
Divide, Evaluate, and Refine: Evaluating and
Improving Text-to-Image Alignment with

Iterative VQA Feedback

A Additional Results

In this section, we include additional results for our approach which could not be included in the
main paper due to space constraints. In particular, we report additional results for visualizing the
iterative refinement process in Sec. A.1. We also provide additional results comparing our method
performance with Attend-and-Excite [1] in Sec. A.2. Finally, in Sec. A.3, we compare our approach
with recent contemporary work on using human feedback for improving text-to-image alignment.

A.1 Visualizing the Iterative Refinement Process
a man wearing a scuba suit playing a cello underwater with fish swimming around

a penguin wearing a bowtie standing on a surfboard in a swimming pool

a fish jumping out of the water to catch a butterfly near a waterfall

Figure 1: Visualizing iterative refinement process for improving text-to-image alignment.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



a cat wearing a life jacket on a canoe going down a river

a monkey wearing a suit giving a presentation in a conference room

a dolphin wearing a graduation cap in a pool holding a diploma

a bird wearing a tiny hat on a branch next to a small cafe

a pod of dolphins jumping out of the water in an ocean with a ship in the background

Figure 2: Visualizing iterative refinement process for improving text-to-image alignment.
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A.2 Additional Comparisons with Attend-and-Excite

A
tte

nd
-a

nd
-E

xc
ite

O
ur

s (
PW

 +
 C

A
)

Prompt: A lion playing a guitar

Figure 3: Additional Comparisons with Attend-and-Exite: Missing Relationship. Due to the pure
object focused nature of Attend-and-Excite [1], it may result in images where all objects are present
but the relationship between them is not accurately described. In contrast, we observe that the iterative
refinement approach is able to better describe both presence and relationship between the objects.
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Prompt: A person in a spacesuit riding a bicycle by the lake

Figure 4: Additional Comparisons with Attend-and-Exite: Overlapping Entities. For images with
overlapping entities (e.g., person and spacesuit), we observe that Attend-and-Excite [1] typically
spends most of gradient updates balancing between the overlapping entities, as both entities (person
and spacesuit) occupy the same cross-attention region. This can lead to outputs where a) other
important aspects (e.g., lake in Col-3) or b) one of the two entities (e.g., spacesuit) are ignored.
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Prompt: a snowman wearing sunglasses holding an umbrella on a beach on a sunny day

Figure 5: Additional Comparisons with Attend-and-Exite: Missing Objects. Since Attend-and-Excite
[1] is limited to applying the cross-attention update w.r.t the least dominant subject, as the complexity
of input prompt increases, it may miss some objects (e.g., umbrella, beach, sunny day) during the
generation process. In contrast, the iterative nature of our approach allows it to keep refining the
output image until a desirable threhold for the overall image-text alignment score is reached.

A.3 Comparisons with Human-Feedback based Methods

Besides training-free methods, recent contemporary work [2, 4] has also explored the possibility of
improving image-text alignment using human feedback to finetune existing latent diffusion models.
For instance, Wu et al. [2] recently release new versions of CLIP [3] and Stable Diffusion [5] models
which have been finetuned to better align with user preferences using human-feedback data. In this
section, we compare the performance of our simple training-free approach with models released by
[2] in terms of both evaluation and improvement of fine-grain text-image matching.

Results. Fig. 6 compares the correlation of 1) Original CLIP [3] model, 2) HPS scores (CLIP model
finetuned to better align with human preference scores) by [2], and 3) DA-Scores predicted by our
method on the Decomposable-Captions-4k dataset. We observe that while the HPS scores with the
finetuned CLIP model, show significantly higher correlation with human annotations as opposed to
original CLIP model, it still performs worse than the proposed DA-scores.

Similarly, Fig. 7 compares the image outputs for 1) Original Stable Diffusion [5] model, 2) HPS
Adapted Stable Diffusion model from [2] and 3) DA-score based iterative-refinement approach. We
observe that while the HPS Adapted model improves the aesthetics of the generated model (e.g.,
improved lighting in Col-1,5 in example-1 Fig. 7), it does not improve the semantic alignment with
content of the input prompt. In contrast, while our approach does not improve the aesthetics of the
generated image, the output images show significantly higher alignment with the input prompt.

Figure 6: Method comparisons w.r.t correlation with human ratings. We compare the correlation of
HPS score (CLIP finetuned with human feedback) from Wu et al. [2]. We observe that while the HPS
score shows improved performance over CLIP [3], the proposed DA-score shows better correlation
with human ratings across varying number of subjects in input prompt.
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Prompt: A man wearing scuba suit playing a cello underwater
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Prompt: a robot playing chess with an elderly man in a park

Figure 7: Comparing image alignment performance with human-feedback based models. We find
that while human-feedback based finetuned diffusion model from [2] improves the aesthetics (e.g.
lighting) of the output, it does not visually improve alignment with the input text for complex prompts.

Reason. As shown above while human preference finetuned CLIP and Stable Diffusion models from
[2] show better performance in terms of aesthetics, they do not significantly improve visual alignment
between generated images and input text as the complexity of the prompts increases. We believe that
a major reason behind the same is the heavy data-driven nature of human-feedback based methods.
That is, the generalization performance of the final finetuned model often relies heavily on the diversity
and nature of the human-feedback dataset. In current works [2, 4], human-feedback is typically
collected by showing users 4 − 10 images (for the same input prompt) generated by a pretrained
Stable-Diffusion [5] model, and then asking the users to select the best match. However as shown in
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Prompt : A scuba diver playing a guitar underwater

a scuba diver.

playing a guitar

underwater

Sub-prompts:

The image shows a scuba diver.

The scuba diver is playing a guitar.

The setting of scene is underwater.

Disjoint Assertion Set:

Does the image show a scuba diver?

Is scuba diver playing a guitar?

Is setting of scene underwater?

Question Rephrasing:

Prompt : A horse on a beach wearing sunglasses

a horse

on a beach

Wearing sunglasses

Sub-prompts:

The image shows a horse.

The horse is on a beach.

The horse is wearing sunglasses.

Disjoint Assertion Set:

Does the image show a horse?

Is the horse on a beach?

Is the horse wearing sunglasses?

Question Rephrasing:

Prompt : A dolphin wearing a party hat at a pool party

a dolphin

wearing a party hat

at a pool party

Sub-prompts:

The image shows a dolphin.

The dolphin is wearing a party hat.

The setting of image is a pool party.

Disjoint Assertion Set:

Does the image show a dolphin?

Is dolphin wearing a party hat?

Is setting of image pool party?

Question Rephrasing:

Figure 8: Visualizing the outputs of prompt decomposition. By dividing a complex prompt P into a
set of disjoint assertions ai, we are able to identify the sub-prompts pi (circled) which are not being
expressed in the image output using VQA, and thereby address them using iterative refinement.

the main paper, as the complexity of the input prompt increases, the original Stable-Diffusion [5]
model shows a very low text-to-image aligment accuracy. As a result, the collected human-feedback
data is often biased towards predicting more aesthically pleasing outputs, as opposed to outputs which
improve fine-grain alignment with the content of the input prompt.

In contrast, we propose a simple training-free approach which is able to generalize well to both
simple and hard prompts, for both evaluation and improvement of text-to-image alignment. We also
note that training-free methods such as ours or prior works [1, 6, 7], can in-turn help improve the
performance of human-feedback based methods by providing a better quality dataset for determining
both aesthetics and content alignment of the generated images.

B Implementation Details

In this section, we provide further details for the implementation of our approach as well as other
baselines [1, 5–7] used while reporting results in the main paper. The full detailed implementation
for both evaluation and improvement of text-to-image alignment is provided in Alg. 1, 2.

Model Details. Similar to [1, 7], we use the official Stable Diffusion v1.4 model as the underlying
pretrained text-to-image generation model while reporting results with all methods [1, 6, 7] (including
the iterative refinement approach proposed in the main paper). All results are reported at 512× 512
resolution while using 50 inference steps during the reverse diffusion process. Unless otherwise
specified, a fixed classifier-free guidance scale [8] αcfg = 7.5 is used for all experiments. By default,
we use the pretrained BLIP-VQA [9] model (BLIP model finetuned for visual question answering)
for predicting the assertion-alignment scores while reporting all results.

Prompt Decomposition. Similar to our approach, prior works on improving image-text alignment of-
ten rely on human-user inputs for expressing contents of the input prompt into its simpler constituents.
For instance, Feng et al. [6] require the user to describe the prompt as a conjunction / disjunction
of simpler statements. Chefer et al. [1] require the user to provide a set of entities / subjects in
the prompt, over which the cross-attention optimization should be performed. Similarly, in order
to evaluate the Decompositional Alignement Scores, our approach relies on decomposing the input
caption into a set of disjoint assertions (with their rephrasing as a question).

Instead of relying of human inputs as in prior works, we leverage the in-context learning capability
of large-language models (LLMs) [10, 11] for obtaining such decompositions in an autonomous
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manner. This allows us to perform large-scale quantitative evaluations across different methods in
a robust manner. In particular, for all methods [1, 6] and ours, we first collect a set of 4-5 human
generated examples describing the desired outputs (e.g., main subjects for [1]) for the input prompts.
This example-set is then used as an in-context dataset which is then fed to the ‘gpt-4’ [10] model
to generate the desired prompt decompositions on prompts across the Decomposable-Captions-4k
dataset. Fig. 8 provides an overview of the different prompt decomposition outputs for our approach.

Note that while it is possible to explore relatively simpler methods e.g., extracting noun phrases for
subject extraction in [1], it can lead to errors as the complexity of the input prompt increases. For
instance, for the input prompt: “a penguin wearing a bowtie with a bright sun in the background”, the
extracted noun phrases will also include the word “background”. The use of a LLM-based in-context
framework allows us to avoid such errors. In future, the proposed approach can be extended to allow
for much lightweight decomposition by using a low-rank finetuning [12] for adaptation of recently
released instruction-following models [13]. However, since the same is not the main focus of our
work, we leave it as a directive for future research.

Hyperparameters and Overall Algorithm. The proposed iterative refinement approach uses a
maximum of K = 5 iterations for the refinement process. The iterative process is terminated early if a
threshold of 0.8 for the overall image alignment score Ω(Ik,P) is obtained. The iterative refinement
weights are initialized as wi = 1∀i for prompt weighting (PW), and, γi = 0∀i for cross-attention
(CA) updates. An increment ∆ of 0.1 and 1.0 is used for updating the assertion weights for prompt-
weighting (PW) and cross-attention (CA) update methods respectively. Furthermore, to reduce the
inference time for each iteration as compared to [1], cross-attention updates are only applied for first
20 steps of the reverse diffusion process. Furthermore, the use of iterative cross attention updates is
also discarded. The image generation output I⋆ at the end of the refinement process is computed as,

I⋆ = argmaxIk
Ω(Ik,P). (1)

Please refer Alg. 1, 2 for the full detailed implementation (with hyperparameters) for our approach.

Algorithm 1 DA-Score: Evaluating Text-to-Image Alignment
Input: Text prompt P , generated image I.
Output: Text-to-Image Alignment Score between P, I
Require: Large-language model M, VQA-model V , exempler dataset D, task description T , softmax-
temperature τ = 0.9

1: ▷ PROMPT DECOMPOSITION
2: x = {x0, x1, . . . xn} = M(x | P,Dexempler, T ), where xi = {ai, pi, aqi };
3:
4: ▷ COMPUTE ASSERTION ALIGNMENT SCORES USING VQA
5: ui(I, ai) = exp (αi/τ)

exp (αi/τ)+exp (βi/τ)
, where αi = V(‘yes’ | I, aqi ), βi = V(‘no’ | I, aqi )

6:
7: ▷ OVERALL IMAGE-TEXT ALIGNMENT SCORE
8: Ω(I,P) =

∑
i λi(P, ai) ui(I, ai)/

∑
i λi(P, ai),

9:
10: return Ω(I,P).

C Decomposable Captions 4K Dataset

Overview. Since there are no openly available datasets addressing semantic challenges in text-based
image generation with human annotations, we introduce a new benchmark dataset Decomposable-
Captions-4k for method comparison. The dataset consists an overall of 24960 human annotations
on images generated using all methods [1, 5, 6] (including ours) across a diverse set of 4160 input
prompts. Each image is a given rating between 1 and 5 (where 1 represents that ‘image is semantically
irrelevant to the prompt’ and 5 represents that ‘image is an accurate match for the prompt’). Fig. 9
provides an overview of some user annotations for image-prompt pairs from the curated dataset.

Collecting Diverse Prompts of Varying Complexity. Furthermore, unlike prior works [1] which
predominantly analyse the performance on relatively simple prompts with two subjects (e.g., object a
and object b), we construct a systematically diverse pool of input prompts for better understanding
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Algorithm 2 Iterative Refinement: Improving Text-to-Image Alignment
Input: Text prompt P , subprompts pi, disjoint assertions in question format aqi .
Output: Image generation output I⋆ conditioned on P
Require: Pretrained diffusion model D, VQA-model V , prompt-weighting function W
Hyperparameters: max number of iterations K = 5, alignment threshold Ωmax = 0.8, weight
increments ∆w = 0.1, ∆γ = 1.0, step-size α = 10, number of cross-attention update steps t0 = 20.

1: ▷ INITIALIZE ASSERTION WEIGHTS
2: Initialize w0

i = 1 ∀i; ▷ for prompt-weighting
3: Initialize γ0

i = 0 ∀i; ▷ for cross-attention updates
4:
5: ▷ ITERATIVE REFINEMENT
6: for 0 ≤ k < K do
7:
8: ▷ PROMPT WEIGHTING
9: yprompt = W(P, {CLIP(pi), wk

i }ni=1));
10:
11: ▷ PARAMETERIZED REVERSE DIFFUSION
12: Sample zT ∼ N (0, I);
13: for 0 < t ≤ T do
14: _,At

i = D(zt, yprompt, t); ▷ compute cross-attention maps
15: if t ≥ T − t0 then
16: ▷ WEIGHTED CROSS-ATTENTION UPDATES
17: L(zt, {γk

i }ni=1) =
∑

i γ
k
i (1− max G(At

i));
18: zt = zt − α∇ztL(zt, {γk

i }ni=1));
19: end if
20: zt−1 = REVERSEDIFF(zt, t → t− 1 | yprompt);
21: end for
22:
23: ▷ GET DECOMPOSITIONAL-ALIGNMENT SCORES
24: Ik = x0 = DECODER(z0);
25: Ω(Ik,P), {ui(Ik,P)}ni = DA-SCORE(Ik, {aqi }i);
26:
27: ▷ FINISH IF OUTPUT IS GOOD ENOUGH
28: if Ω(Ik,P) ≥ Ωmax then
29: return I⋆ = Ik.
30: end if
31:
32: ▷ UPDATE ASSERTION WEIGHTS

33: wk+1
i =

{
wk

i +∆w, if i = argminl ul(Ik,P)

wk
i otherwise

▷ for prompt-weighting

34: γk+1
i =

{
γk
i +∆γ , if i = argminl ul(Ik,P)

γk
i otherwise

▷ for cross-attention updates

35: end for
36:
37: ▷ RETURN BEST OUTPUT
38: return I⋆ = argmaxIk

Ω(Ik,P).

text-to-image alignment across varying complexities in the text prompt. In particular, the prompts
for the dataset are designed to encapsulate two axis of complexity: number of subjects and realism.
The number of subjects refers to the number of main objects described in the input prompt and
varies from 2 (e.g., a cat with a ball) to 5 (e.g., a woman walking her dog on a leash by the beach
during sunset). Similarly, the realism of a prompt is defined as the degree to which different concepts
naturally co-occur together and varies as easy, medium, hard and very hard. easy typically refers to
prompts where concepts are naturally co-occurring together (e.g., a dog in a park) while very hard
refers to prompts where concept combination is very rare (e.g., a dog playing a piano).
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a dog wearing sunglasses 
on a skateboard in a skate park

a bear roasting marshmallows by 
a campfire with a group of campers

a person wearing a spacesuit scuba 
diving in an underwater cave

a person practicing yoga on a 
paddleboard in calm waters

(a) Example Samples with User Rating: 5 (Image is an accurate match for the prompt)

a man riding a bike across 
a bridge over a river.

a person wearing a scuba suit 
playing a violin on a boat.

a man jogging with headphones
on a sunny day.

a dog wearing a hat with a 
horse in a field.

(b) Example Samples with User Rating: 4 (Image is a good match for prompt with minor mistakes)

a photographer taking pictures 
of a cactus in an ice cave

a boy building a robot on a remote 
island with a tropical background

man wearing tuxedo snowboarding 
down a hill with a violin in hand.

man in scuba suit playing cello 
underwater with fish around.

(c) Example Samples with User Rating: 3 (Image seems like a 50-50 match for the prompt)

a child building a snowman on 
a glacier with a penguin

a goat typing on a laptop on 
a rooftop with a cup of coffee.

a farmer milking a cow inside an 
igloo in a snowy landscape.

a group of penguins watching a 
movie on a screen in arctic.

(d) Example Samples with User Rating: 2 (Image captures minor aspects about the input prompt)

a chef preparing sushi in a hot 
air balloon high above the city.

a swimmer diving into a pool filled 
with rose petals in a castle courtyard.

a scuba diver painting underwater 
on a canvas with fish around.

a musician playing a guitar 
while standing in a canoe.

(e) Example Samples with User Rating: 1 (Image seems semantically irrelevant to the prompt)

Figure 9: Visualizing samples with human annotations from the Decomposable-Captions-4k dataset.
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a squirrel holding an umbrella a cat on a windowsill a dolphin swimming in a bathtub a horse pulling a boat

(a) Example sample outputs with our method for number of subjects: 2

a scuba diver planting flowers in 
an underwater garden.

An elephant playing basketball
on a court

a woman doing yoga on 
a paddleboard

a crab playing piano on a 
mountaintop

(b) Example sample outputs with our method for number of subjects: 3

an artist painting a landscape 
on a canvas in a garden

a child riding a bike with a 
helmet in a park

a woman playing violin in a field
surrounded by cows

group of people doing yoga on a 
rooftop with a city skyline view

(c) Example sample outputs with our method for number of subjects: 4

girl wearing helmet and holding 
umbrella in a rain by the pond

boy building a sandcastle with a 
snow shovel on a beach in winter

cyclist riding a bike on a mountain
trail with a helmet and a backpack

two friends taking selfie near a 
monument with sunglasses and hat

(d) Example sample outputs with our method for number of subjects: 5

Figure 10: Visualizing variation in number of subjects in prompts from the Decomposable-Captions-
4k dataset. All images are generated using the proposed iterative refinement approach.

Prompt Generation. A key part of the Decomposable-Captions-4k dataset is to collect a set of
diverse input prompts of varying complexity which would allow for a much more comprehensive
evaluation across different methods. Moreover unlike prompts found in typical large-scale image-text
datasets [14, 15], the generated prompts should be imaginative and be able to describe novel and
often non-realistic combinations of different concepts (e.g. a lion playing a piano).

To this end, we leverage the diverse language modelling capabilities of large-scale large language
models (LLM) [10, 11] in order to generate novel prompts of varying complexity and realism. In
particular, given a desired number of subjects N (between 2 and 5), we first use the GPT-4 model [10]
API with 8K context length to come up with an initial random subject e.g., a dog. The model is then
instructed to conditionally generate a second subject (e.g., sunglasses) which is then combined with
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a bird building a nest 
in a tree

a group of friends having 
picnic Under a tree

a woman reading a book
at a coffee shop

a couple holding hands
at a beach

(a) Example sample outputs with our method for realism difficulty: easy

photographer capturing wildlife 
in a park

a robot serving food
in a restaurant

a horse pulling a carriage in a 
modern city

a basketball player shooting hoops
on a rooftop court

(b) Example sample outputs with our method for realism difficulty: medium

a woman practicing yoga 
on a boat

a monkey typing on a computer 
at a library

a group of friends playing 
chess underwater

a dog balancing on a ball 
over a tightrope

(c) Example sample outputs with our method for realism difficulty: hard

a moose playing chess 
at a park

a lion baking cookies
in a kitchen

a frog wearing a space suit
in a spacestation

a bear playing a piano
on a mountain top

(d) Example sample outputs with our method for realism difficulty: very hard

Figure 11: Visualizing variation in realism difficulty from the Decomposable-Captions-4k dataset.
All prompts have been sampled using number of subjects = 3 subset of the overall dataset.

first subject to generate the sub-prompt “a dog wearing sunglasses”. This process is continued until
a complete prompt with a desired number of subjects is obtained (e.g., a dog wearing sunglasses on a
skateboard in a park). At the end of generation process, prompts which are grammatically inaccurate
are filtered and removed. An overview of example prompts with variable number of subjects (along
with corresponding image generation outputs with our approach) is provided in Fig. 10.

Furthermore, in order to generate prompts of varying level of realism difficulty, we generate prompts
in batches of 4. In particular, during the sequential generation process (described above) the model is
prompted to generate prompts of increasing level of realism difficulty by asking it generate additional
subjects whose combination in a sentence is increasingly more rare. For instance, for realism
difficulty: easy, the model is tasked to generate additional subjects which typically co-occur together

11



Figure 12: Setup for pairwise user study comparing our method with prior works.

in natural captions, which then leads to natural realistic prompts (e.g., a group of friends having
picnic under a tree). As the realism difficulty is increased the model generates input prompts where
the co-occurence of different subjects is more and more rare, thus allowing it to generate more
imaginative and challenging prompts (e.g. a lion baking cookies in a kitchen). Fig. 11 provides an
overview of some example prompts with varying levels of realism difficulty.

Pairwise Human User Study. In addition to obtaining human annotations rating (between 1 to
5) for each image-prompt pair (refer Fig. 9), we also perform a pairwise user study comparing our
method with prior works. In particular, given an input text prompt P , the participants were shown a
pair of image generation outputs comparing our method with prior works. For each pair, the human
subject is then asked to select the output image which better aligns with the input prompt description.
The human subjects are given three options left, right and tie, where tie indicates that both images
are equally good or bad. All comparison images are generated using the same seed at 512 × 512
resolution with 50 inference steps for the reverse diffusion process. Fig. 12 provides a screenshot of
the user interface for collecting the above human annotation data with pairwise comparisons.

D Discussion and Limitations

While the proposed iterative refinement approach shows better performance than previous works
[1, 6, 7], it still has some limitations. First, the proposed decompositional approach relies on a
pretrained BLIP-VQA model [9], for determining the alignment of the generated image with each of
the disjoint assertions. Thus, weaknesses of the pretrained BLIP-VQA model become our weaknesses.
Recall that the VQA scores help identify the areas in which the current image generation output is
lacking, which can then be addressed in the next refinement step. However, if the VQA output is not
correct, then the model might focus on assertions which are already well expressed, which can reduce
the efficiency of the proposed iterative refinement strategy. In future, the use of more accurate VQA
models e.g., BLIP2-VQA can help alleviate this problem. Furthermore, as noted through extensive
quantitative experiments across a diverse range of input prompts (refer main paper and App. C), we
find that the use of the BLIP-VQA model still yields quite competitive results.

Second, without additional information from the user, the iterative refinement approach considers all
assertions to be equally important in determining the overall content of the input prompt. However, as
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the complexity of the input prompt increases, we may wish to give more weight to certain parts of the
prompt over the others. Furthermore, it is possible that the prompt may contain assertions which are
not visually verifiable from the output image. For instance, for the prompt “a penguin in a shopping
mall on a weekend”, the assertion about whether it is a weekend or not is not visually verifiable.
Similarly certain actions e.g. searching, singing are also not verifiable from a single image. In future,
we would like to explore a more autonomous mechanism for including additional information like 1)
user ranking for different assertions (i.e., what the user considers as important in a prompt) as well as
2) visual verifiability of a given assertion while computing the decompositional alignment scores.

Finally, as noted in Fig. 7 of the main paper, we note that while the proposed iterative refinement
approach leads to consistent improvements in alignment accuracy over prior works, the accuracy of
the alignment process decreases as the complexity of input prompt is increased. In particular, for
prompts with very hard realism difficulty, the overall alignment accuracy is only 62.9% (Attend-and-
Excite has 49.5%). This leaves much room for improvement of text-to-image generation models. As
discussed in App. A.3 one potential solution in this direction would be to combine recent works on
human-feedback based diffusion model finetuning with the proposed training-free approach for data
collection. In particular, by generating training data (on which human feedback is obtained) using
the proposed iterative refinement strategy instead of previously used pretrained Stable Diffusion [5]
models, we can increase the quality of the finetuning process. Using the proposed decompositional
alignment scores as pseudo-labels for learning the human-feedback based reward model [4] is another
interesting direction for future work. However, the same is out of scope of this paper, and we leave it
as a direction for future research.
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