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Abstract

This paper investigates the problem of generalized linear bandits with heavy-tailed
rewards, whose (1 + ϵ)-th moment is bounded for some ϵ ∈ (0, 1]. Although there
exist methods for generalized linear bandits, most of them focus on bounded or sub-
Gaussian rewards and are not well-suited for many real-world scenarios, such as
financial markets and web-advertising. To address this issue, we propose two novel
algorithms based on truncation and mean of medians. These algorithms achieve an
almost optimal regret bound of Õ(dT

1
1+ϵ ), where d is the dimension of contextual

information and T is the time horizon. Our truncation-based algorithm supports
online learning, distinguishing it from existing truncation-based approaches. Ad-
ditionally, our mean-of-medians-based algorithm requires only O(log T ) rewards
and one estimator per epoch, making it more practical. Moreover, our algorithms
improve the regret bounds by a logarithmic factor compared to existing algorithms
when ϵ = 1. Numerical experimental results confirm the merits of our algorithms.

1 Introduction

The multi-armed bandits (MAB) is a powerful framework to model the sequential decision-making
process with limited information [Robbins, 1952], which has been found applications in various areas
such as medical trails [Villar et al., 2015] and advertisement placement [Bubeck and Cesa-Bianchi,
2012]. In the classical K-armed bandit problem, an agent selects one of the K arms and receives a
reward drawn independently and identically distributed from an unknown distribution associated with
the chosen arm. The goal of the agent is to maximize the cumulative rewards through the trade-off
between exploration and exploitation, i.e., pulling the arms that may potentially give better outcomes
while also exploiting the knowledge gained from previous trials to select the optimal arm.

One fundamental limitation of MAB is that it ignores contextual information in some scenarios such
as advertisement placement [Lattimore and Szepesvári, 2020], where features of users and products
can provide valuable guidance for decision making. In these cases, decisions should not only rely on
rewards from previous epochs but also the contextual information from both past and current epochs.
Stochastic Linear Bandits (SLB) has emerged as the most popular model in the last decade to address
this limitation, assuming a linear relationship between the contextual vector and the expected reward
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Table 1: Summary of the existing work for the linear bandits with heavy-tailed rewards. CC is the
abbreviation of computational complexity.

Regret CC_Truncation CC_MoM Arms Model
Medina and Yang [2016] Õ(dT

3
4 ) O(d2T ) O(d2T/ log T ) infinite SLB

Shao et al. [2018] Õ(d
√
T ) O(d3T + d2T 2) O(d2T · log T ) infinite SLB

Xue et al. [2020] Õ(
√
dT ) O(d2T 2) O(d2T ) finite SLB

This work Õ(d
√
T ) O(d2T ) O(d2T/ log T ) infinite GLB

[Auer, 2002; Dani et al., 2008; Abbasi-yadkori et al., 2011; Hu et al., 2021; Alieva et al., 2021;
Yang et al., 2022; He et al., 2022; Bengs et al., 2022]. However, in many real-world applications,
such as social network [Filippi et al., 2010], the assumption of Poisson or logistic relation between
the expected reward and contextual vector has demonstrated better performance, which motivates
the study of generalized linear bandits (GLB). In each round, the agent first observes a decision set
Dt ⊂ Rd composed of contextual vectors. Then, the agent selects an arm xt ∈ Dt and receives a
reward yt satisfying the expectation,

E[yt|xt] = µ(x⊤
t θ∗) (1)

where θ∗ is the inherent vector and µ(·) is the link function, such as the identity function or the
logistic function. The performance of the agent is measured by the regret such that

R(T ) =

T∑
t=1

(
µ(x̃⊤

t θ∗)− µ(x⊤
t θ∗)

)
where x̃t = argmaxx∈Dt

µ(x⊤θ∗) represents the optimal arm in the set Dt.

Extensive research has been conducted on the GLB, with most assuming sub-Gaussian rewards
[Filippi et al., 2010; Li et al., 2012, 2017; Jun et al., 2017; Lu et al., 2019; Zhou et al., 2019;
Han et al., 2021; Li and Wang, 2022]. However, it has been observed that in certain sequential
decision-making scenarios, such as financial markets [Cont and Bouchaud, 2000], the occurrence of
extreme returns is much more frequent than the standard normal distribution. This phenomenon is
known as heavy-tailed behavior [Foss et al., 2013], where the existing algorithms are not suitable. To
address this limitation, in this study, we focus on the GLB with heavy-tailed rewards [Bubeck et al.,
2013], i.e., the reward obtained at t-th round satifies the condition

E[|yt|1+ϵ] ≤ u

for some ϵ ∈ (0, 1] and u > 0. Different from the traditional sub-Gaussian setting, heavy-tailed
rewards do not decay exponentially and the estimation of expected rewards is significantly impacted.

According to the distinguishing characteristic of heavy-tailed distributions where extreme values
occur with high probability, previous studies have developed three main strategies to address the issue
in parameter estimation [Audibert and Catoni, 2011; Hsu and Sabato, 2014; Zhang and Zhou, 2018;
Ray Chowdhury and Gopalan, 2019; Lugosi and Mendelson, 2021; Zhong et al., 2021; Huang et al.,
2022; Diakonikolas et al., 2022; Gorbunov et al., 2022; Kamath et al., 2022; Li and Liu, 2022; Gou
et al., 2023]. One such strategy is truncation Audibert and Catoni [2011], which mitigates the impact
of extreme values by truncating them. A recently proposed strategy is the mean of medians approach
[Zhong et al., 2021], which involves partitioning the samples drawn from the heavy-tailed distribution
into multiple groups, taking the median within each group, and computing the mean of these medians.
It intuitively reduces the impact of extreme samples, as extreme samples are distributed to both sides,
thus the median value is more robust. The third strategy is median of means [Hsu and Sabato, 2014],
which adjusts the order of calculating mean and taking the median in the mean of medians strategy.

Most existing algorithms for heavy-tailed bandit problems are derived from aforementioned three
strategies, with a primary focus on the SLB model [Medina and Yang, 2016; Shao et al., 2018; Xue
et al., 2020]. To provide a comprehensive overview and facilitate comparison, we present a summary
of our results and previous findings on linear bandits with heavy-tailed rewards in Table 1. For the
sake of clarity, the presented regret bounds in Table 1 are under the assumption that the rewards have
finite variance. The computational complexity only takes into account multiplication and division
operations. Although Shao et al. [2018] and Xue et al. [2020] achieve nearly optimal regret for
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infinite-armed and finite-armed SLB, respectively, their algorithms are computationally expensive.
The latest work utilizing the mean of medians approach demonstrates efficiency but is limited to
symmetric rewards [Zhong et al., 2021]. Therefore, designing efficient heavy-tailed algorithms for
GLB with symmetric and asymmetric rewards is an interesting and non-trivial challenge.

Through the delicate employment of heavy-tailed strategies, our contributions to the generalized
linear bandit problem with heavy-tailed rewards can be summeraized as follows:

• We develop two novel algorithms, CRTM and CRMM, which utilize the truncation strategy
and mean of medians strategy, respectively. Both algorithms exhibit a sublinear regret bound
of Õ(dT

1
1+ϵ ), which is amolst optimal as the lower bound is Ω(dT

1
1+ϵ ) [Shao et al., 2018].

• CRTM reduces the computational complexity from O(T 2) to O(T ) when compared to
existing truncation-based algorithms [Shao et al., 2018; Xue et al., 2020], while CRMM
reduces the number of estimator required per round from O(log T ) to only one, as compared
to existing median-of-means-based algorithms [Shao et al., 2018; Xue et al., 2020].

• When ϵ = 1, the regret bounds of CRTM and CRMM improves a logarithmic factor of
order 1

2α and 1
2α − 1

2 for some α ∈ (0, 1), respectively, over the recently proposed method
of Zhong et al. [2021]2. Notably, CRTM extends the method of Zhong et al. [2021] from
symmetric rewards to general case, making CRTM more practical.

• We conduct numerical experiments to demonstrate that our proposed algorithms not only
achieve a lower regret bound but also require fewer computational resources when applied
to heavy-tailed bandit problems.

2 Related Work

In this section, we briefly review the related work on linear bandits. Through out the paper, the
p-norm of a vector x ∈ Rd is ∥x∥p = (|x1|p + . . . + |xd|p)1/p. Given a positive definite matrix
A ∈ Rd×d, the weighted Euclidean norm of the vector x is ∥x∥A =

√
x⊤Ax.

2.1 Generalized Linear Bandits

Filippi et al. [2010] was the first to address the generalized linear bandit problem and proposed an
algorithm with a regret bound of Õ(d

√
T ). However, their algorithm is not efficient as it requires

storing all the action-feedback pairs encountered so far and performing maximum likelihood estima-
tion at each step. A notable improvement was presented by Zhang et al. [2016] with the introduction
of an efficient algorithm called OL2M, whose space and time complexity at each epoch does not
grow over time and achieves a Õ(d

√
T ) regret. However, their algorithm is limited to the logistic link

function. Later, Jun et al. [2017] extended OL2M to generic link functions while still maintaining
the Õ(d

√
T ) regret bound. Ding et al. [2021] proposed another efficient generalized linear bandit

algorithm following the line of Thompson sampling scheme.

The main challenge in the bandit problem is the trade-off between exploration and exploitation.
To address this issue, the most commonly used approach is the confidence-region-based method,
specifically for the linear bandit model with infinite arms [Dani et al., 2008; Abbasi-yadkori et al.,
2011; Zhang et al., 2016]. Here we take the algorithm OL2M to give a brife introduction to this
approach [Zhang et al., 2016]. With the arrival of a new trial (xt, yt) in the t-th epoch, OL2M first
constructs a surrogate loss ℓt(θ) satisfying ∇ℓt(θ) = (−yt + µ(x⊤

t θ))xt. Then, OL2M employs a
variant of the online Newton step (ONS) to update the estimated parameters, i.e.,

θ̂N
t+1 = argmin

θ∈Rd

∥θ − θ̂N
t ∥2Vt+1

2
+ ⟨θ − θ̂N

t ,∇ℓt(θ̂
N
t )⟩. (2)

Here, Vt+1 = Vt+
κ
2xtx

⊤
t for κ > 0, and the initialized matrix V1 = λId for λ > 0. Subsequently,

OL2M constructs a confidence region Ct+1 centered at the estimated parameter θ̂N
t+1, such that

Ct+1 =
{
θ ∈ Rd

∣∣∥θ − θ̂N
t+1∥2Vt+1

≤ γt+1

}
(3)

2For ϵ1 > ϵ2 > 0, if the (1 + ϵ1)-th moment of rewards exists, then the (1 + ϵ2)-th moment of rewards is
bounded [Xue et al., 2020]. Thus, CRTM and CRMM achieve this regret improvement when ϵ ≥ 1.
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where γt+1 = O(d log t) indicating the uncertainty of the estimation and the unknown parameter
θ∗ lies in this region with high probability. Finally, OL2M selects the most promising arm xt+1

according to the principle of “optimization in the face of uncertainty”, i.e.,

(xt+1, θ̃t+1) = argmax
x∈Dt+1,θ∈Ct+1

⟨x,θ⟩. (4)

2.2 Bandit Learning with Heavy-tailed Rewards

Most of the existing work developed heavy-tailed bandit algorithms using truncation and median of
means strategies [Bubeck et al., 2013; Medina and Yang, 2016; Shao et al., 2018; Xue et al., 2020;
Huang et al., 2022]. Bubeck et al. [2013] first conducted extensive research on multi-armed bandits
with heavy-tailed rewards and achieved a logarithmic regret bound. Medina and Yang [2016] extended
it to the SLB model and introduced two algorithms that achieve regret bounds of Õ(dT

2+ϵ
2(1+ϵ) ) and

Õ(d
1
2T

1+2ϵ
1+3ϵ + dT

1+ϵ
1+3ϵ ), respectively. Shao et al. [2018] improved upon the results of Medina and

Yang [2016] by a more delicate application of heavy-tailed strategies, achieving a regret bound of
Õ(dT

1
1+ϵ ). Xue et al. [2020] investigated the case with finite arms and provided two algorithms

that attained regret bounds of Õ(d
1
2T

1
1+ϵ ). Recently, Zhong et al. [2021] proposed the mean of

medians estimator for the super heavy-tailed bandit problem, but the rewards are limited to symmetric
distributions. Applying this estimator to the GLB algorithm of Jun et al. [2017] yields a heavy-tailed
GLB algorithm that achieves the regret bound of O(d(log T )

1
2α+ 3

2T
1
2 ) for some α ∈ (0, 1). To

illustrate the basic idea of adopting different heavy-tailed strategies in the bandit model, we briefly
describe three representative algorithms.

For the algorithm exploiting truncation strategy, we take the algorithm TOFU as an instance [Shao et
al., 2018]. With the trials up to round t, TOFU truncates the rewards d times as follows,

Y
i

t =
[
y1I|ui

1(t)y1|≤ht
, . . . , ytI|ui

t(t)yt|≤ht

]
, i = 1, 2, . . . , d (5)

where ht = O(t
1−ϵ

2(1+ϵ) ) is the truncated criterion, and ui
τ (t) denotes the element in the i-th row and

τ -th column of matrix Ṽ
−1/2
t+1 At, At = [x1,x2, . . . ,xt] ∈ Rd×t is the matrix composed of selected

arms and Ṽt+1 = AtA
⊤
t + Id. Using these truncated rewards, TOFU conducts an estimator as

θ̃t+1 = Ṽ
−1/2
t+1 [u1

t ·Y
1

t , . . . ,u
d
t ·Y

d

t ] with ui
t ·Y

i

t =
∑t

τ=1 u
i
τ (t)yτ I|ui

τyτ |≤ht
. TOFU then constructs

a confidence region centered on this estimator and selects the promising arm, similar to (3) and (4).
Notice that the scalarized parameters {ui

τ (t)}tτ=1 are updated at each epoch, requiring TOFU to store
the learning history and truncate all rewards at each epoch. Thus, TOFU is not an online method.

For the algorithm exploiting median of means strategy, it’s common to play the chosen arm r times
and get r sequences of rewards {Y j

t }rj=1, where Y j
t = [yj1, . . . , y

j
t ] is the j-th reward sequence up to

epoch t. MENU executes least square estimation for each reward sequence and get r estimators, i.e.,

θ̂j
t+1 = argmin

θ∈Rd

∥A⊤
t θ − Y j

t ∥22 + ∥θ∥22, j = 1, 2, . . . , r (6)

where r = O(log T ) [Shao et al., 2018]. Then, the median of means strategy adopted by MENU is
operated as follows,

mj = median of
{
∥θ̂j

t+1 − θ̂s
t+1∥Ṽt+1

: s = 1, . . . , r
}
. (7)

Then, MENU takes the estimator θ̂k∗
t+1 with k∗ = argminj∈{1,2,...,r}{mj} as the center of confidence

region. Finally, MENU selects the most promising arm similar to (4).

For the mean of medians method proposed by Zhong et al. [2021], at each epoch t, the agent first
plays the selected arm r̄ times, with a value of r̄ = O((log T )1/α) for some α ∈ (0, 1), and then
receives rewards {yjt }r̄j=1 for these plays. Subsequently, the agent randomly divides the rewards into
multiple groups, with each group contains ⌈r̄α⌉ rewards. The agent then takes the median of each
group and uses the mean of these medians to update the estimator. Notice that the expectation of
the median has a bias to the expected reward other than the symmetric distribution. Thus, mean of
medians strategy is limited to symmetric distribution. Another point worth mentioning is that r̄ is too
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large to try sufficient different arms. For example, the agent can only play ⌈T/r̄⌉ = 100 different
arms with T = 106 and α = 0.62, which is obviously unreasonable3.

3 Algorithms

In this section, we first introduce the generalized linear bandit model and then demonstrate two novel
algorithms based on truncation and mean of medians, respectively.

3.1 Learning Model

The formal description of the generalized linear bandit model is as follows. In each round t, an agent
plays an arm xt ∈ Dt and obtains a stochastic reward yt, which is generated from a generalized
linear model represented by the following equation,

Pr(yt|xt) = exp

(
ytx

⊤
t θ∗ −m(x⊤

t θ∗)

g(τ)
+ h(yt, τ)

)
(8)

where θ∗ is the inherent parameters, τ > 0 is a known scale parameter, and g(·) and h(·, ·) are
normalizers [P. McCullagh, 1989]. The expectation of yt is given by

E[yt|xt] = m′(x⊤
t θ∗).

Thus, m′(·) is the link function in (1), such that µ(·) = m′(·). The reward model can be rewritten as

yt = µ(x⊤
t θ∗) + ηt

where ηt is a random noise satisfying the condition

E[ηt|Gt−1] = 0. (9)

Here, Gt−1 ≜ {x1, y1, . . . ,xt−1, yt−1,xt} is a σ-filtration and G0 = ∅. Following the existing work
[Filippi et al., 2010; Jun et al., 2017; Li et al., 2017], we make standard assumptions as follows.

Assumption 1 The coefficients θ∗ and contextual vectors x are bounded, such that ∥θ∗∥2 ≤ S and
∥x∥2 ≤ 1 for all x ∈ Dt, where S is a known constant.

Assumption 2 The link function µ(·) is L-Lipschitz on [−S, S], and continuously differentiable
on (−S, S). Moreover, there exists some κ > 0 such that µ′(z) ≥ κ and |µ(z)| ≤ U for any
z ∈ (−S, S).

3.2 Truncation

Our first algorithm is called Confidence Region with Truncated Mean (CRTM). The complete
procedure is provided in Algorithm 1. Here, we consider the heavy-tailed setting, i.e., there exists a
constant u > 0, the rewards admit

E
[
|yt|1+ϵ|Gt−1

]
≤ u. (10)

As we have mentioned earlier in Section 2.1, to design effective algorithms for GLB model, construct-
ing a narrow confidence region for the underlying coefficients θ∗ is necessary. However, heavy-tailed
rewards that satisfy (10) produce extreme values with high probability, resulting in a confidence
region with a large radius. Therefore, a straightforward approach to settle this problem is to truncate
the extreme reward to reduce its impact.

In each round t, CRTM first plays an arm xt ∈ Dt and observes the corresponding reward yt. Then,
CRTM truncates the reward yt using a uniform criterion Γ = Õ(T

1−ϵ
2(1+ϵ) ), such that

ỹt = ytI∥xt∥V
−1
t

|yt|≤Γ

3α = 0.62 is nearly optimal for ϵ = 1 according to the experiments of Zhong et al. [2021].

5



Algorithm 1 Confidence Region with Truncated Mean (CRTM)
Input: δ, ϵ, u, κ, S, λ = max{1, κ/2} and T ∈ N+

1: Initialize θ̂1 = 0 and V1 = λId

2: Define the truncation criterion Γ = 2 (u/ ln(4T/δ))
1

1+ϵ
(
d ln

(
1 + κT

2λd

)
/κ
) 1

2 T
1−ϵ

2(1+ϵ)

3: for t = 1, 2, . . . , T do
4: (xt, θ̃t) = argmaxx∈Dt,θ∈Ct

⟨x,θ⟩
5: Play the arm xt and observe the payoff yt
6: Truncate the observed payoff ỹt = ytI∥xt∥V

−1
t

|yt|≤Γ

7: Compute the gradient ∇ℓ̃t(θ̂t) = (−ỹt + µ(x⊤
t θ̂t))xt

8: Update Vt+1 = Vt +
κ
2xtx

⊤
t

9: Update the estimator

θ̂t+1 = argmin
∥θ∥2≤S

∥θ − θ̂t∥2Vt+1

2
+ ⟨θ − θ̂t,∇ℓ̃t(θ̂t)⟩

10: Construct the confidence region

Ct+1 =
{
θ ∈ Rd

∣∣∥θ − θ̂t+1∥2Vt+1
≤ γ

}
11: end for

where Vt = Vt−1 + κ
2xt−1x

⊤
t−1 with V1 = λId. Here, κ is defined in Assumption 2 and

λ = max{1, κ/2}. With the processed action-reward pair (xt, ỹt), CRTM computes the gradient of
the loss function as

∇ℓ̃t(θ) = (−ỹt + µ(x⊤
t θ))xt, (11)

where ℓ̃t(·) is the negative log-likelihood of the generalized linear model (8). After that, CRTM
employs a variant of online Newton step (ONS) to update its estimator, given by

θ̂t+1 = argmin
∥θ∥2≤S

∥θ − θ̂t∥2Vt+1

2
+ ⟨θ − θ̂t,∇ℓ̃t(θ̂t)⟩.

Equipped with above estimation, CRTM constructs the confidence region Ct+1 where the inherent
parameters θ∗ lies in with high probability, such that

Ct+1 =
{
θ ∈ Rd

∣∣∥θ − θ̂t+1∥2Vt+1
≤ γ

}
where γ = Õ(T

1−ϵ
1+ϵ ) denotes the width of the confidence region, and details are shown in Theorem 1.

Given the confidence region Ct+1, the most promising arm xt+1 can be obtained through the following
maximize operation,

(xt+1, θ̃t+1) = argmax
x∈Dt+1,θ∈Ct+1

⟨x,θ⟩

since µ(·) is monotonically increasing according to Assumption 2.

Although there exists several heavy-tailed linear bandit algorithms based on the truncation strategy,
such as TOFU [Shao et al., 2018] and BTC [Xue et al., 2020], CRTM differs from them in two aspects.
Firstly, both TOFU and BTC have to store the historical rewards and truncate them at each epoch,
resulting in a computational complexity of O(T 2). In contrast, CRTM achieves online learning by
processing only the reward of current round, whose computational complexity is O(T ). Secondly,
while TOFU and BTC are designed for SLB model and calculate the estimator via least-squares
estimation, CRTM is designed for the GLB model and updates the estimator using the ONS method,
which makes the analytical techniques fundamentally different. Theorem 1 provides a tight confidence
region, and its proof relies on the induced method because ONS is an iteratively updated method.
Due to the page limit, we provide the detailed proof in the Appendix A.2.

Theorem 1 If the rewards satisfy (9) and (10), then with probability as least 1− δ, the confidence
region in CRTM is

∥θ − θ̂t+1∥2Vt+1
≤ γ,∀t ≥ 0
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Algorithm 2 Confidence Region with Mean of Medians (CRMM)
Input: δ, ϵ, v, κ, S, λ = max{1, κ/2} and T ∈ N+

1: Initialize θ̂1 = 0,V1 = λId and γ1 = λS2

2: r =
⌈
16 ln 4T

δ

⌉
and T0 = ⌊T/r⌋

3: for t = 1, 2, . . . , T0 do
4: (xt, θ̃t) = argmaxx∈D,θ∈Ct

⟨x,θ⟩
5: Play the arm xt r times and observe the rewards {y1t , y2t , . . . , yrt }
6: Take the median of {y1t , y2t , . . . , yrt } as ȳt
7: Compute the gradient ∇ℓ̄t(θ̂t) = (−ȳt + µ(x⊤

t θ̂t))xt

8: Update Vt+1 = Vt +
κ
2xtx

⊤
t

9: Compute the center of confidence region

θ̂t+1 = argmin
∥θ∥2≤S

∥θ − θ̂t∥2Vt+1

2
+ ⟨θ − θ̂t,∇ℓ̄t(θ̂t)⟩

10: Construct the confidence region

Ct+1 =
{
θ ∈ Rd

∣∣∥θ − θ̂t+1∥2Vt+1
≤ γt+1

}
11: end for

where

γ = 224u
2

1+ϵ ln(4T/δ)
2ϵ

1+ϵT
1−ϵ
1+ϵ

4d

κ
ln

(
1 +

κT

2λd

)
+ 2λS2 +

48U2d

κ
ln

(
1 +

κT

2λd

)
.

With above confidence region, the regret bound of CRTM is explicitly given as follows.

Theorem 2 If the rewards satisfy (9) and (10), then with probability at least 1 − δ, the regret of
CRTM satisfies

R(T ) ≤ O
(
d(log T )

1+2ϵ
1+ϵ T

1
1+ϵ

)
.

Remark: The above theorem establishes a Õ(dT
1

1+ϵ ) regret bound with the assumption that the
(1 + ϵ)-th moment of the rewards is bounded for some ϵ ∈ (0, 1]. Existing algorithms based on
truncation is time-consuming because they need to store the learning history and truncate all historical
rewards at each epoch [Shao et al., 2018; Xue et al., 2020]. Unlike the recently proposed mean of
medians method which is limited in symmetric rewards [Zhong et al., 2021], CRTM expands it to
asymmetric and achieves an improved regret bound by a factor of O((log T )

1
2α ) for some α ∈ (0, 1)

if ϵ = 1. Furthermore, CRTM is almost optimal as the lower bound is Ω(dT
1

1+ϵ ) [Shao et al., 2018].

3.3 Mean of Medians

In this section, we present our second algorithm, referred to as Confidence Region with Mean of
Medians (CRMM), which shares a similar framework with CRTM but uses a different mean of
medians estimator. The complete procedure is outlined in Algorithm 2. CRMM requires that for
some ϵ ∈ (0, 1], the 1+ ϵ central moment of the rewards is bounded, and the distribution of rewards is
symmetric. Precisely, for some ϵ ∈ (0, 1], there exists a constant v > 0 such that the rewards satisfy

E
[
|ηt|1+ϵ|Gt−1

]
≤ v and p(ηt) = p(−ηt). (12)

At each epoch t, CRMM plays the selected arm xt r times, generating rewards {y1t , . . . , yrt } with
r = O(log T ). To obtain a robust estimation using mean of medians strategy, CRMM first takes
the median of {y1t , . . . , yrt }, denoted by ȳt. Subsequently, CRMM computes the gradient with the
arm-reward pair (xt, ȳt) through the operation similar to (11). Then, CRMM employs a variant of
ONS to update the estimator and construct the confidence region Ct+1 centered on the new estimator.
The details about the constructed confidence region is given in Theorem 3.
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Compared to existing bandit algorithms that utilize the median of means strategy, the primary
difference lies in the item chosen as the “means”. As we have introduced in (7), MENU of Shao et al.
[2018] uses the distance between different estimators as the “means”. BMM of Xue et al. [2020]
calculates multiple estimated rewards for each arm and treats them as the “means”. Both MENU and
BMM require O(log T ) estimators during each round, whereas CRMM only requires one estimator.
Moreover, compared to the mean of medians approach [Zhong et al., 2021], CRMM plays each
selected arm fewer times, leading to more model updates, which is critical based on experimental
results. Since the chosen arm has to be played multiple times, we assume the arm set for CRMM is
static, such that Dt = D for t > 0, which is a common assumption [Medina and Yang, 2016; Zhang
et al., 2016; Lu et al., 2019]. The following theorem guarantees a tight confidence region.

Theorem 3 If the rewards satisfy (9) and (12), then with probability as least 1− 2δ, the confidence
region in CRMM is

∥θ − θ̂t+1∥2Vt+1
≤ γt+1,∀t ≥ 0

where

γt+1 =
(
4U2 + Cρt

1−ϵ
1+ϵ

) 4d

κ
ln

(
1 +

κt

2λd

)
+ λS2 +

2ρ2

κ
t
1−ϵ
1+ϵ ,

ρ =2C ln(4T/δ) + 2C−ϵrv, C = (4v)
1

1+ϵ .

With above confidence region, we prove the following regret bound for CRMM.

Theorem 4 If the rewards satisfy (9) and (12), then with probability at least 1 − 2δ, the regret of
CRMM satisfies

R(T ) ≤ O
(
d(log T )

3
2+

ϵ
1+ϵT

1
1+ϵ

)
.

Remark: Theorem 3 clarifies that if the rewards have a finite 1 + ϵ central moment for some
ϵ ∈ (0, 1], CRMM achieves a regret bound of Õ(dT

1
1+ϵ ). This bound reduces to Õ(d

√
T ) when

ϵ = 1, indicating that CRMM achieves the same order as the bounded rewards assumption regarding
both d and T [Zhang et al., 2016; Jun et al., 2017]. Compared to the approach of Zhong et al. [2021],
CRMM enhances the bound by an order of O((log T )

1
2α− 1

2 ) for a fixed α ∈ (0, 1) if ϵ = 1.

4 Experiments

This section demonstrates the improvement of our algorithms by numerical experiments. Firstly, we
show the effectiveness of our algorithms in dealing with heavy-tailed problems by comparing their
regret to that of existing generalized linear bandit algorithms. Secondly, we evaluate the efficiency
of our algorithms by comparing their time consumption to other existing algorithms designed for
heavy-tailed bandit problems. All algorithms are implemented using PyCharm 2022 and tested on a
laptop with a 2.5GHz CPU and 32GB of memory.

4.1 Regret Comparison

To assess the enhancement of our algorithms in handling heavy-tailed problems, we utilize the vanilla
GLB algorithms, specifically OL2M [Zhang et al., 2016] and GLOC [Jun et al., 2017], as baselines.
Additionally, we incorporate the mean of medians method proposed by Zhong et al. [2021] into
OL2M and GLOC, resulting in another two baselines OL2M_mom and GLOC_mom, respectively.
All algorithms are configured with ϵ = 1, δ = 0.01, and T = 106.

Let θ∗ = 1/
√
d ∈ Rd, where 1 is an all-1 vector and ∥θ∗∥2 = 1. The number of arms is set to

K = 20, and the feature dimension is d = 10. Each component of the contextual vector xt is
uniformly sampled from the interval [0, 1], and then normalized to be unit norm, i.e., ∥xt∥2 = 1.
We tune the width of the confidence region following the common practice in bandit learning
[Zhang et al., 2016; Jun et al., 2017]. Precisely, with c being a tuning parameter searched within
[1e−4, 1], the width of the confidence region for OL2M and GLOC are set as γt = cd ln(t/λ + 1)

and γt = c
∑t

τ=1(µ(x
⊤
τ θ̂τ )− yτ )

2∥xτ∥2V−1
τ

, respectively. In addition, the radius of the confidence

region is set as cd ln(4T/δ)
2ϵ

1+ϵ ln(T/(dλ) + 1)T
1−ϵ
1+ϵ for CRTM, and cd ln(t/(dλ) + 1)t

1−ϵ
1+ϵ for
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Figure 1: Regret comparison

CRMM. For OL2M_mom and GLOC_mom, the chosen arm is played r̄ = (16 ln(2T/δ))1/α times
per round, and α = 0.62 is close to optimal according to the experiments of Zhong et al. [2021].

We run 10 repetitions for each algorithm and display the average regret with time evolution. According
to the generalized linear bandit model, the observed reward yt is given by

yt = µ(x⊤
t θ∗) + ηt

where µ(x) = 1
1+e−x is the logit model and ηt is the heavy-tailed noises. To evaluate the algorithms

performance under both symmetric and asymmetric rewards, ηt fits the following two distributions,

(i) Student’s t-Noise: ηt ∼ G(2)√
3πG(1.5)

(
1 + x2

3

)−2

where G(·) is the Gamma function;

(ii) Pareto Noise: ηt ∼ sxs
m

xs+1 Ix≥xm
where s = 3 and xm = 0.01.

Fig. 1 compares our algorithms against two vanilla GLB algorithms (OL2M and GLOC), as well
as these two algorithms exploiting mean of medians estimators (OL2M_mom and GLOC_mom).
Fig. 1(a) shows that CRTM and CRMM outperform the other four algorithms. CRTM provides the
best performance, which is consistent with the theoretical guarantees. OL2M_mom and GLOC_mom
appear ineffective at handling heavy-tailed problems, because they update estimator only 100 times
with the chosen arm played r̄ times [Zhong et al., 2021]. Fig. 1(b) presents the cumulative regrets
under asymmetric noises, with CRTM still having the lowest regret curve, demonstrating its generality
and effectiveness in handling heavy-tailed bandit problems. On the other hand, CRMM, GLOC_mom,
and OL2M_mom performs poorly in Fig. 1(b), as they can not deal with the asymmetric rewards.

4.2 Runtime Comparison

To demonstrate the efficiency improvement of our algorithms, we compare them with existing heavy-
tailed bandit algorithms such as CRT and MoM [Medina and Yang, 2016], TOFU and MENU [Shao
et al., 2018], and SupBTC and SupBMM [Xue et al., 2020]. Among them, CRT, TOFU and SupBTC
employ truncation strategy, while MoM, MENU and SupBMM utilize the median of means strategy.

Table 2: Runtime comparsion
Algorithm Time(s) Algorithm Time(s)
CRT 3.1737 MoM 0.0630
TOFU 3931.9963 MENU 24.1990
SupBTC 1187.1863 SupBMM 0.0685
CRTM 2.2909 CRMM 0.0514

The experimental settings are the same as de-
scribed in Regret Comparison section, except
for the time horizon and feature dimension.
We use a smaller time horizon T = 104 since
TOFU is time-consuming. The feature dimen-
sion is increased to d = 100 to highlight the
difference between SupBTC and TOFU. The
computational runtimes are shown in Table 2.

For the truncation-based algorithms, CRTM
consumes the least time, while TOFU and SupBTC takes over a hundred times longer to execute than
CRTM, representing a significant improvement. CRT takes only slightly longer than CRTM as both
algorithms update the model online, but the regret bound of CRT is Õ(dT

3
4 ), which is Õ(T

1
4 ) worse
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than the bound of CRTM. For median of means algorithms, CRMM has the shortest runtime. MENU
takes significantly longer than the other algorithms because MENU needs to calculate the distance
between O(log T ) estimators.

5 Conclusion and Future Work

We present two algorithms, CRTM and CRMM, for the generalized linear bandit model with heavy-
tailed rewards, which utilize the truncation and mean of medians strategies, respectively. Both
algorithms achieve the regret bound of Õ(dT

1
1+ϵ ) conditioned on a bounded (1 + ϵ)-th moment of

rewards, where ϵ ∈ (0, 1]. This bound is almost optimal since the lower bound of the stochastic
liear bandit problem is Ω(dT

1
1+ϵ ) [Shao et al., 2018]. CRTM is the first truncation-based online

algorithm for the heavy-tailed bandit problem that handles both symmetric and asymmetric rewards
and approaches the optimal regret bound. CRMM enhances the regret bound of the the most related
work by a logarithmic factor [Zhong et al., 2021]. However, CRMM is limited to symmetric rewards
and we will investigate to overcome this restriction in the future.
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