
Zero-One Laws of Graph Neural Networks

Sam Adam-Day∗
Department of Mathematics

University of Oxford
Oxford, UK

sam.adam-day@cs.ox.ac.uk

Theodor-Mihai Iliant
Department of Computer Science

University of Oxford
Oxford, UK

theodor-mihai.iliant@lmh.ox.ac.uk

İsmail İlkan Ceylan
Department of Computer Science

University of Oxford
Oxford, UK

ismail.ceylan@cs.ox.ac.uk

Abstract

Graph neural networks (GNNs) are the de facto standard deep learning architectures
for machine learning on graphs. This has led to a large body of work analyzing
the capabilities and limitations of these models, particularly pertaining to their
representation and extrapolation capacity. We offer a novel theoretical perspec-
tive on the representation and extrapolation capacity of GNNs, by answering the
question: how do GNNs behave as the number of graph nodes become very large?
Under mild assumptions, we show that when we draw graphs of increasing size
from the Erdős-Rényi model, the probability that such graphs are mapped to a
particular output by a class of GNN classifiers tends to either zero or to one. This
class includes the popular graph convolutional network architecture. The result
establishes ‘zero-one laws’ for these GNNs, and analogously to other convergence
laws, entails theoretical limitations on their capacity. We empirically verify our
results, observing that the theoretical asymptotic limits are evident already on
relatively small graphs.

1 Introduction

Graphs are common structures for representing relational data in a wide range of domains, including
physical [35], chemical [7, 18], and biological [42, 10] systems, which sparked interest in machine
learning over graphs. Graph neural networks (GNNs) [33, 14] have become prominent models for
graph machine learning for a wide range of tasks, owing to their capacity to explicitly encode desirable
relational inductive biases [5]. One important virtue of these architectures is that every GNN model
can be applied to arbitrarily large graphs, since in principle the model parameters are independent
of the graph size. This raises the question: how do GNNs behave as the number of nodes becomes
very large? When acting as binary classifiers, GNNs can be thought of as parametrizing Boolean
properties of (labelled) graphs. A classical method of specifying such properties is through first-order
formulas, which allow for precise definitions using a formal language [9]. The celebrated ‘zero-one
law’ for first-order logic [13, 8] provides a crisp answer to the question of the asymptotic behaviour
of such properties: as graphs of increasing size are drawn from the Erdős-Rényi distribution, the
probability that a first-order property holds either tends to zero or to one.
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In this paper, we show an analogous result for binary classification GNNs: under mild assumptions
on the model architecture, several GNN architectures including graph convolutional networks [21]
satisfy a zero-one law over Erdős-Rényi graphs with random node features. The principal import of
this result is that it establishes a novel upper-bound on the expressive power of GNNs: any property
of graphs which can be uniformly expressed by a GNN must obey a zero-one law. An example of a
simple property which does not asymptotically tend to zero or one is that of having an even number
of nodes. Note however that our result, combined with the manifest success of GNNs in practice,
suggests that zero-one laws must be abundant in nature: if a property we cared about did not satisfy a
zero-one law, none of the GNN architectures we consider would be able to express it.

Our main results flexibly apply both to the case where we consider the GNN as a classifier applied to
randomly sampled graphs and node features, and where we consider the random node features as
part of the model. For the latter, it is known that incorporating randomized features into the model
significantly increases its expressive power on graphs with bounded number of nodes [32, 1]. Our
results yield the first upper bound on the expressive power of these architectures which is uniform in
the number of nodes. We complement this with a corresponding lower bound, showing that these
architectures can universally approximate any property which satisfies a certain zero-one law.

A key strength of the results is that they apply equally well to randomly initialized networks, trained
networks, and anything in between. In this sense, our asymptotic analysis is orthogonal to the question
of optimization, and holds regardless of the choice of training method. Another interesting aspect of
these results is that they unite analysis of expressive power with extrapolation capacity. Our zero-one
laws simultaneously provide limits on the ability of GNNs to extrapolate from smaller Erdős-Rényi
graphs to larger ones: eventually any GNN must classify all large graphs the same way.

To validate our theoretical findings, we conduct a series of experiments: since zero-one laws are of
asymptotic nature, we may need to consider very large graphs to observe clear empirical evidence for
the phenomenon. Surprisingly however, GNNs already exhibit clear evidence of a zero-one law even
on small graphs. Importantly, this is true for networks with very few layers (even a single-layer), which
is reassuring, as it precludes confounding factors, such as the effect of over-smoothing due to increased
number of layers [23]. We provide further experimental results in the appendix of this paper, where all
proofs of technical statements can also be found. We make the code for our experiments available on-
line at https://github.com/SamAdamDay/Zero-One-Laws-of-Graph-Neural-Networks.

2 Preliminaries

Random graphs and matrices. The focus of our study is on classes of random graphs with random
features, for which we introduce some notation. We write x ∈ Rd to represent a vector, and
X ∈ Rd×n to represent a matrix. Analogously, we write x to denote a random vector, and X to
denote a random matrix, whose entries are (real) random variables. We write G(n, r) to denote
the class of simple, undirected Erdős-Rényi (ER) graphs with n nodes and edge probability r and
let D(d) denote some distribution of feature vectors over Rd. We define an Erdős-Rényi graph
equipped with random node features as a pair G = (A,X), where A ∼ G(n, r) is the random graph
adjacency matrix of the graph G = (V,E) and X ∈ Rd×n is a corresponding random feature matrix,
independent of G, which contains, for each node v ∈ V , an initial random node feature xv ∼ D(d)
as the corresponding columns of X.2

Message passing neural networks. The focus of this work is on message-passing neural networks
(MPNNs) [12, 17] which encapsulate the vast majority of GNNs. The fundamental idea in MPNNs is
to update the initial (random) state vector x(0)

v = xv of each node v for T ∈ N iterations, based on
its own state and the state of its neighbors N (v) as:

x(t+1)
v = ϕ(t)

(
x(t)
v , ψ(t)

(
x(t)
v , {{x(t)

u | u ∈ N (v)}}
))
,

where {{·}} denotes a multiset, and ϕ(t) and ψ(t) are differentiable combination, and aggregation
functions, respectively. Each layer’s node representations can have different dimensions: we denote
by d(t) the dimension of the node embeddings at iteration t and typically write d in place of d(0).

2We define a d× |V | dimensional (random) feature matrix as opposed to the more common |V | × d. This is
for ease of presentation, since we aim to work on the (random) column vectors of such matrices.
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The final node representations can then be used for node-level predictions. For graph-level predictions,
the final node embeddings are pooled to form a graph embedding vector to predict properties of entire
graphs. The pooling often takes the form of simple averaging, summing or component-wise maximum.
For Boolean node (resp., graph) classification, we further assume a classifier C : Rd(T ) → B which
acts on the final node representations (resp., on the final graph representation).

There exist more general message passing paradigms [5] such as MPNNs with global readout which
additionally aggregate over all node features at every layer, and are known to be more expressive [4].
Some model architectures considered in this paper include a global readout component and we
consider different choices for the combine (ϕ(t)) and aggregate (ψ(t)) functions, as we introduce next.

GCN. The primary GNN architecture we consider is graph convolutional networks (GCN) [21].
These are instances of MPNNs with self-loops, which aggregate over the extended neighborhood of a
node N+(v) := N (v) ∪ {v}. GCNs iteratively update the node representations as x(t)

v = σ
(
y
(t)
v

)
,

where the preactivations are given by:

y(t)
v = W (t)

n

∑
u∈N+(v)

1√
|N (u)||N (v)|

x(t−1)
u + b(t)

We apply the linear transformation W
(t)
n ∈ Rd(t)×d(t−1) to a normalized sum of the activations for

the previous layers of the neighbors of the node under consideration, together with its own activation.
Adding a bias term b(t) yields the preactivation y

(t)
v , to which we apply the non-linearity σ.

MEANGNN. We also consider the MEANGNN+ architecture which is a self-loop GNN with mean
aggregation and global readout [17], and updates the node representation as x(t)

v = σ
(
y
(t)
v

)
, where:

y(t)
v =

1

|N+(v)|
W (t)

n

∑
u∈N+(v)

x(t−1)
u +

1

n
W (t)

r

∑
u∈V

x(t−1)
u + b(t)

MEANGNN+ models additionally apply a linear transformation W
(t)
r ∈ Rd(t)×d(t−1) to the mean

of all previous node representations. We refer to MEANGNN as the special case of this architecture
which does not include a global readout term (obtained by dropping the second term in the equation).

SUMGNN. Finally, we consider the SUMGNN+ architecture which is a GNN with sum aggregation
and global readout [12], and updates the node representations as x(t)

u = σ
(
y
(t)
u

)
, where:

y(t)
v = W (t)

s x(t−1)
v +W (t)

n

∑
u∈N (v)

x(t−1)
u +W (t)

r

∑
u∈V

x(t−1)
u + b(t)

This time, we separate out the contribution from the preactivation of the previous activation for
the node itself. This yields three linear transformations W

(t)
s ,W

(t)
n ,W

(t)
r ∈ Rd(t)×d(t−1). The

corresponding architecture without the global readout term is called SUMGNN.

3 Related work

Graph neural networks are flexible models which can be applied to graphs of any size following
training. This makes an asymptotic analysis in the size of the input graphs very appealing, since such
a study could lead to a better understanding of the extrapolation capabilities of GNNs, which is widely
studied in the literature [41, 40]. Previous studies of the asymptotic behaviour of GNNs have focused
on convergence to theoretical limit networks [20, 31] and their stability under the perturbation of
large graphs [11, 22].

Zero-one laws have a rich history in first-order logic and random graph theory [13, 8, 25, 34, 6].
Being the first of its kind in the graph machine learning literature, our study establishes new links
between graph representation learning, probability theory, and logic, while also presenting a new
and interesting way to analyze the expressive power of GNNs. It is well-known that the expressive
power of MPNNs is upper bounded by the 1-dimensional Weisfeiler Leman graph isomorphism
test (1-WL) [39, 29] and architectures such as SUMGNN+ [29] can match this. Barceló et al. [4]
further gives a logical characterization for a class of MPNNs showing SUMGNN+ can capture any
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function which can be expressed in the logic C2, which is an extension of the two-variable fragment
of first-order logic with counting quantifiers. Several works study the expressive power of these
models under the assummption that there are unique node identifiers [26], or define higher-order
GNN models [29, 27, 28, 19] to obtain more expressive architectures.

Our work has direct implications on GNNs using random node features [32, 1], which are universal
in the bounded graph domain. Specifically, we derive a zero-one law for GNNs using random node
features which puts an upper bound on the expressive power of such models in a uniform sense: what
class of functions on graphs can be captured by a single GNN with random node features? Abboud
et al. [1] prove a universality result for these models, but it is not uniform, since the construction
depends on the graph sizes, and yields a different model parametrization depending on the choice
of the graph sizes. Moreover, the construction of Abboud et al. [1] is of size exponential in the
worst case. Grohe [15] recently improved upon this result, by proving that the functions that can
be computed by a polynomial-size bounded-depth family of GNNs using random node features
are exactly the functions computed by bounded depth Boolean circuits with threshold gates. This
establishes an upper bound on the power of GNNs with random node features, by requiring the class
of models to be of bounded depth (fixed layers) and of size polynomial. However, this result is still
not uniform, since it allows the target function to be captured by different model parametrizations.
There is no known upper bound for the expressive power of GNNs with random node features in the
uniform setting, and our result establishes this.

Other limitations of MPNNs include over-smoothing [23, 30] and over-squashing [2] which are
related to information propagation, and are linked to using more message passing layers. The problem
of over-smoothing has also been studied from an asymptotic perspective [23, 30], where the idea is to
see how the node features evolve as we increase the number of layers in the network. Our study can
be seen as orthogonal to this work: we conduct an asymptotic analysis in the size of the graphs rather
than in the number of layers.

4 Zero-one laws of graph neural networks

4.1 Problem statement

We first define graph invariants following Grohe [16].
Definition 4.1. A graph invariant ξ is a function over graphs, such that for any pair of graphs G1,
G2, and, for any isomorphism f from G1 to G2 it holds that ξ(G1) = ξ(f(G2)). Graph invariants
for graphs with node features are defined analogously.

Consider any GNN model M used for binary graph classification. It is immediate from the definition
that M is invariant under isomorphisms of the graphs on which it acts. Hence M, considered as
function from graphs to B = {0, 1}, is a graph invariant. In this paper, we study the asymptotic
behavior of M as the number of nodes increases.

One remarkable and influential result from finite model theory is the ‘zero-one law’ for first-order
logic. A (Boolean) graph invariant ξ satisfies a zero-one law if when we draw graphs G from the ER
distribution G(n, r), as n tends to infinity the probability that ξ(G) = 1 either tends to 0 or tends to
1. The result, due to Glebskii et al. [13] and Fagin [8], states that any graph invariant which can be
expressed by a first-order formula satisfies a zero-one law. Inspired by this asymptotic analysis of
first-order properties, we ask whether GNNs satisfy a zero-one law. As the input of a GNN is a graph
with node features, we need to reformulate the statement of the law to incorporate these features.
Definition 4.2. Let G = (A,X) be a graph with node features, where A ∼ G(n, r) is a graph
adjacency matrix and, independently, X is a matrix of node embeddings, where xv ∼ D(d) for every
node v. A graph invariant ξ for graphs with node features satisfies a zero-one law with respect to
G(n, r) and D(d) if, as n tends to infinity, the probability that ξ(G) = 1 tends to either 0 or 1.

Studying the asymptotic behavior of GNNs helps to shed light on their capabilities and limitations. A
zero-one law establishes a limit on the ability of such models to extrapolate to larger graphs: any GNN
fitted to a finite set of datapoints will tend towards outputting a constant value on larger and larger
graphs drawn from the distribution described above. A zero-one law in this setting also transfers to a
corresponding zero-one law for GNNs with random features. This establishes an upper-bound on the
uniform expressive power of such models.
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4.2 Graph convolutional networks obey a zero-one law

Our main result in this subsection is that (Boolean) GCN classifiers obey a zero-one law. To achieve
our result, we place some mild conditions on the model and initial node embeddings.

First, our study covers sub-Gaussian random vectors, which in particular include all bounded random
vectors, and all multivariate normal random vectors. We note that in every practical setup all node
features have bounded values (determined by the bit length of the storage medium), and are thus
sub-Gaussian.
Definition 4.3. A random vector x ∈ Rd is sub-Gaussian if there is C > 0 such that for every unit
vector y ∈ Rd the random variable x · y satisfies the sub-Gaussian property; that is, for every t > 0:

P(|x · y| ≥ t) ≤ 2 exp

(
− t2

C2

)
Second, we require that the non-linearity σ be Lipschitz continuous. This is again a mild assumption,
because all non-linearities used in practice are Lipschitz continuous, including ReLU, clipped ReLU,
sigmoid, linearized sigmoid and tanh.
Definition 4.4. A function f : R → R is Lipschitz continuous if there is C > 0 such that for any
x, y ∈ R it holds that |f(x)− f(y)| ≤ C|x− y|.

Third, we place a condition on the GCN weights with respect to the classifier function C : Rd(T ) → B,
which intuitively excludes a specific weight configuration.
Definition 4.5. Consider a distribution D(d) with mean µ. Let M be a GCN used for binary
graph classification. Define the sequence µ0, . . . ,µT of vectors inductively by µ0 := µ and
µt := σ(W

(t)
n µt−1 + b(t)). The classifier classifier C : Rd(T ) → B is non-splitting for M if the

vector µT does not lie on a decision boundary for C.

For all reasonable choices of C, the decision boundary has dimension lower than the d(T ), and is
therefore a set of zero-measure. This means that in practice essentially all classifiers are non-splitting.

Given these conditions, we are ready to state our main theorem:
Theorem 4.6. Let M be a GCN used for binary graph classification and take r ∈ [0, 1]. Then,
M satisfies a zero-one law with respect to graph distribution G(n, r) and feature distribution D(d)
assuming the following conditions hold: (i) the distribution D(d) is sub-Gaussian, (ii) the non-
linearity σ is Lipschitz continuous, (iii) the graph-level representation uses average pooling, and
(iv) the classifier C is non-splitting.

The proof hinges on a probabilistic analysis of the preactivations in each layer. We use a sub-Gaussian
concentration inequality to show that the deviation of each of the first-layer preactivations y(1)

v from
its expected value becomes less and less as the number of node n tends to infinity. Using this and the
fact that σ is Lipschitz continuous we show then that each activation x

(1)
v tends towards a fixed value.

Iterating this analysis through all the layers of the network yields the following key lemma, which is
the heart of the argument.
Lemma 4.7. Let M and D(d) satisfy the conditions in Theorem 4.6. Then, for every layer t, there is
zt ∈ Rd(t) such that when sampling a graph with node features from G(n, r) and D(d), for every
i ∈ {1, . . . , d(t)} and for every ϵ > 0 we have that:

P
(
∀v :

∣∣∣[x(t)
v − zt

]
i

∣∣∣ < ϵ
)
→ 1 as n→ ∞

With the lemma established, the proof of Theorem 4.6 follows straightforwardly from the last two
assumptions. Since the final node embeddings x(T )

v tend to a fixed value zT , the average-pooled
graph-level representations also tend to this. Since we assume that the classifier is non-splitting, this
value cannot lie on a decision boundary, and thus the final output is asymptotically stable at C(zT ).

We expect that the rate of converge will depend in a complex way on the number of layers, the
embedding dimensionality, and the choice of non-linearity, which makes a rigorous analysis very
challenging. However, considering the manner in which Lemma 4.7 is proved, we can arrive at the
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following intuitive argument for why the rate of convergence should decrease as the embedding
dimensionality increases: if we fix a node v and a layer t then each of the components of its
preactivation can be viewed as the weighted sum of d(t− 1) random variables, each of which is the
aggregation of activations in the previous layer. Intuitively, as d(t− 1) increases, the variance of this
sum also increases. This increased variance propagates through the network, resulting in a higher
variance for the final node representations and thus a slower convergence.

Using analogous assumptions and techniques to those presented in this section, we also establish a
zero-one law for MEANGNN+, which we report in detail in Appendix B. Abstracting away from
technicalities, the overall structure of the proofs for MEANGNN+ and GCN is very similar, except
that for the former case we additionally need to take care of the global readout component.

4.3 Graph neural networks with sum aggregation obey a zero-one law

The other variant of GNNs we consider are those with sum aggregation. The proof in the case works
rather differently, and we place different conditions on the model.
Definition 4.8. A function σ : R → R is eventually constant in both directions if there are
x−∞, x∞ ∈ R such that σ(y) is constant for y < x−∞ and σ(y) is constant for y > x∞. We
write σ−∞ to denote the minimum and σ∞ to denote the maximum value of an eventually constant
function σ.

This means that there is a threshold (x−∞) below which sigma is constant, and another threshold
(x∞) above which sigma is constant. Both the linearized sigmoid and clipped ReLU are eventually
constant in both directions. Moreover, when working with finite precision any function with vanishing
gradient in both directions (such as sigmoid) can be regarded as eventually constant in both directions.

We also place the following condition on the weights of the model with respect to the mean of D(d)
and the edge-probability r.
Definition 4.9. Let M be any SUMGNN+ for binary graph classification with a non-linearity σ
which is eventually constant in both directions. Let D(d) be any distribution with mean µ, and let
r ∈ [0, 1]. Then, the model M is synchronously saturating for G(n, r) and D(d) if the following
conditions hold:

1. For each 1 ≤ i ≤ d(1): [
(rW (1)

n +W (1)
g )µ

]
i
̸= 0

2. For every layer 1 < t ≤ T , for each 1 ≤ i ≤ d(t) and for each z ∈ {σ−∞, σ∞}d(t−1):[
(rW (t)

n +W (t)
g )z

]
i
̸= 0

Analysis of our proof of the zero-one law for SUMGNN+ models (Theorem 4.10 below) reveals that
the asymptotic behaviour is determined by the matrices Qt := rW

(t)
n +W

(t)
g , where the asymptotic

final layer embeddings are σ(QT (σ(QT−1 · · ·σ(Q0µ) · · · )))). To be synchronously saturating is to
avoid the boundary case where one of the intermediate steps in the asymptotic final layer embedding
computation has a zero component.

Similarly to the case of a non-splitting classifier, the class of synchronously saturating models is very
wide. Indeed, the space of models which are not synchronously saturating is the union of solution
space of each equality (i.e. the negation of an inequality in Definition 4.9). Thus, assuming that µ,
σ−∞ and σ∞ are non-zero, the space of non-synchronously-saturating models has lower dimension
than the space of all models, and thus has measure zero.

With these definitions in place we can now lay out the main result:
Theorem 4.10. Let M be a SUMGNN+ model used for binary graph classification and take r ∈ [0, 1].
Then, M satisfies a zero-one law with respect to graph distribution G(n, r) and feature distribution
D(d) assuming the following conditions hold: (i) the distribution D(d) is sub-Gaussian, (ii) the
non-linearity σ is eventually constant in both directions, (iii) the graph-level representation uses
either average or component-wise maximum pooling, and (iv) M is synchronously saturating for
G(n, r) and D(d).
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The proof works differently than the GCN and MEANGNN+ cases, but still rests on a probabilistic
analysis of the preactivations in each layer. Assuming that M is synchronously saturating for G(n, r)
and D(d), we can show that the expected absolute value of each preactivation tends to infinity as
the number of nodes increases, and that moreover the probability that it lies below any fixed value
tends to 0 exponentially. Hence, the probability that all node embeddings after the first layer are the
same and have components which are all σ−∞ or σ∞ tends to 1. We then extend this analysis to
further layers, using the fact that M is synchronously saturating, which yields inductively that all
node embeddings are the same with probability tending to 1, resulting in the following key lemma.
Lemma 4.11. Let M, D(d) and r be as in Theorem 4.10. Let σ−∞ and σ∞ be the extremal values
taken by the non-linearity. Then, for every layer t, there is zt ∈ {σ−∞, σ∞}d(t) such that when we
sample graphs with node features from G(n, r) and D(d) the probability that x(t)

v = zt for every
node u tends to 1 as n tends to infinity.

The final classification output must therefore be the same asymptotically, since its input consists of
node embeddings which always take the same value.

5 Graph neural networks with random node features

Up to this point we have been considering the graph plus node features as the (random) input to
GNNs. In this section, we make a change in perspective and regard the initial node features as part of
the model, so that its input consists solely of the graph without features. We focus in this section on
SUMGNN+. Adding random initial features to GNNs is known to increase their power [32].

Note that Theorem 4.10 immediately yields a zero-one law for these models. This places restrictions
on what can be expressed by SUMGNN+ models with random features subject to the conditions of
Theorem 4.10. For example, it is not possible to express that the number of graph nodes is even, since
the property of being even does not satisfy a zero-one law with respect to any r ∈ [0, 1].

It is natural to wonder how tight these restrictions are: what precisely is the class of functions which
can be approximated by these models? Let us first formalize the notion of approximation.
Definition 5.1. Let f be a Boolean function on graphs, and let ζ be a random function on graphs.
Take δ > 0. Then ζ uniformly δ-approximates f if:

∀n ∈ N : P(ζ(G) = f(G) | |G| = n) ≥ 1− δ

when we sample G ∼ G(n, 1/2).

The reason for sampling graphs from G(n, 1/2) is that under this distribution all graphs on n nodes
are equally likely. Therefore, the requirement is the same as that for every n ∈ N the proportion of
n-node graphs on which ζ(G) = f(G) is at least 1− δ.

Building on results due to Abboud et al. [1], we show a partial converse to Theorem 4.10: if a
graph invariant satisfies a zero-one law for G(n, 1/2) then it can be universally approximated by a
SUMGNN+ with random node features.
Theorem 5.2. Let ξ be any graph invariant which satisfies a zero-one law with respect to G(n, 1/2).
Then, for every δ > 0 there is a SUMGNN+ with random node features M which uniformly δ-
approximates ξ.

The basis of the proof is a result due to Abboud et al. [1] which states that a SUMGNN+ with random
node features can approximate any graph invariant on graphs of bounded size. When the graph
invariant satisfies a zero-one law, we can use the global readout to count the number of nodes. Below
a certain threshold, we use the techniques of Abboud et al. [1] to approximate the invariant, and
above the threshold we follow its asymptotic behavior. We emphasise that the combination of these
techniques yields a model which provides an approximation which is uniform across all graph sizes.

6 Experimental evaluation

We empirically verify our theoretical findings on a carefully designed synthetic experiment using ER
graphs with random features. The goal of these experiments is to answer the following questions for
each model under consideration:
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Q1. Do we empirically observe a zero-one law?

Q2. What is the rate of convergence like empirically?

Q3. What is the impact of the number of layers on the convergence?

6.1 Experimental setup

We report experiments for GCN, MEANGNN, and SUMGNN. The following setup is carefully
designed to eliminate confounding factors:

• We consider 10 GNN models of the same architecture each with randomly initialized weights,
where each weight is sampled independently from U(−1, 1). The non-linearity is eventually
constant in both directions: identity between [−1, 1], and truncated to −1 if the input is smaller
than −1, and 1 if the input is greater than 1. In the appendix we include additional experiments
in which test other choices of non-linearity (see Appendix E.2). We apply mean pooling to yield
a final representation zG ∈ Rd of the input graph.

• For every model, we apply a final classifier σ(f) : Rd → B where f is a 2-layer MLP with
random weights and with tanh activation, which outputs a real value, and σ is the sigmoid
function. Graphs are classified as 1 if the output of the sigmoid is greater than 0.5, and 0
otherwise.

• The input graphs are drawn from G(n, 1/2) with corresponding node features independently
drawn from U(0, 1).

• We conduct these experiments with three choices of layers: 10 models with T = 1 layer, 10
models with T = 2 layers, and 10 models with T = 3 layers.

The goal of these experiments is to understand the behavior of the respective GNN graph classifiers
with mean-pooling, as we draw larger and larger ER graphs. Specifically, each model classifies
graphs of varying sizes, and we are interested in knowing how the proportion of the graphs which are
classified as 1 evolves, as we increase the graph sizes.

We independently sample 10 models to ensure this is not a model-specific behavior, aiming to observe
the same phenomenon across the models. If there is a zero-one law, then for each model, we should
only see two types of curves: either tending to 0 or tending to 1, as graph sizes increase. Whether it
will tend to 0 or 1 depends on the final classifier: since each of these are independent MLPs with
random weights the specific outcome is essentially random.

We consider models with up to 3 layers to ensure that the node features do not become alike because
of the orthogonal over-smoothing issue [24], which surfaces with increasing number of layers. A
key feature of our theoretical results is that they do not depend on the number of layers, and this is
an aspect which we wish to validate empirically. Using models with random weights is a neutral
setup, and random GNNs are widely used in the literature as baseline models [36], as they define
valid graph convolutions and tend to perform reasonably well.

6.2 Empirical results

We report all results in Figure 1 for all models considered and discuss them below. Each plot in this
figure depicts the curves corresponding to the behavior of independent models with random weights.

GCN. For this experiment, we use an embedding dimensionality of 128 for each GCN model and
draw graphs of sizes up 5000, where we take 32 samples of each size. The key insight of Theorem 4.6
is that the final mean-pooled embedding vector zG tends to a constant vector as we draw larger graphs.
Applying an MLP followed by a sigmoid function will therefore map zG to either 0 or 1, showing a
zero-one law. It is evident from Figure 1 (top row) that all curves tend to either 0 or 1, confirming our
expectation regarding the outcome of these experiments for GCNs. Moreover, this holds regardless
of the number of layers considered. Since the convergence occurs quickly, already around graphs of
size of 1000, we did not experiment with larger graph sizes in this experiment.

MEANGNN. Given that the key insight behind this result is essentially similar to that of Theorem 4.6,
we follow the exact same configuration for these models as for GCNs. The proof structure is the
same in both cases: we show that the preactivations and activations become closer and closer to

8



Figure 1: Each plot shows the proportion of graphs of certain size which are classified as 1 by a set of
ten GCNs (top row), MEANGNNs (middle), and SUMGNNs (bottom row). Each curve (color-coded)
shows the behavior of a model, as we draw increasingly larger graphs. The phenomenon is observed
for 1-layer models (left column), 2-layer models (mid column), and 3-layer models (last column).
GCNs and MEANGNNs behave very similarly with all models converging quickly to 0 or to 1.
SUMGNNs shows slightly slower convergence, but all models perfectly converge in all layers.

some fixed values as the number of nodes increases. Moreover, comparing the summations in the
definitions of GCN and MEANGNN, on a typical ER graph drawn from G(n, 1/2) we would expect
each corresponding summand to have a similar value, since

√
|N (u)||N (v)| should be close to

|N+(v)|. Figure 1(mid row) illustrates the results for MEANGNN and the trends are reassuringly
similar to those of GCNs: all models converge quickly to either 0 and 1 with all choices of layers.
Interestingly, the plots for GCN and MEANGNN models are almost identical. We used the same
seed when drawing each of the model weights, and the number of parameters is the same between the
two. Hence, the GCN models were parameterized with the same values as the MEANGNN models.
The fact that each pair of models preforms near identically confirms the expectation that the two
architectures work in similar ways on ER graphs.

SUMGNN. Theorem 4.10 shows that, as the number of nodes grow, the embedding vector zv of each
node v will converge to a constant vector with high probability. Hence, when we do mean-pooling at
the end, we expect to get the same vector for different graphs of the same size. The mechanism by
which a zero-one law is arrived at is quite different compared with the GCN and MEANGNN case.
In particular, in order for the embedding vectors to begin to converge, there must be sufficiently many
nodes so that the preactivations surpass the thresholds of the non-linearity. For this experiment, we
use a smaller embedding dimensionality of 64 for each SUMGNN model and draw graphs of sizes up
to 100000, where we take 32 samples of each size. Figure 1 shows the results for SUMGNN. Note
that we observe a slower convergence than with GCN or MEANGNN.

9



7 Limitations, discussion, and outlook

The principal limitations of our work come from the assumptions placed on the main theorems. In
our formal analysis, we focus on graphs drawn from the ER distribution. From the perspective of
characterizing the expressiveness of GNNs this is unproblematic, and accords with the classical
analysis of first-order properties of graphs. However, when considering the extrapolation capacity of
GNNs, other choices of distributions may be more realistic. In Appendices E.4 and E.5 we report
experiments in which zero-one laws are observed empirically for sparse ER graphs and Barabási-
Albert graphs [3], suggesting that formal results may be obtainable. While we empirically observe that
GNNs converge to their asymptotic behaviour very quickly, we leave it as future work to rigorously
examine the rate at which this convergence occurs.

In this work we show that GNNs with random features can at most capture properties which follow a
zero-one law. We complement this with an almost matching lower bound: Theorem 5.2 currently
requires a graph invariant ξ which obeys a zero-one law with respect to a specific value of r (i.e., 1/2),
and if this assumption could be relaxed, it would yield a complete characterization of the expressive
power of these models.
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A Proof of the zero-one law for GCN

The proof of Lemma 4.7 and subsequently Theorem 4.6 relies on an asymptotic analysis of the
distributions of the node embeddings at each layer. The following famous concentration inequality
for sub-Gaussian random variables allows us to put bounds on the deviation of a sum of random
variables from its expected value.
Theorem A.1 (Hoeffding Inequality for sub-Gaussian random variables). There is a universal
constant c such that the following holds. Let z1, . . . , zN be independent sub-Gaussian scalar random
variables with mean 0. Assume that the constants C from Definition 4.3 for each zi can be bounded
by K. Then for all t > 0:

P

(∣∣∣∣∣
N∑
i=1

zi

∣∣∣∣∣ ≥ t

)
≤ exp

(
− ct2

K2N

)

Proof. See Theorem 2.6.2 in [38].

We also make use of the following three basic facts about sub-Gaussian random variables.
Lemma A.2. If z is a sub-Gaussian random vector and q is any vector of the same dimension then
q · z is sub-Gaussian.

Proof. This follows directly from Definition 4.3.

Lemma A.3. If z is a sub-Gaussian scalar random variable then so is z − E[z].

Proof. See Lemma 2.6.8 in [38].

Lemma A.4. If z is a sub-Gaussian scalar random variable and a is an independent Bernoulli
random variable then za is sub-Gaussian.

Proof. Let C be the constant given by Definition 4.3 for z. Let a take values α and β. Using the Law
of Total Probability:

P(|za| ≥ t) = P(|za| ≥ t | a = α)P(a = α) + P(|za| ≥ t | a = β)P(a = β)

= P(|z| ≥ t/|α|)P(a = α) + P(|z| ≥ t/|β|)P(a = β)

≤ 2 exp

(
− t2

|α|2C2

)
P(a = α) + 2 exp

(
− t2

|β|2C2

)
P(a = β)

≤ 2 exp

(
− t2

max{|α|, |β|}2C2

)
Therefore za is sub-Gaussian.

We first prove the key lemma regarding the node embeddings.

Proof of Lemma 4.7. Let C be the Lipschitz constant for σ. Start by considering the first layer
preactivations y(1)

v and drop superscript (1)’s for notational clarity. We have that:

yv =
∑

v∈N+(v)

1√
|N (v)||N (u)|

Wnx
(0)
u + b

Fix i ∈ {1, . . . , d(1)}. The deviation from the expected value in the ith component is as follows:

|[yv − E[yv]]i| =

∣∣∣∣∣∣
∑

u∈N+(v)

1√
|N (v)||N (u)|

[
Wnx

(0)
u − E

[
Wnx

(0)
u

]]
i

∣∣∣∣∣∣
Now every |N (u)| is a sum of n independent 0-1 Bernoulli random variables with success probability
r (since the graph is sampled from an Erdős-Rényi distribution). Since Bernoulli random variables are
sub-Gaussian (Lemma A.4) we can use Hoeffding’s Inequality to bound the deviation of |N+(u)| =
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|N (u)|+1 from its expected value nr+1. By Theorem A.1 there is a constant K such that for every
γ ∈ (0, 1) and node u:

P(|N+(u)| ≤ γnr) ≤ P(||N+(u)| − nr| ≥ (1− γ)nr)

≤ P(||N (u)| − nr| ≥ (1− γ)nr − 1)

≤ 2 exp

(
−K((1− γ)nr − 1)2

n

)
This means that, taking a union bound:

P(∀u ∈ V : |N+(u)| ≥ γnr) ≥ 1− 2n exp

(
−K0((1− γ)nr − 1)2

n

)
Fix i ∈ {1, . . . , d(1)}. In the case where ∀u ∈ V : |N+(u)| ≥ γnr we have that:

|[yv − E[yv]]i| ≤
1√

|N (v)|γnr

∣∣∣∣∣∣
∑

u∈N+(v)

[
Wnx

(0)
u − E

[
Wnx

(0)
u

]]
i

∣∣∣∣∣∣
Now, by Lemma A.2 and Lemma A.3 each Wnx

(0)
u − E

[
Wnx

(0)
u

]
is sub-Gaussian. We can thus

apply Hoeffding’s Inequality (Theorem A.1) to obtain a constant K such that for every t > 0 we
have:

P(|[yv − E[yv]]i| ≥ t) ≤ P

∣∣∣∣∣∣
∑

u∈N+(v)

[
Wnx

(0)
u − E

[
Wnx

(0)
u

]]
i

∣∣∣∣∣∣ ≥ t
√

|N (v)|γnr


≤ 2 exp

(
−Kt

2|N (v)|γnr
|N+(v)|

)
≤ 2 exp

(
−Kt

2γnr

2

)
Now using the Law of Total Probability, partitioning depending on whether ∀u ∈ V : |N+(u)| ≥ γnr,
we get a bound as follows:

P(|[yv − E[yv]]i| ≥ t) ≤ 2 exp

(
−Kt

2γnr

2

)
+ 2n exp

(
−K0((1− γ)nr − 1)2

n

)
From now on fix any γ ∈ (0, 1).

Let z1 := σ(E[yv]) for any v (this is the same for every v). Applying the bound with t = Cϵ we can
bound the deviation of xv from z1 as follows, using the Lipschitz constant C.

P(|[xv − z1]i| ≥ ϵ) = P(|[σ(yv)− σ(E[yv])]i| ≥ ϵ)

≤ P(|[yv − E[yv]]i| ≥ Cϵ)

≤ 2 exp

(
−KC

2ϵ2γnr

2

)
+ 2n exp

(
−K0((1− γ)nr − 1)2

n

)
Taking a union bound, the probability that |[xv − z1]i| < ϵ for every node v and every i ∈
{1, . . . , d(1)} is at least:

1− nd(i)P(|[xv − z1]i| ≥ ϵ)

This tends to 1 as n tends to infinity, which yields the result for the first layer.

Now consider the preactivations for the second layer:

y(2)
v =

∑
u∈N+(v)

1√
|N (v)||N (u)|

W (2)
n x(1)

u + b(2)

As in the single layer case, we can bound the probability that any |N (u)| is less than some γnr.
Condition on the event that ∀u ∈ V : |N+(u)| ≥ γnr.
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By applying the result for the first layer to ϵ′ = ϵ
√
γr/(2C∥W (2)

n ∥∞), we have that for each
i ∈ {1, . . . , d(2)}:

P
(
∀v :

∣∣∣[x(1)
v − z1

]
i

∣∣∣ < ϵ′
)
→ 1 as n→ ∞

Condition additionally on the event that |[x(1)
v − z1]i| < ϵ′ for every node v and every i ∈

{1, . . . , d(1)}.

Now define:
a2 :=

∑
v∈N+(v)

1√
|N (v)||N (u)|

W (2)
n z1 + b(2)

Then we have that for every i ∈ {1, . . . , d(1)}:

|[y(2)
v − a2]i| ≤

∣∣∣∣∣∣
∑

u∈N+(v)

1√
|N (u)||N (v)|

[
W (2)

n (x(1)
u − z1)

]
i

∣∣∣∣∣∣
≤ 1√

|N (v)|γnr

∣∣∣∣∣∣
∑

u∈N+(v)

[
W (2)

n (x(1)
u − z1)

]
i

∣∣∣∣∣∣
≤ 1√

|N (v)|γnr

∥∥∥W (2)
n

∥∥∥
∞

∑
u∈N+(v)

∥∥∥x(1)
u − z1

∥∥∥
∞

≤ ϵ|N+(v)|
2C
√
|N (v)|n

≤ ϵ(n+ 1)

2Cn

≤ ϵ

C

Now let z2 := σ(a2). As in the single-layer case we can use the bound on |[y(2)
v − a2]i| and the fact

that σ is Lipschitz to find that, for every node v and i ∈ {1, . . . , d(2)}:

|[x(2)
v − z2]i| < ϵ

Since the probability that the two events on which we conditioned tends to 1, the result follows for
the second layer.

Finally, we apply the argument inductively through the layers to obtain the ultimate result.

With the key lemma established we can prove the main result.

Proof of Theorem 4.6. By Lemma 4.7 the final node embeddings x(T )
v deviate less and less from zT

as the number of nodes n increases. Therefore, the average-pooled graph-level representation also
deviates less and less from zT . By inspecting the proof, we can see that this zT is exactly the vector
µT in the definition of non-splitting (Definition 4.5). This means that zT cannot lie on a decision
boundary for the classifier C. Hence, there is ϵ > 0 such that C is constant on:

{x ∈ Rd(T ) | ∀i ∈ {1, . . . , d(T )} : [zT − x]i < ϵ}
Therefore, the probability that the output of M is C(zT ) tends to 1 as n tends to infinity.

B Proof of the zero-one law for MEANGNN+

Let us turn now to establishing a zero-one law for GNNs using mean aggregation. We place the same
conditions as with Theorem 4.6. This time the notion of ‘non-splitting’ is as follows.
Definition B.1. Consider a distribution D(d) with mean µ. Let M be a MEANGNN+ used for
binary graph classification. Define the sequence µ0, . . . ,µT of vectors inductively by µ0 := µ and
µt := σ((W

(t)
n +W

(t)
r )µt−1 + b(t)). The classifier C : Rd(T ) → B is non-splitting for M if the

vector µT does not lie on a decision boundary for C.

15



Again, in practice essentially all classifiers are non-splitting.

Theorem B.2. Let M be a MEANGNN+ used for binary graph classification and take r ∈ [0, 1].
Then, M satisfies a zero-one law with respect to graph distribution G(n, r) and feature distribution
D(d) assuming the following conditions hold: (i) the distribution D(d) is sub-Gaussian, (ii) the
non-linearity σ is Lipschitz continuous, (iii) the graph-level representation uses average pooling, (iv)
the classifier C is non-splitting.

Note that the result immediately applies to the MEANGNN architecture, since it is a special case of
MEANGNN+.

The overall structure of the proof is the same as for GCN. In particular, we prove the following key
lemma stating that all node embeddings tend to fixed values.

Lemma B.3. Let M and D(d) satisfy the conditions in Theorem B.2. Then, for every layer t, there
is zt ∈ Rd(t) such when sampling a graph with node features from G(n, r) and D(d), for every
i ∈ {1, . . . , d(t)} and for every ϵ > 0 we have that:

P
(
∀v :

∣∣∣[x(t)
v − zt

]
i

∣∣∣ < ϵ
)
→ 1 as n→ ∞

We are ready to present the proofs of the statements. The proof of the key lemma works in a similar
way to the GCN case.

Proof of Lemma B.3. Let C be the Lipschitz constant for σ. Start by considering the first layer
preactivations y(1)

v and drop superscript (1)’s for notational for clarity. We have that:

yv =
1

|N+(v)|
Wn

∑
v∈N+(u)

x(0)
v +

1

n
Wr

∑
u∈V

x(0)
u + b

Fix i ∈ {1, . . . , d(1)}. We can bound the deviation from the expected value as follows:

|[yv−E[yv]]i| ≤
1

|N+(v)|

∣∣∣∣∣∣
∑

u∈N+(v)

[
Wnx

(0)
u − E

[
Wnx

(0)
u

]]
i

∣∣∣∣∣∣+1

n

∣∣∣∣∣∑
u∈V

[
Wnx

(0)
u − E

[
Wnx

(0)
u

]]
i

∣∣∣∣∣
By Lemma A.2 and Lemma A.3 both each

[
Wnx

(0)
u − E

[
Wnx

(0)
u

]]
i

and each[
Wnx

(0)
u − E

[
Wnx

(0)
u

]]
i

are sub-Gaussian. We can therefore apply Hoeffding’s Inequal-
ity to their sums. First, by Theorem A.1 there is a constant Kg such that for any t > 0:

P

(
1

n

∣∣∣∣∣∑
u∈V

[
Wnx

(0)
u − E

[
Wnx

(0)
u

]]
i

∣∣∣∣∣ ≤ t

)
= P

(∣∣∣∣∣∑
u∈V

[
Wnx

(0)
u − E

[
Wnx

(0)
u

]]
i

∣∣∣∣∣ ≤ tn

)

≤ 2 exp

(
−Kgt

2n2

n

)
= 2 exp

(
−Kgt

2n
)

Second, applying Theorem A.1 again there is a constant Kn such that for any t > 0:

P

 1

|N+(v)|

∣∣∣∣∣∣
∑

u∈N+(v)

[
Wnx

(0)
u − E

[
Wnx

(0)
u

]]
i

∣∣∣∣∣∣ ≤ t


= P

∣∣∣∣∣∣
∑

u∈N+(v)

[
Wnx

(0)
u − E

[
Wnx

(0)
u

]]
i

∣∣∣∣∣∣ ≤ t|N+(v)|


≤ 2 exp

(
−Knt

2|N+(v)|2

n

)
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Now |N (v)| is a the sum of n independent 0-1 Bernoulli random variables with success probability r.
Hence, as in the proof of Lemma 4.7, by Hoeffding’s Inequality (Theorem A.1) there is a constant
K0 such that for every γ ∈ (0, 1):

P(|N+(v)| ≥ γnr) ≤ 2 exp

(
−K0((1− γ)nr − 1)2

n

)
We can then use the Law of Total Probability, partitioning on whether |N+(v)| ≥ γnr, to get a bound
as follows:

P

 1

|N+(v)|

∣∣∣∣∣∣
∑

u∈N+(v)

(
Wnx

(0)
u − E

[
Wnx

(0)
u

])∣∣∣∣∣∣ ≤ t


≤ 2 exp

(
−Knt

2(γnr)2

n

)
+ 2 exp

(
−K0((1− γ)nr − 1)2

n

)
From now on fix any γ ∈ (0, 1).

Finally let z1 := σ(E[yv]) for any v (this is the same for every v). Applying the two bounds with
t = Cϵ/2 we can bound the deviation of xv from z1 as follows, using the Lipschitz constant C.

P(|[xv − z1]i| ≥ ϵ) = P(|[σ(yv)− σ(E[yv])]i| ≥ ϵ)

≤ P(|[yv − E[yv]]i| ≥ Cϵ)

≤

 P
(

1
|N+(v)|

∣∣∣∑u∈N+(v)

[
Wnx

(0)
u − E

[
Wnx

(0)
u

]]
i

∣∣∣ ≤ Cϵ
2

)
+P

(
1
n

∣∣∣∑u∈V

[
Wnx

(0)
u − E

[
Wnx

(0)
u

]]
i

∣∣∣ ≤ Cϵ
2

) 

≤


2 exp

(
−Kn(Cϵγr)2n

4

)
+2 exp

(
−K0((1−γ)nr−1)2

n

)
+2 exp

(
−Kg

(Cϵ)2n
4

)


Taking a union bound, the probability that |[xv − z1]i| < ϵ for every node v and every i ∈
{1, . . . , d(1)} is at least:

1− nd(i)P(|[xv − z1]i| ≥ ϵ)

This tends to 1 as n tends to infinity.

Let us turn now to the second layer. By applying the above result for the first layer to ϵ′ =

ϵ/(Cmax{∥W (2)
n ∥∞), ∥W (2)

r ∥∞}, we have that for each i ∈ {1, . . . , d(2)}:

P
(
∀v :

∣∣∣[x(1)
v − z1

]
i

∣∣∣ < ϵ′
)
→ 1 as n→ ∞

Condition on the event that |[x(1)
v − z1]i| < ϵ′ for every node v and every i ∈ {1, . . . , d(1)}.

Fix v and consider the second-layer preactivations:

y(2)
v =

1

|N+(v)|
W (2)

n

∑
u∈N+(v)

x(1)
u +

1

n
W (2)

r

∑
u∈V

x(1)
u + b(2)

Define:
a2 :=

1

|N+(v)|
W (2)

n

∑
u∈N+(v)

z1 +
1

n
W (2)

r

∑
u∈V

z1 + b(2)

Fix i ∈ {1, . . . , d(2)}. Then:∣∣∣[y(2)
v − a2]i

∣∣∣ =
∣∣∣∣∣∣ 1

|N+(v)|
W (2)

n

∑
u∈N+(v)

(x(1)
u − z1) +

1

n
W (2)

r

∑
u∈V

(x(1)
u − z1)

∣∣∣∣∣∣
≤ 1

|N+(v)|

∥∥∥W (2)
n

∥∥∥
∞

∑
u∈N+(v)

∥∥∥x(1)
u − z1

∥∥∥
∞

+
1

n

∥∥∥W (2)
r

∥∥∥
∞

∑
u∈V

∥∥∥x(1)
u − z1

∥∥∥
∞

≤ ϵ

C
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Let z2 := σ(a2). Then we can use the Lipschitz continuity of σ to bound the deviation of the
activation from z2 as follows.∣∣∣[x(2)

v − z2]i

∣∣∣ = ∣∣∣[σ(y(2)
v )− σ(a2)]i

∣∣∣ ≤ C
∣∣∣[y(2)

v − a2]i

∣∣∣ ≤ ϵ

Since the probability that |[x(1)
v − z1]i| < ϵ′ for every node v and every i ∈ {1, . . . , d(1)} tends to 1,

we get that the probability that |[x(2)
v − z2]i| < ϵ for every node v and every i ∈ {1, . . . , d(2)} also

tends to 1.

Finally we apply the above argument inductively through all layers to get the desired result.

The proof of the main result now proceeds as in the proof of Theorem 4.6.

Proof of Theorem B.2. By Lemma B.3 the final node embeddings x(T )
v deviate less and less from zT

as the number of nodes n increases. Therefore, the average-pooled graph-level representation also
deviates less an less from zT . By inspecting the proof, we can see that this zT is exactly the vector
µT in the definition of non-splitting (Definition B.1). This means that zT cannot lie on a decision
boundary for the classifier C. Hence, there is ϵ > 0 such that C is constant on:

{x ∈ Rd(T ) | ∀i ∈ {1, . . . , d(T )} : [zT − x]i < ϵ}

Therefore, the probability that the output of M is C(zT ) tends to 1 as n tends to infinity.

C Proof of the zero-one law for SUMGNN+

The proof of the key lemma works rather differently to the GCN and MEANGNN+ case, but we still
make important use of Hoeffding’s Inequality.

Proof of Lemma 4.11. Consider the first layer preactivations y
(1)
v and drop superscript (1)’s for

notational clarity. We can rearrange the expression as follows:

yv = (Ws +Wg)x
(0)
v + (Wn +Wg)

∑
u∈N (v)

x(0)
u +Wg

∑
u∈V \N+(v)

x(0)
u + b

For u, v ≤ n define:

wu,v = (AuvWn +Wg)x
(0)
u 1u̸=v + (Ws +Wg)x

(0)
u 1u=v

Using this, we can rewrite:

yv =

n∑
u=1

wu,v + b

By assumption on the distribution from which we draw graphs with node features, the wu,v’s are
independent for any fixed v.

Now fix i ∈ {1, . . . , d(1)}. By Lemma A.2 and Lemma A.4 we have that each [wu,v]i is sub-
Gaussian. We therefore apply Hoeffding’s Inequality to the sum. Note that wu,v can have one of
two (sub-Gaussian) distributions, depending on whether u = v. Therefore, by Theorem A.1 and
Lemma A.3, there are constants c and K such that, no matter how many nodes n there are, we have
that:

P(|[yv]i − E[yv]i| ≥ t) = P

(∣∣∣∣∣
n∑

u=1

([wu,v]i − E[wu,v]i)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− ct2

K2n

)

Let’s now compute E[yv], by first computing E[wu,v]. When u = v we have that:

E[wv,v] = E[(Ws +Wg)x
(0)
v ]

= (Ws +Wg)E[x(0)
v ]

= (Ws +Wg)µ
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When u ̸= v we have, using the independence of Auv and xv:

E[wu,v] = E([AuvWn +Wg)x
(0)
u ]

= (E[Auv]Wn +Wg)E[x(0)
v ]

= (rWn +Wg)µ

Therefore (separating wv,v from wu,v for u ̸= v):

E[yv] =

n∑
u=1

E[wu,v] + b = (n− 1)(rWn +Wg)µ+ (Ws +Wg)µ+ b

Since M is synchronously saturating for G(n, r) and D(d), we know that [(rWn +Wg)µ]i ̸= 0.
Assume without loss of generality that [(rWn + Wg)µ]i > 0. Then the expected value of [yv]i
increases as n tends to infinity; moreover we have a bound on how much [yv]i can vary around its
expected value.

Recall that the non-linearity σ is eventually constant in both directions. In particular, it is constant
with value σ∞ above some x∞. When E[yv]i > x∞ the probability that [yv]i doesn’t surpass this
threshold is:

P([yv]i < x∞) ≤ P(|[yv]i − E[yv]i| > |x∞ − E[yv]i|)

≤ 2 exp

(
−c|x∞ − E[yv]i|2

K2n

)
There is a constant ρ such that |x∞ − E[yv]i| ≥ ρn. Hence for sufficiently large n (i.e. such that
E[yv]i > x∞):

P([yv]i < x∞) ≤ 2 exp

(
−cρ

2n2

K2n

)
= 2 exp

(
−cρ

2n

K2

)
Since the activation [xv]i = σ([yv]i), the probability that [xv]i takes value σ∞ is at least 1 −
2 exp

(
−cρ2n/K2

)
. Now, for each node v and each i ∈ {1, . . . , d(1)}, the activation [xv]i is either

σ∞ with high probability or σ−∞ with high probability. By taking a union bound, for sufficiently
large n the probability that every [xv]i takes its corresponding value is at least:

1− 2nd(1) exp

(
−cρ

2n

K2

)
This tends to 1 as n tends to infinity. In other words, there is z1 ∈ {σ−∞, σ∞}d(1) such that
x
(1)
v = z1 for every v asymptotically.

We now proceed to the second layer, and condition on the event that x(1)
v = z1 for every v. In this

case, we have that the second layer preactivation for node v is as follows.

y(2)
v = (W (2)

s + |N (v)|W (2)
n + nW (2)

g )z1 + b(2)

Since we’re in the situation where every x
(1)
u = z1, the degree |N (v)| is simply binomially distributed

Bin(n, r). The preactivation y
(2)
v then has expected value:

E[y(2)
v ] = n(rW (2)

n +W (2)
g )z1 +W (2)

s z1 + b(2)

Fix i ∈ {1, . . . , d(2)}. Since M is synchronously saturating for G(n, r) and D(d), we have that
[(rW

(2)
n +W

(2)
g )z1]i ̸= 0. Assume without loss of generality that [(rW (2)

n +W
(2)
g )z1]i > 0. Then

E[y(2)
v ]i tends to infinity as n increases.

Furthermore, we can view [n(rW
(2)
n + W

(2)
g )z1]i as the sum of n Bernoulli random variables

(which take values [(W (2)
n +W

(2)
g )z1]i and [W

(2)
g z1]i). Since by Lemma A.4 Bernoulli random

variables are sub-Gaussian, as in the first-layer case we can apply Hoeffding’s Inequality to bound
the probability that [y(2)

v ]i is less than x∞. We get that, for sufficiently large n, there is a constant K
such that this probability is bounded by 2 exp (−Kn).
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Then, as before, we find z2 ∈ {σ−∞, σ∞}d(2) such that, for sufficiently large n, every x
(2)
v = z2

with probability at least 1− 2nd exp (−Kn).
Finally, this argument is applied inductively through all layers. As the number of layers remains
constant (since M is fixed), we find that the node embeddings throughout the model are asymptotically
constant.

With the key lemma in place, we can now prove the main theorem.

Proof of Theorem 4.10. Applying Lemma 4.11 to the final layer, we find zT ∈ {σ−∞, σ∞}d(T ) such
that every x

(T )
v = zT with probability tending to 1. Since we use either average or component-wise

maximum pooling, then means that the final graph-level representation is asymptotically constant,
and thus the output of the classifier must be asymptotically constant.

D Proof of the uniform expressive power of SUMGNN+ with random features

We make use of a result due to Abboud et al. [1] which shows that SUMGNN+ models with random
features can approximate any graph invariant on graphs with a fixed number of nodes.
Definition D.1. Let f be a function on graphs, and let ζ be a random function on graphs. Take δ > 0
and N ∈ N. Then ζ δ-approximates f up to N if:

∀n ≤ N : P(ζ(G) = f(G) | |G| = n) ≥ 1− δ

For completeness, we state the definition of the linearized sigmoid here.
Definition D.2. The linearized sigmoid is the function R → R defined as follows:

x 7→

{ −1 if x ∈ (−∞,−1),
x if x ∈ [−1, 1),
1 otherwise.

Theorem D.3. Let ξ be any graph invariant. For every N ∈ N and δ > 0 there is a SUMGNN+ with
random features M which δ-approximates ξ up to N . Moreover, M uses the linearized sigmoid as
the non-linearity and the distribution of the initial node embeddings consists of d iid U [0, 1] random
variables.

Proof. See [1, Theorem 1].

With this result we can now prove the uniform expressivity result.

Proof of Theorem 5.2. First, ξ satisfies a zero-one law for G(n, 1/2). Without loss of generality
assume that ξ is asymptotically 1. There is N ∈ N such that for every n > N we have:

P(ξ(G) = 1 | G ∼ G(n, 1/2)) ≥ 1− δ

Note that this N depends on both ξ and δ.

Second, by Theorem D.3 there is a SUMGNN+ with random features M which δ-approximates ξ
up to N . Moreover, M′ uses the linearized sigmoid as the non-linearity and the distribution of the
initial node embeddings consists of d iid U [0, 1] random variables.

Using the global readout and the linearized sigmoid, we can condition the model behavior on the
number of nodes. We give a rough description of the model as follows. Define a SUMGNN+ with
random features M by extending M′ as follows.

• Increase the number of layers to at least three.

• Increase each embedding dimension by 1. For convenience call this the 0th component of
each embedding.

• Use the bias term in the first layer to ensure that the 0th component of the activation x
(1)
v for

each node v is 1.
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• Use the global readout to threshold the number of nodes on N . The 0th row of the matrix
W

(2)
g should have a 2 in the 0th position and 0’s elsewhere. The 0th component of the bias

vector b(2) should be 2N − 1. This ensures that the 0th component of every activation x
(2)
v

is 1 if n > N and −1 otherwise.

• Propagate this value through the 0th component of each layer embedding.

• In the final layer, use this value to decide whether to output what M′ would output, or
simply to output 1.

For any n ≤ N the model M behaves like M′. Therefore:

P(ξ(G) = M(G) | |G| = n) ≥ 1− δ

On the other hand, for n > N the model M simply outputs 1 and so:

P(ξ(G) = M(G) | |G| = n) = P(ξ(G) = 1 | |G| = n) ≥ 1− δ

Thus M uniformly δ-approximates ξ.

E Further Experiments

In this section, we focus on GCNs and provide further experiments regarding our results. In particular,
we pose the following questions:

1. Our theoretical results entail a zero-one law for a large class of distributions: do we empirically
observe a zero-one law when node features are instead drawn from a normal distribution
(Appendix E.1)?

2. Our theoretical results state a zero-one law for a large class of non-linearities: do we empirically
observe a zero-one law when considering other common non-linearities (Appendix E.2)?

3. Does a zero-one law also manifest itself empirically for GAT models (Appendix E.3)?
4. Do we empirically observe a zero-one law if we were to consider sparse Erdős-Rényi graphs

(Appendix E.4)?
5. Is there empirical evidence for our results to apply to other random graph models, such as the

Barabási-Albert model (Appendix E.5)?

E.1 Experiments with initial node features drawn from a normal distribution

Figure 2: Normally distributed random node features with GCN models. Each plot shows the
proportion of graphs of certain size which are classified as 1 by a set of ten GCN models. Each
curve (color-coded) shows the behavior of a model, as we draw increasingly larger graphs. The
phenomenon is observed for 1-layer models (left column), 2-layer models (mid column), and 3-layer
models (last column). We draw the initial features randomly from a normal distribution with mean
0.5 and standard deviation 1.

Here we consider using a normal distribution to draw our initial node features. Note that normal
distributions are sub-Gaussian, and hence our theoretical findings (Theorem 4.6) confer a zero-one
law in this case. Figure 2 demonstrates the results for GCN models. We observe the expected
asymptotic behavior in most cases, however in the two and three layer cases a few models have not
converged by the end of the experiment.
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E.2 Experiments with other non-linearities

In this subsection we test the effect of using different non-linearities in the layers of our GCN models.
Theorem 4.6 applies in all of these cases, so we do expect to see a zero-one law. Figures 3 to 5
present the results for ReLU, tanh and sigmoid, respectively. We see the expected behavior in all
cases. Note however that, in contrast with other non-linearities, when we use sigmoid we observe
that the rate of convergence actually increases as the number of layers increases. This suggests a
complex relationship between the rate of convergence, the non-linearity and the number of layers.

Figure 3: GCN models with ReLU non-linearity. Each plot shows the proportion of graphs of certain
size which are classified as 1 by a set of ten GCN models. Each curve (color-coded) shows the
behavior of a model, as we draw increasingly larger graphs. The phenomenon is observed for 1-layer
models (left column), 2-layer models (mid column), and 3-layer models (last column). This time we
choose the ReLU activation function for the GNN layers. Apart from this, the setup is the same as in
the main body of the paper.

Figure 4: GCN models with tanh non-linearity. Each plot shows the proportion of graphs of certain
size which are classified as 1 by a set of ten GCN models. Each curve (color-coded) shows the
behavior of a model, as we draw increasingly larger graphs. The phenomenon is observed for 1-layer
models (left column), 2-layer models (mid column), and 3-layer models (last column). We use tanh
as an activation function for the GNN layers, and keep everything else the same.

Figure 5: GCN models with sigmoid non-linearity. Each plot shows the proportion of graphs of
certain size which are classified as 1 by a set of ten GCN models. Each curve (color-coded) shows
the behavior of a model, as we draw increasingly larger graphs. The phenomenon is observed for
1-layer models (left column), 2-layer models (mid column), and 3-layer models (last column). We
use the sigmoid activation function for the GNN layers, and keep everything else the same.
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E.3 Experiments with GAT

Here we investigate the asymptotic behaviour of a GNN architecture not considered in the main body:
the Graph Attention Network [37]. Cast as an MPNN, this architecture uses an attention mechanism
as the aggregate function ϕ in the message passing step. The techniques used in this paper to establish
a zero-one law for other GNN architectures do not easily extend to GAT. However, our experiments
demonstrate a very quick convergence to 0 or 1.

Figure 6: Ten GAT models with number of layers 1, 2 and 3 are run on graphs of increasing size,
with the proportion of nodes classified as 1 recorded. We observe a convergence to zero-one law very
quickly.

E.4 Experiments on sparse Erdős-Rényi graphs

In these experiments, we consider GCN models on a variation of the Erdős-Rényi distribution in
which the edge probability r is allowed to vary as a function of n. Specifically, we set r = log(n)/n,
which yields sparser graphs than in the standard distribution. Our experiments provide evidence for a
zero-one law also in this case (Figure 7).

Figure 7: Sparse Erdős-Rényi graphs with GCN models. Each plot shows the proportion of graphs
of certain size which are classified as 1 by a set of ten GCN models. Each curve (color-coded) shows
the behavior of a model, as we draw increasingly larger graphs. The phenomenon is observed for
1-layer models (left column), 2-layer models (mid column), and 3-layer models (last column). We
let the probability r of an edge appearing be log(n)

n . All the other parameters are the same as in the
experiments of the main body of the paper.

E.5 Experiments on the Barabási-Albert random graph model

In this subsection, we consider another alternative graph distribution: the Barabási-Albert model [3].
This model aims to better capture the degree distributions commonly found in real-world networks.
We can again observe a zero-one law for GCN models under this distribution (Figure 8).
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Figure 8: Barabási-Albert graphs with GCN models. Each plot shows the proportion of graphs of
certain size which are classified as 1 by a set of ten GCN models. Each curve (color-coded) shows
the behavior of a model, as we draw increasingly larger graphs. The phenomenon is observed for
1-layer models (left column), 2-layer models (mid column), and 3-layer models (last column). We
generate the graphs using the Barabási-Albert model; apart from this the setup is the main as in the
experiments in the main body of the paper.
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