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Abstract

The field of text-conditioned image generation has made unparalleled progress with
the recent advent of latent diffusion models. While remarkable, as the complexity
of given text input increases, the state-of-the-art diffusion models may still fail
in generating images which accurately convey the semantics of the given prompt.
Furthermore, it has been observed that such misalignments are often left undetected
by pretrained multi-modal models such as CLIP. To address these problems, in
this paper we explore a simple yet effective decompositional approach towards
both evaluation and improvement of text-to-image alignment. In particular, we
first introduce a Decompositional-Alignment-Score which given a complex prompt
decomposes it into a set of disjoint assertions. The alignment of each assertion with
generated images is then measured using a VQA model. Finally, alignment scores
for different assertions are combined aposteriori to give the final text-to-image
alignment score. Experimental analysis reveals that the proposed alignment metric
shows significantly higher correlation with human ratings as opposed to traditional
CLIP, BLIP scores. Furthermore, we also find that the assertion level alignment
scores provide a useful feedback which can then be used in a simple iterative
procedure to gradually increase the expression of different assertions in the final
image outputs. Human user studies indicate that the proposed approach surpasses
previous state-of-the-art by 8.7% in overall text-to-image alignment accuracy.

1 Introduction

The field of text-to-image generation has made significant advancements with the recent advent
of large-scale language-image (LLI) models [1–5]. In particular, text-conditioned latent diffusion
models have shown unparalleled success in generating creative imagery corresponding to a diverse
range of free-form textual descriptions. However, while remarkable, it has been observed [6–8] that
as the complexity of the input text increases, the generated images do not always accurately align
with the semantic meaning of the textual prompt.

To facilitate the reliable use of current text-to-image generation models for practical applications, it
is essential to answer two key questions: 1) Can we detect such fine-grain misalignments between
the input text and the generated output in a robust manner? and 2) Once detected, can we improve
the text-to-image alignment for failure cases? While several metrics for evaluating text-to-image
alignment (e.g., CLIP [9], BLIP [10], BLIP2 [11]) exist, it has been observed [7, 12] that a high score
with these metrics can be achieved even if the image does not fully correspond with input prompt.
For instance, in Fig. 1, an output image (containing only pink trees) shows high CLIP/BLIP scores
with the text “pink trees and yellow car” even if yellow car is not present. Evaluating text-to-image
matching using the image-text-matching (ITM) head of BLIP models has also been recently explored
[10, 11]. However, the generated scores also show a similar tendency to favor the main subject
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The image shows pink trees: 0.82

The image shows yellow car: 0.02

The setting is in mountains:  0.75

Prompt: Pink trees and yellow car going through the mountains

Disjoint Assertion Set

CLIP: 0.34 BLIP2: 0.42 BLIP2-ITM: 98.7% Human:  3/5

DA-Score: 0.53

The image shows a woman: 0.91

The woman is doing yoga :  0.89

Woman is in middle of  lake: 0.79

Prompt: A woman practicing yoga in middle of  a lake

Disjoint Assertion Set

CLIP: 0.32 BLIP2: 0.43 BLIP2-ITM: 98.5% Human:  5/5

DA-Score: 0.87

a man wearing a scuba suit playing a cello
underwater with fish swimming around.

a raccoon wearing a chef’s hat preparing 
a gourmet meal in a  kitchen.

Stable-Diffusion Attend-and-Excite Ours Stable-Diffusion Attend-and-Excite Ours

Figure 1: Overview. Top: Traditional methods for evaluating text-to-image alignment e.g., CLIP [9],
BLIP-2 [10] and BLIP2-ITM (which provides a binary image-text matching score between 0 and 1)
often fail to distinguish between good (right) and bad (left) image outputs and can give high scores
even if the generated image is not an accurate match for input prompt (missing yellow car). In contrast,
by breaking down the prompt into a set of disjoint assertions and then evaluating their alignment
with the generated image using a VQA model [10], the proposed Decompositional-Alignment Score
(DA-score) shows much better correlation with human ratings (refer Sec. 4.1). Bottom: Furthermore,
we show that the assertion-level alignment scores can be used along with a simple iterative refinement
strategy to reliably improve the alignment of generated image outputs (refer Sec. 4.2).

of input prompt. Furthermore, even if such misalignments are detected, it is not clear how such
information can be used for improving the quality of generated image outputs in a reliable manner.

To address these problems, in this paper we explore a simple yet effective decompositional approach
towards both evaluation and improvement of fine-grain text-to-image alignment. In particular, we
propose a Decompositional-Alignment-Score (DA-Score) which given a complex text prompt, first
decomposes it into a set of disjoint assertions about the content of the prompt. The alignment of
each of these assertions with the generated image is then measured using a VQA model [10, 13].
Finally, the alignment scores for diffferent assertions are combined to give an overall text-to-image
alignment score. Our experiments reveal that the proposed evaluation score shows significantly higher
correlation with human ratings over prior evaluation metrics (e.g., CLIP, BLIP, BLIP2) (Sec. 4.1).

Furthermore, we also find that the assertion-level alignment scores provide a useful and explainable
feedback for determining which parts of the input prompt are not being accurately described in the
output image. We show that this feedback can then be used to gradually improve the alignment of the
generated images with the input text prompt. To this end, we propose a simple iterative refinement
procedure (Fig. 2), wherein at each iteration the expressivity of the least-aligned assertion is improved
by increasing the weightage/cross-attention strength (refer Sec. 3.2) of corresponding prompt tokens
during the reverse diffusion process. Through both qualitative and quantitative analysis, we find that
the proposed iterative refinement process allows for generation of better aligned image outputs over
prior works [6–8] while on average showing comparable inference times (Sec. 4.2).

2 Related Work

Text to Image Generation Models. Text conditional image synthesis is a topic of keen interest in
the vision community. For instance, [14–18] use GANs to perform text guided image generation.
Similarly, [5, 19] explore the use of autoregressive models for zero-shot text to image generation.
Recently, diffusion-based-models [1–5, 20, 21] have emerged as a powerful class of methods for
performing text-conditional image synthesis over diverse range of target domains.
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a couple wearing scuba gear having a tea party underwater with a school of fish

a man riding a skateboard down a mountain road while holding an umbrella and wearing goggles.

Figure 2: Iterative refinement (Col:1-3;4-6) for improving text-to-image alignment. We propose a
simple iterative refinement approach which uses the decompositional alignment scores (refer Sec. 3.1)
as feedback to gradually improve the alignment of the generated images with the input text-prompt.

While remarkable, generating images which align perfectly with the input text-prompt remains a
challenging problem [6–8, 22]. To enforce, heavier reliance of generated outputs on the provided
text, classifier-free guidance methods [2, 3, 23] have been proposed. Similarly, use of an additional
guidance input to improve controllability of text-to-image generation have recently been extensively
explored [24–35]. However, even with their application, the generated images are often observed to
exhibit fine-grain misalignments such as missing secondary objects [6, 7] with the input text prompt.

Evaluating Image-Text Alignment. Various protocols for evaluating text-image alignment in a
reference-free manner have been proposed [9–11]. Most prior works [2, 3, 5, 9] typically use the
cosine similarity between the text and image embedding from large-scale multi-modal models [9, 36–
38] such as CLIP [9], BLIP [10], BLIP-2 [11] for evaluating the alignment scores. Recently, [10, 11]
also show the application of BLIP/BLIP-2 models for image-text matching using image retrieval.
However, as shown in Fig. 1, these scores can give very high scores even if the generated images do
not full align with the input text prompt. Furthermore, unlike our approach image-text alignment is
often represented through a single scalar value which does not provide an explainable measure which
can be used to identify/improve weaknesses of the image generation process.

Improving Image-Text Alignment. Recently several works [6–8] have been proposed to explore
the problem of improving image-text alignment in a training free manner. Liu et al. [6] propose to
modify the reverse diffusion process by composing denoising vectors for different image components.
However, it has been observed [7] that it struggles while generating photorealistic compositions of
diverse objects. Feng et al. [8] use scene graphs to split the input sentence into several noun phrases
and then assign a designed attention map to the output of the cross-attention operation. In another
recent work, Chefer et al. [7] extend the idea of cross-attention map modification to minimize missing
objects but instead do so by modifying the noise latents during the reverse diffusion process. While
effective at reducing missing objects, we find that the performance / quality of output images can
suffer as the number of subjects in the input prompt increases (refer Sec. 4.2).

Besides training-free methods, recent contemporary work [39, 40] has also explored the possibility of
improving image-text alignment using human feedback to finetune existing latent diffusion models.
However this often requires the collection of large-scale human evaluation scores and finetuning the
diffusion model across a range of diverse data modalities which can be expensive. In contrast, we
explore a training free approach for improvement of fine-grain text-to-image alignment.

3 Our Method

Given the image generation output I corresponding to a text prompt P , we wish to develop a
mechanism for evaluation and improvement of fine-grain text-to-image alignment. The core idea of
our approach is to take a decompositional strategy for both these tasks. To this end, we first generate
a set of disjoint assertions regarding the content of the input prompt. The alignment of the output
image I with each of these assertions is then calculated using a VQA model. Finally, we use the
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Text Prompt:           
A scuba diver 

playing a guitar 
underwater

Parametrized
Diffusion Model

The image shows a scuba diver.

The scuba diver is playing a guitar.

The setting of scene is underwater.

Disjoint Assertion Set:

VQA 
Model

Image shows a scuba diver:   0.87

Scuba-diver is playing guitar: 0.04

Image setting is underwater:  0.89

Assertion Scores:

Update Assertion Weights

Overall Alignment Score
Prompt 

Decomposition 
Model

Figure 3: Method Overview. Given a text prompt P and an initially generated output I0, we first
generate a set of disjoint assertions ai regarding the content of the caption. The alignment of the
output image I0 with each of these assertions is then calculated using a VQA model. Finally, we
use the assertion-based-alignment scores ui(I0,P) as feedback to increase the weightage wi (of the
assertion with least alignment score) in a parameterized diffusion model formulation D (Sec. 3.2).
This process can then be performed in an iterative manner to gradually improve the quality of the
generated outputs until a desirable threshold for the overall alignment score Ω(Ik,P) is reached.

assertion-based-alignment scores as feedback to improve the expressiveness of the assertion with the
least alignment score. This process can then be performed in an iterative manner to gradually improve
the quality of generated outputs until a desired value for the overall alignment score is attained.

In the next sections, we discuss each of these steps in detail. In Sec. 3.1 we first discuss the process
for evaluating decompositional-alignment scores. We then discuss the iterative refinement process for
improving text-to-image alignment in Sec. 3.2. Fig. 3 provides an overview for the overall approach.

3.1 Evaluating Text-to-Image Alignment

Prompt Decomposition Model. Given an input prompt P , we first decompose its textual information
into a set of disjoint assertions (and corresponding questions) which exhaustively cover the contents
of the input prompt. Instead of relying on human-inputs as in [6, 7]1, we leverage the in-context
learning capability [41] of large-language models [42, 43] for predicting such decompositions in
an autonomous manner. In particular, given an input prompt P and large-language model M, the
prompt decomposition is performed using in-context learning as,

x = {x0, x1, . . . xn} = M(x | P, Dexempler, T ), (1)

where x is the model output, n is the number of decompositions, Dexemplar is the in-context learning
dataset consisting 4-5 human generated examples for prompt decomposition, and T is task description.
Please refer supp. material for further details on exemplar-dataset and task-description design.

The model output x is predicted to contain tuples xi = {ai, pi}, where each tuple is formatted to
contain assertions ai and the sub-part pi of the original prompt P corresponding to the generated
assertion. For instance, given P : ‘a cat and a dog’ the prompt decomposition can be written as,

M(x | P : ‘a cat and a dog’, Dexempler, T ) = [{‘there is a cat’, ‘a cat’}, {‘there is a dog’,‘a dog’}] .

Computing Assertion-based Alignment Scores. We next compute the alignment of the generated
image I with each of the disjoint assertions using a Visual-Question-Answering (VQA) model [10].
In particular, given image I, assertions ai, i = 1, . . . n, their rephrasing in question format aqi and
VQA-model V , the assertion-level alignment scores ui(I, ai) are computed as,

ui(I, ai) =
exp (αi/τ)

exp (αi/τ) + exp (βi/τ)
, where αi = V(‘yes’ | I, aqi ), βi = V(‘no’ | I, aqi ),

where αi, βi refer to the logit-scores of VQA-model V for input tuple (image I, question aqi )
corresponding to output tokens ‘yes’,‘no’ respectively. Hyperparameter τ controls the temperature of
the softmax operation and controls the confidence of the alignment predictions.

1Prior works on improving image-text alignment often rely on human-user inputs for expressing contents
of the input prompt into its simpler constituents. For instance, Feng et al. [6] require the user to describe the
prompt as a conjunction/disjunction of simpler statements. Similarly, Chefer et al. [7] require the user to provide
a set of entities / subjects in the prompt, over which their optimization should be performed.
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Prompt : A scuba diver playing a guitar underwater

a scuba diver.

playing a guitar

underwater

Sub-prompts:

The image shows a scuba diver.

The scuba diver is playing a guitar.

The setting of scene is underwater.

Disjoint Assertion Set:

Does the image show a scuba diver?

Is scuba diver playing a guitar?

Is setting of scene underwater?

Question Rephrasing:

Prompt : A horse on a beach wearing sunglasses

a horse

on a beach

Wearing sunglasses

Sub-prompts:

The image shows a horse.

The horse is on a beach.

The horse is wearing sunglasses.

Disjoint Assertion Set:

Does the image show a horse?

Is the horse on a beach?

Is the horse wearing sunglasses?

Question Rephrasing:

Prompt : A dolphin wearing a party hat at a pool party

a dolphin

wearing a party hat

at a pool party

Sub-prompts:

The image shows a dolphin.

The dolphin is wearing a party hat.

The setting of image is a pool party.

Disjoint Assertion Set:

Does the image show a dolphin?

Is dolphin wearing a party hat?

Is setting of image pool party?

Question Rephrasing:

Figure 4: Visualizing the prompt decomposition process. By dividing a complex prompt P into a set
of disjoint assertions ai, we are able to identify the sub-prompts pi (circled) which are not expressed
in the image output using VQA, and thereby address them using iterative refinement (Sec. 3.2).

Combining Alignment Scores. Finally, the assertion level alignment-scores ui(I, ai) are combined
to give the overall text-to-image alignment score Ω(I,P) between image I and prompt P as,

Ω(I,P) =

∑
i λi(P, ai) ui(Ik, ai)∑

i λi(P, ai)
, (2)

where weights λi(P, ai) refer to the importance of assertion ai in capturing the overall content of
the input prompt P , and allows the user to control the relative importance of different assertions in
generating the final image output2. Please refer Fig. 3 for the overall implementation.

3.2 Improving Text to Image Alignment

In addition to predicting overall text-to-image alignment score, we find that assertion-level alignment
scores ui(I, ai) also provide a useful and explainable way for determining which parts of the input
prompt P are not being accurately described in the output image I . This feedback can then be used in
an iterative manner to improve the expressivity of the assertion with least alignment score ui(I, qi),
until a desired threshold for the overall text-image alignment score Ω(I,P) is obtained.

Parameterized Diffusion Model. We first modify the image generation process of standard diffusion
models in order to control the expressiveness of different assertions ai in parametric manner. In
particular, we modify the reverse diffusion process to also receive inputs weights wi, where each wi

controls the relative importance of assertion ai during the image generation process. In this paper, we
mainly consider the following two methods for obtaining such parametric control.

Prompt Weighting. Instead of computing the CLIP [36] features from original prompt P we use
prompt-weighting [44] to modify the input CLIP embeddings to the diffusion model as,

CLIP(P) = W(P, {CLIP(pi), wi}ni=1)) (3)

where W refers to the prompt-weighting function from [1, 44], pi refers to the sub-prompt (Sec. 3.1)
corresponding to assertion ai, and weights wi control the relative weight of different sub-prompts pi
in computing the overall CLIP embedding for prompt P .

Cross-Attention Control. Similar to [7], we also explore the idea of modifying the noise latents
zt during the reverse diffusion process, to increase the cross-attention strength of the main noun-

2For simplicity reasons, we mainly use λi = 1∀i in the main paper. Further analysis on variable λi to
account for variable information content or visual verifiability of an assertion are provided in supp. material.
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Number of  Subjects = 2 Number of  Subjects = 3 Number of  Subjects = 4 Number of  Subjects =  5
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Figure 5: Method comparisons w.r.t correlation with human ratings. We compare the correlation of
different text-to-image alignment scores with those obtained from human subjects, as the number of
subjects in the input prompt (refer Sec. 4) is varied. We observe that the proposed alignment score
(DA-score) provides a better match for human-ratings over traditional text-to-image alignment scores.

subject for each sub-assertion ai. However, instead of only applying the gradient update for the least
dominant subject [7], we modify the loss for the latent update in parametric form as,

zt = zt − α∇ztL(zt, {wi}ni=1)), where L(zt, {wi}ni=1) =
∑
i

wi(1− max G(At
i)), (4)

where α is the step-size, At
i refer to the attention map corresponding to the main noun-subject in

assertion ai, G is a smoothing function and weights wi control the extent to which the expression of
different noun-subjects in the prompt (for each assertion) will be increased in the next iteration.

Iterative Refinement. Given the above parametric formulation for controlling expression of different
assertions, we next propose a simple yet effective iterative refinement approach towards improving
text-to-image alignment. In particular, at any iteration k ∈ [1, 5] during the refinement process, we
first compute both overall text-image similarity score Ω(Ik,P) and assertion-level alignment scores
ui(Ik,P). The image generation output Ik+1 for the next iteration is then computed as,

Ik+1 = D(P, {wk+1
i }ni=1)); where wk+1

i =

{
wk

i +∆, if i = argminl ul(I,P)

wk
i otherwise

, (5)

where D refers to the parametrized diffusion model and ∆ is a hyper-parameter. This iterative process
is then performed until a desirable threshold for the overall alignment score Ω(Ik,P) is reached. The
image generation output I⋆ at the end of the refinement process is then computed as,

I⋆ = argmaxIk
Ω(Ik,P). (6)

4 Experiments

Dataset. Since there are no openly available datasets addressing semantic challenges in text-based
image generation with human annotations, we introduce a new benchmark dataset Decomposable-
Captions-4k for method comparison. The dataset consists an overall of 24960 human annotations
on images generated using all methods [1, 6, 7] (including ours) across a diverse set of 4160 input
prompts. Each image is a given rating between 1 and 5 (where 1 represents that ‘image is irrelevant
to the prompt’ and 5 represents that ‘image is an accurate match for the prompt’).

Furthermore, unlike prior works [7] which predominantly analyse the performance on relatively
simple prompts with two subjects (e.g. object a and object b), we construct a systematically diverse
pool of input prompts for better understanding text-to-image alignment across varying complexities
in the text prompt. In particular, the prompts for the dataset are designed to encapsulate two axis of
complexity: number of subjects and realism. The number of subjects refers to the number of main
objects described in the input prompt and varies from 2 (e.g., a cat with a ball) to 5 (e.g., a woman
walking her dog on a leash by the beach during sunset). Similarly, the realism of a prompt is defined
as the degree to which different concepts naturally co-occur together and varies as easy, medium, hard
and very hard. easy typically refers to prompts where concepts are naturally co-occurring together
(e.g., a dog in a park) while very hard refers to prompts where concept combination is very rare (e.g.,
a dog playing a piano). Further details regarding the dataset are provided in supplementary material.
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a man wearing 
a suit of  armor
riding a unicycle

a man riding a skateboard down a 
mountain road while holding an 
umbrella and wearing goggles.

a man wearing a scuba suit 
playing 

a cello underwater

Figure 6: Qualitative comparison w.r.t text-to-image alignment. We compare the outputs of our
iterative refinement approach with prior works [1, 6–8] on improving quality of generated images
with changing number of subjects (underlined) from 2 to 5. Please zoom-in for best comparisons.

4.1 Evaluating Text-to-Image Alignment

Baselines. We compare the performance of the Decompositional-Alignment Score with prior works
on evaluating text-to-image alignment in a reference-free manner. In particular, we show comparisons
with CLIP [9], BLIP [10] and BLIP2 [11] scores where the text-to-image alignment score is computed
using the cosine similarity between the corresponding image and text embeddings. We also include
comparisons with BLIP-ITM and BLIP2-ITM which directly predict a binary image-text matching
score (between 0 and 1) for input prompt and output image. Finally, we report results on the recently
proposed text-to-text (T2T) similarity metric [7] which computes image-text similarity as the average
cosine similarity between input prompt and captions generated (using BLIP) from the input image.
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Prompt: A lion playing a guitar

(a) Object Relationship: Eval-and-Refine helps better capture both presence and relationship between the objects.
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Prompt: A person in a spacesuit riding a bicycle by the lake

(b) Overlapping entities: Proposed approach can better handle cases with overlapping entities (spacesuit, person).
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Prompt: a snowman wearing sunglasses holding an umbrella on a beach on a sunny day

(c) Prompt Complexity: Eval-and-Refine shows better alignment as number of subjects in input prompt increase.

Figure 7: Additional comparisons with Attend-and-Excite. We analyse three main ways in which the
proposed iterative-refinement improves over Attend-and-Excite [7] (refer Sec. 4.2 for details).

Quantitative Results. Fig. 5 shows the correlation between human annotations and predicted text-to-
image alignment scores across different metrics on the Decomposable-Captions dataset. We observe
that the DA-Score shows a significantly higher correlation with human evaluation ratings as opposed
to prior works across varying number of subjects N ∈ [2, 5] in the input prompt. We also note that
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Prompt Difficulty: Easy Prompt Difficulty: Medium Prompt Difficulty: Hard Prompt Difficulty: Very Hard
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Ours (PW + CA) Ours (PW) Attend-and-Excite Structure Diffusion Composable Diffusion Stable Diffusion

Figure 8: Variation of alignment accuracy with prompt difficulty. We observe that while the accuracy
of all methods decreases with increasing difficulty in prompt realism (refer Sec. 4), the proposed
iterative refinement approach consistently performs better than prior works.

while the recently proposed T2T similarity score [7] shows comparable correlation with ours for
N = 2, its performance significantly drops as the number of subjects in the input prompt increases.

4.2 Improving Text-to-Image Alignment

In this section, we compare the performance of our iterative refinement approach with prior works on
improving text-to-image alignment in a training-free manner. In particular, we show comparisons
with 1) Stable Diffusion [1], 2) Composable Diffusion [6] 3) StructureDiffusion [8] and 4) Attend-
and-Excite [7]. All images are generated using the same seed across all methods.

Qualitative Results. Results are shown in Fig. 6. As shown, we observe that Composable Diffusion
[6] struggles to generate photorealistic combinations of objects especially as number of subjects in
the prompt increase. StructureDiffusion [8] helps in addressing some missing objects e.g., telescope
in example-1, but the generated images tend to be semantically similar to those produced by the
original Stable Diffusion model, and thus does not significantly improve text-to-image alignment.

Attend-and-Excite [7] shows much better performance in addressing missing objects (e.g., telescope
in example-1 and umbrella in example-4). However, as sumamrized in Fig. 7 we observe that it
suffers from 3 main challenges: 1) Object Relationship (Fig. 7a): we observe that despite having
desired objects, generated images may sometimes fail to convey relationship between them. For
e.g., in row-1 Fig. 7 while output images show both a lion and guitar, the lion does not seem to be
playing the guitar. In contrast, Eval-and-Refine is able to describe both presence and relation between
objects in a better manner. 2) Overlapping Entities (Fig. 7b): For images with overlapping entities
(e.g., person and spacesuit), we observe that Attend-and-Excite [7] typically spends most of gradient
updates balancing between the overlapping entities, as both entities (person and spacesuit) occupy
the same cross-attention region. This can lead to outputs where a) other important aspects (e.g., lake
in Col-3) or b) one of the two entities (e.g., spacesuit) are ignored. 3) Prompt Complexity (Fig. 7c):
Finally, we note that since Attend-and-Excite [7] is limited to applying the cross-attention update
w.r.t the least dominant subject, as the complexity of input prompt P increases, it may miss some
objects (e.g., umbrella, beach, sunny day) during the generation process. In contrast, the iterative
nature of our approach allows it to keep refining the output image I until a desirable threshold for the
overall image-text alignment score Ω(I,P) is reached.

Quantitative Results. In addition to qualitative experiments, we also evaluate the efficacy of our
approach using human evaluations. In this regard, we report three metrics: 1) normalized human
score: which refers to the average human rating (normalized between 0-1) for images generated on
the Decomposable-Captions-4k dataset. 2) accuracy: indicating the percentage of generated images
which are considered as an accurate match (rating: 5) for the input text prompt by a human subject. 3)
pairwise-preference: where human subjects are shown pair of images generated using our method and
prior work, and are supposed to classify each image-pair as a win, loss or tie (win meaning our method
is preferred). For our approach we consider two variants 1) Ours (PW) which performs iterative
refinement using only prompt-weighting, and 2) Ours (PW + CA) where iterative refinement is
performed using both prompt weighting and introducing cross-attention updates (Sec. 3.2). Pairwise
preference scores are reported while using Ours (PW + CA) while comparing with prior works.
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Method Norm. Human Alignment Pairwise Comparison % Inference
Score (%) Accuracy (%) Win ↑ Tie Lose ↓ Time (s)

Stable-Diffusion [1] 72.98 43.66 41.7 50.1 8.2 3.54 s
Composable-Diffusion [6] 70.28 37.72 57.1 38.5 4.4 10.89 s
Structure-Diffusion [8] 74.93 45.23 37.5 54.6 7.9 11.51 s
Attend-and-Excite [7] 85.94 65.50 23.6 62.3 14.1 8.59 s
Ours (PW) 89.53 70.28 N/A N/A N/A 10.32 s
Ours (PW + CA) 90.25 74.16 N/A N/A N/A 12.24 s

Table 1: Quantitative Results. We report text-to-image alignment comparisons w.r.t normalized
human rating score (Col:2), average alignment accuracy evaluated by human subjects (Col:3) and
pairwise user-preference scores (ours vs prior work) (Col:4-6). Finally, we also report average
inference time per image for different methods in Col:7. We observe that our approach shows better
text-to-image alignment performance while on average using marginally higher inference time.

Results are shown in Fig. 8 and Tab. 1. We observe that while the text-to-image alignment accuracy
for all methods decreases with an increased difficulty in input text prompts (Fig. 8), we find that
the our approach with only prompt-weighting is able to consistently perform on-par or better than
Attend-and-Excite [7]. Further introduction of cross-attention updates (Sec. 3.2), allows our approach
to exhibit even better performance, which outperforms Attend-and-Excite [7] by 8.67 % in terms of
overall alignment accuracy of the generated images. These improvements are also reflected in the
pairwise comparisons where human subjects tend to prefer our approach over prior works [6–8].

Inference time comparison. Tab. 1 shows comparison for the average inference time (per image)
for our approach with prior works [6–8]. We observe that despite the use of an iterative process for
our approach, the overall inference time is comparable with prior works. This occurs because prior
works themselves often include additional steps. For instance, Composable-Diffusion [6] requires the
computation of separate denoising latents for each statement in the confunction/disjunction operation,
thereby increasing the overall inference time almost linearly with number of subjects. Similarly,
Attend-and-Excite [7] includes additional gradient descent steps for modifying cross-attention maps.
Moreover, such an increase is accumulated even if the baseline Stable-Diffusion [1] model already
generates accurate images. In contrast, the proposed iterative refinement approach is able to adaptively
adjust the number of iterations required for the generation process by monitoring the proposed DA-
Score for evaluating whether the generation outputs are already good enough.

5 Conclusion

In this paper, we explore a simple yet effective decompositional approach for both evaluation and
improvement of text-to-image alignment with latent diffusion models. To this end, we first propose a
Decompositional-Alignment Score which given a complex prompt breaks it down into a set of disjoint
assertions. The alignment of each of these assertions with the generated image is then measured using
a VQA model. The assertion-based alignment scores are finally combined to a give an overall text-to-
image alignment score. Experimental results show that proposed metric shows significantly higher
correlation with human subject ratings over traditional CLIP, BLIP based image-text matching scores.
Finally, we propose a simple iterative refinement approach which uses the decompositional-alignment
scores as feedback to gradually improve the quality of the generated images. Despite its simplicity, we
find that the proposed approach is able to surpass previous state-of-the-art on text-to-image alignment
accuracy while on average using only marginally higher inference times. We hope that our research
can open new avenues for robust deployment of text-to-image models for practical applications.
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