2
(
2L2

ℓT + cLℓβℓT
2
)√ log(2nδ)

2n

=
(
2L2

ℓT + cLℓβℓT
2
)√

2n log(
2n

δ
).

Take ϵ as this value, then N (Gδ,S
T , ϵ, ∥∥1) = 1. Take this into Eq. (14),

R̂S(Gδ
T) ≤ inf

ϵ>0

 ϵ

n
+

√
2 lnN (Gδ,S

T , ϵ, ∥∥1)
n


≤
(
2L2

ℓT + cLℓβℓT
2
)√2 log(2nδ)

n
.

E.3 Norm-constrained neural network

For simplicity, we consider the one-dimensional output in this subsection, i.e. k = 1, and assume
the loss function is ρ-lipschitz for the model output, ∥ℓ(ŷ,y)− ℓ(ŷ′,y)∥ ≤ ρ(ŷ − ŷ′) for every
ŷ, ŷ′ ∈ R. Consider one-layer NNs:

F =
{
f(w,x) = wTx : w ∈ Rd,x ∈ Rd

}
.

Proposition 2. For the function class of one-layer NN defined above,

sup
KS′∈KT

Tr(KS′(Z,Z)) ≤ ρ2T

n∑
i=1

∥xi∥2 .

For this one-layer NN, we do not need a norm constraint. For L-layer NNs with norm constraints:

F =
{
f(w,x) = WLσ(WL−1 · · ·σ(W 1x)) :

∥∥Wh
t

∥∥ ≤ Bi, t ∈ [0, T]
}

where Wh ∈ Rdh×dh−1 for h ∈ [L] with dL = 1, d0 = d. σ is the element-wise activation function
and is 1-lipschitz with σ(0) = 0. With these norm constraints of the parameters during the training,
we can further bound the trace term in U1 as follows.

Theorem 9. For the function class of L-layer NN defined above,

sup
KS′∈KT

Tr(KS′(Z,Z)) ≤ ρ2T

n∑
i=1

∥xi∥2
L∏

j=1

B2
j

L∑
h=1

1

B2
h

.

This bound shows that this quantity has a linear relation with T . With a finer constraint of
∥∥W i

t

∥∥
during the training, for example,

∥∥W i
t

∥∥ ≤ Bi,t′ , t ∈ [t′, t′ + 1], we can get tighter bound. Although
similar to previous norm-based bounds that have a polynomial dependence with the norms of the
parameters, our bound has a clear dependence on training time T , which is not achievable from
previous approaches. But note these bounds can be very loose since they are worse-case bounds.

33

E.3.1 Proof of Proposition 2

Proof.

KS′(z, z′) =

∫ T

0

⟨ℓ′(ft(x),y)∇wft(x), ℓ
′(ft(x

′),y′)∇wft(x
′)⟩ dt

=

∫ T

0

⟨ℓ′(ft(x),y)x, ℓ′(ft(x′),y′)x′⟩ dt

=

∫ T

0

ℓ′(ft(x),y)ℓ
′(ft(x

′),y′) ⟨x,x′⟩ dt

≤ ρ2 |⟨x,x′⟩|T.

Thus

Tr(KS′(Z,Z)) =

n∑
i=1

KT (zi, zi) ≤
n∑

i=1

ρ2 ∥xi∥2 T = ρ2T

n∑
i=1

∥xi∥2 .

Since this holds for any KS′ ∈ KT ,

sup
KS′∈KT

Tr(KS′(Z,Z)) ≤ ρ2T

n∑
i=1

∥xi∥2 .

E.3.2 Proof of Theorem 9

Proof. Denote

fh(x) = Whgh−1(x) ∈ Rdh , gh−1(x) = σ(fh−1(x)) ∈ Rdh−1 , h ∈ [L]

∂f(w,x)

∂Wh
= bh(x)

(
gh−1(x)

)T ∈ Rdh×dh−1 , h ∈ [L]

where

bh(x) =

{
1 ∈ R, h = L,

Dh(x)
(
Wh+1

)T
bh+1(x) ∈ Rdh h ∈ [L− 1],

Dh(x) = diag(σ̇(fh(x))) ∈ Rdh×dh , h ∈ [L− 1].

Then for any h ∈ [L], we can compute〈
∂f(w,x)

∂Wh
,
∂f(w,x′)

∂Wh

〉
=
〈
bh(x)

(
gh−1(x)

)T
, bh(x′)

(
gh−1(x′)

)T〉
(inner product of matrices)

= Tr
(
gh−1(x)bh(x)T bh(x′)

(
gh−1(x′)

)T)
= Tr

((
gh−1(x′)

)T
gh−1(x)bh(x)T bh(x′)

)
=
〈
gh−1(x), gh−1(x′)

〉
·
〈
bh(x), bh(x′)

〉
,

where we have for the first term,〈
gh−1(x), gh−1(x′)

〉
≤
∥∥gh−1(x)

∥∥∥∥gh−1(x′)
∥∥

≤
h−1∏
j=1

∥∥W j
∥∥2 ∥x∥ ∥x′∥ .

34

The second term can be bounded as〈
bh(x), bh(x′)

〉
≤
∥∥bh(x)∥∥ ∥∥bh(x′)

∥∥
=
∥∥∥Dh(x)

(
Wh+1

)T
bh+1(x)

∥∥∥∥∥∥Dh(x′)
(
Wh+1

)T
bh+1(x′)

∥∥∥
≤
∥∥Dh(x)

∥∥∥∥Wh+1
∥∥∥∥bh+1(x)

∥∥∥∥Dh(x′)
∥∥∥∥Wh+1

∥∥∥∥bh+1(x′)
∥∥

≤
∥∥Wh+1

∥∥2 ∥∥bh+1(x)
∥∥ ∥∥bh+1(x′)

∥∥
≤

L∏
j=h+1

∥∥W j
∥∥2 .

Thus in total, 〈
∂f(w,x)

∂Wh
,
∂f(w,x′)

∂Wh

〉
=
〈
gh−1(x), gh−1(x′)

〉
·
〈
bh(x), bh(x′)

〉
≤

h−1∏
j=1

∥∥W j
∥∥2 ∥x∥ ∥x′∥ ·

L∏
j=h+1

∥∥W j
∥∥2

= ∥x∥ ∥x′∥
∏L

j=1

∥∥W j
∥∥2

∥Wh∥2

Since the tangent kernel ⟨∇wf(w,x),∇wf(w,x′)⟩ =
∑L

h=1

〈
∂f(w,x)
∂Wh , ∂f(w,x′)

∂Wh

〉
, we obtain an

upper bound for the tangent kernel,

⟨∇wf(w,x),∇wf(w,x′)⟩ ≤ ∥x∥ ∥x′∥
L∏

j=1

∥∥W j
∥∥2 L∑

h=1

1

∥Wh∥2
.

Thus

KS′(z, z′) =

∫ T

0

l′(f(wt,x),y)l
′(f(wt,x

′),y′) ⟨∇wf(wt,x),∇wf(wt,x
′)⟩ dt

≤
∫ T

0

ρ2 ∥x∥ ∥x′∥
L∏

j=1

∥∥W j
∥∥2 L∑

h=1

1

∥Wh∥2
dt

≤
∫ T

0

ρ2 ∥x∥ ∥x′∥
L∏

j=1

B2
j

L∑
h=1

1

B2
h

dt

= ρ2T ∥x∥ ∥x′∥
L∏

j=1

B2
j

L∑
h=1

1

B2
h

.

Thus,

Tr(KS′(Z,Z)) ≤ ρ2T

n∑
i=1

∥xi∥2
L∏

j=1

B2
j

L∑
h=1

1

B2
h

.

Since this holds for any KS′ ∈ KT ,

sup
KS′∈KT

Tr(KS′(Z,Z)) ≤ ρ2T

n∑
i=1

∥xi∥2
L∏

j=1

B2
j

L∑
h=1

1

B2
h

.

35

	Introduction
	Related Work
	Kernel Machine and Loss Path Kernel
	Preliminaries
	Kernel Method
	Neural Tangent Kernel and Loss Path Kernel
	Rademacher Complexity

	Gradient Flow
	Loss Dynamics of Gradient Flow and Its Equivalence with General Kernel Machine
	Generalization Bounds

	Stochastic Gradient Flow
	Case Study & Use Case
	Infinite-width NN
	Correlation Analysis and NAS

	Numerical Experiments
	Conclusion and Future Work
	Acknowledgement
	Additional Experiments
	Computation Cost of Experiments
	Comparison with Existing Generalization Bounds
	Estimate Supremum with Extreme Value Theory

	Integrability of Loss Tangent Kernel
	Complete Proofs for Gradient Flow
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of U1
	Proof of U2

	A lower bound of S(GTU)
	Proof of Corollary 1

	Complete Proofs for Stochastic Gradient Flow
	Proof of Theorem 4
	Proof of Theorem 5

	Complete Proofs for Case Study
	Generalization bounds for Infinite-width NNs
	Proof of Eq. (4)

	Generalization bound for stable algorithms
	Norm-constrained neural network
	Proof of Proposition 2
	Proof of Theorem 9

