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Abstract

An accurate environment dynamics model is crucial for various downstream tasks
in sequential decision-making, such as counterfactual prediction, off-policy eval-
uation, and offline reinforcement learning. Currently, these models were learned
through empirical risk minimization (ERM) by step-wise fitting of historical transi-
tion data. This way was previously believed unreliable over long-horizon rollouts
because of the compounding errors, which can lead to uncontrollable inaccuracies
in predictions. In this paper, we find that the challenge extends beyond just long-
term prediction errors: we reveal that even when planning with one step, learned
dynamics models can also perform poorly due to the selection bias of behavior
policies during data collection. This issue will significantly mislead the policy
optimization process even in identifying single-step optimal actions, further leading
to a greater risk in sequential decision-making scenarios. To tackle this problem,
we introduce a novel model-learning objective called adversarial weighted em-
pirical risk minimization (AWRM). AWRM incorporates an adversarial policy
that exploits the model to generate a data distribution that weakens the model’s
prediction accuracy, and subsequently, the model is learned under this adversarial
data distribution. We implement a practical algorithm, GALILEO, for AWRM and
evaluate it on two synthetic tasks, three continuous-control tasks, and a real-world
application. The experiments demonstrate that GALILEO can accurately predict
counterfactual actions and improve various downstream tasks, including offline
policy evaluation and improvement, as well as online decision-making.

1 Introduction
A good environment dynamics model for action-effect prediction is essential for many downstream
tasks. For example, humans or agents can leverage this model to conduct simulations to understand
future outcomes, evaluate other policies’ performance, and discover better policies. With environment
models, costly real-world trial-and-error processes can be avoided. These tasks are vital research
problems in counterfactual predictions [52, 1], off-policy evaluation (OPE) [32, 35], and offline
reinforcement learning (Offline RL) [31, 59, 12, 13, 10]. In these problems, the core role of the
models is to answer queries on counterfactual data unbiasedly, that is, given states, correctly answer
what might happen if we were to carry out actions unseen in the training data. However, addressing
counterfactual queries differentiates environment model learning from standard supervised learning
(SL), which directly fits the offline dataset for empirical risk minimization (ERM). In essence,
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Figure 1: An example of selection bias and predictions under counterfactual queries. Suppose
a ball locates in a 2D plane whose position is st = (xt, yt) at time t. The ball will move to
st+1 = (xt+1, yt+1) according to xt+1 = xt + 1 and yt+1 ∼ N (yt + at, 2). Here, at is chosen
by a control policy at ∼ πϕ(a|st) = N ((ϕ − yt)/15, 0.05) parameterized by ϕ, which tries to
keep the ball near the line y = ϕ. In Fig. 1(a), the behavior policy µ is π62.5. Fig. 1(b) shows the
collected training data and the learned models’ prediction of the next position of y. Besides, the
dataset superfacially presents the relation that the corresponding next y will be smaller with a larger
action. However, the truth is not because the larger at causes a smaller yt+1, but the policy selects a
small at when yt is close to the target line. Mistakenly exploiting the “association” will lead to
local optima with serious factual errors, e.g., believed that yt+1 ∝ π−1

ϕ (yt|a) + at ∝ ϕ− 14at,
where π−1

ϕ is the inverse function of πϕ. When we estimate the response curves by fixing yt and
reassigning action at with other actions at +∆a, where ∆a ∈ [−1, 1] is a variation of action value,
we found that the model of SL indeed exploit the association and give opposite responses, while in
AWRM and its practical implementation GALILEO, the predictions are closer to the ground truths
(yt+1 ∝ yt + at). The result is in Fig. 1(c), where the darker a region is, the more samples are
fallen in. AWRM injects data collected by adversarial policies for model learning to eliminate the
unidentifiability between yt+1 ∝ π−1

ϕ (yt|a) + at and wyt+1 ∝ yt + at in offline data.

the problem involves training the model on one dataset and testing it on another with a shifted
distribution, specifically, the dataset generated by counterfactual queries. This challenge surpasses
the SL’s capability as it violates the independent and identically distributed (i.i.d.) assumption [31].
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Figure 2: An illustration of the prediction
error in counterfactual datasets. The error
of SL is small only in training data (ϕ =
62.5) but becomes much larger in the dataset
“far away from” the training data. AWRM-
oracle selects the oracle worst counterfactual
dataset for training for each iteration (pseu-
docode is in Alg. 2) which reaches small
MSE in all datasets and gives correct re-
sponse curves (Fig. 1(c)). GALILEO approx-
imates the optimal adversarial counterfactual
data distribution based on the training data
and model. Although the MSE of GALILEO
is a bit larger than SL in the training data, in
the counterfactual datasets, the MSE is on
the same scale as AWRM-oracle.

In this paper, we concentrate on faithful dynamics
model learning in sequential decision-making settings
like RL. Specifically, we first highlight a distinct situ-
ation of distribution shift that can easily lead to catas-
trophic failures in the model’s predictions: In many
real-world applications, offline data is often gathered
using a single policy with exhibiting selection bias,
meaning that, for each state, actions are chosen un-
fairly. As illustrated in Fig. 1(a), to maintain the ball’s
trajectory along a target line, a behavior policy applies
a smaller force when the ball’s location is nearer to
the target line. When a dataset is collected with such
selection bias, the association between the states (loca-
tion) and actions (force) will make SL hard to identify
the correct causal relationship of the states and actions
to the next states respectively (see Fig. 1(c)). Then
when we query the model with counterfactual data, the
predictions might be catastrophic failures. Finally, of-
fline policy optimization based on this SL model, even
for just seeking one-step optimal actions, will select
also a totally opposite direction of policy improve-
ment, making the offline policy learning system fail.
The selection bias can be regarded as an instance of the
distributional-shift problem in offline model-based RL,
which has also received great attention [31, 59, 14, 34].
However, previous methods employing naive super-
vised learning for environment model learning tend to overlook this issue during the learning process,

2



addressing it instead by limiting policy exploration and learning in high-risk regions. So far, how to
learn a faithful environment model that can alleviate the problem directly has rarely been discussed.

In this work, we focus on faithful environment model learning techniques. The work is first inspired
by weighted empirical risk minimization (WERM), which is a typical solution to solve the selection
bias problem in causal inference for individual treatment effects (ITEs) estimation in many scenarios
like patients’ treatment selection [26, 1, 41]. ITEs measure the effects of treatments on individuals
by administering treatments uniformly and evaluating the differences in outcomes. To estimate
ITEs from offline datasets with selection bias, they estimate an inverse propensity score (IPS) to
reweight the training data, approximating the data distribution under a uniform policy, and train the
model under this reweighted distribution. Compared with ITEs estimation, the extra challenge of
faithful model learning in sequential decision-making settings include: (1) the model needs to answer
queries on numerous different policies, resulting in various and unknown target data distributions
for reweighting, and (2) the IPS should account for the cumulative effects of behavior policies on
state distribution rather than solely focusing on bias of actions. To address these issues, we propose
an objective called adversarial weighted empirical risk minimization (AWRM). For each iteration,
AWRM employs adversarial policies to construct an adversarial counterfactual dataset that maximizes
the model’s prediction error, and drive the model to reduce the prediction risks under the adversarial
counterfactual data distribution. However, obtaining the adversarial counterfactual data distribution
is infeasible in the offline setting. Therefore, we derive an approximation of the counterfactual
data distribution queried by the optimal adversarial policy and provide a tractable solution to learn
a model from the approximated data distribution. As a result, we propose a practical approach
named Generative Adversarial offLIne counterfactuaL Environment mOdel learning (GALILEO)
for AWRM. Fig. 2 illustrates the difference in the prediction errors learned by these algorithms.

Experiments are conducted in two synthetic tasks, three continuous-control tasks, and a real-world
application. We first verify that GALILEO can make accurate predictions on counterfactual data
queried by other policies compared with baselines. We then demonstrate that the model learned by
GALILEO is helpful to several downstream tasks including offline policy evaluation and improvement,
and online decision-making in a large-scale production environment.

2 Preliminaries
We first introduce weighted empirical risk minimization (WERM) through inverse propensity scoring
(IPS), which is commenly used in individualized treatment effects (ITEs) estimation [43]. It can
be regarded as a scenario of single-step model learning . We define M∗(y|x, a) as the one-step
environment, where x denotes the state vector containing pre-treatment covariates (such as age and
weight), a denotes the treatment variable which is the action intervening with the state x, and y is
the feedback of the environment. When the offline dataset is collected with a behavior policy µ(a|x)
which has selection bias, a classical solution to handle the above problem is WERM through IPS
ω [48, 3, 29]:

Definition 2.1. The learning objective of WERM through IPS is formulated as

min
M∈M

Ex,a,y∼pµ
M∗ [ω(x, a)ℓ(M(y|x, a), y)], (1)

where ω(x, a) := β(a|x)
µ(a|x) , β and µ denote the policies in testing and training domains, and the joint

probability pµM∗(x, a, y) := ρ0(x)µ(a|x)M∗(y|x, a) in which ρ0(x) is the distribution of state.M
is the model space. ℓ is a loss function.

The ω is also known as importance sampling (IS) weight, which corrects the sampling bias by aligning
the training data distribution with the testing data. By selecting different ω̂ to approximate ω to learn
the model M , current environment model learning algorithms employing reweighting are fallen into
the framework. For standard ITEs estimation, ω = 1

µ̂ (i.e., β is a uniform policy) for balancing
treatments, where µ̂ is an approximated behavior policy µ. Note that it is a reasonable weight in ITEs
estimation: ITEs are defined to evaluate the differences of effect on each state under a uniform policy.

In sequential decision-making setting, decision-making processes in a sequential environment are
often formulated into Markov Decision Process (MDP) [51]. MDP depicts an agent interacting
with the environment through actions. In the first step, states are sampled from an initial state
distribution x0 ∼ ρ0(x). Then at each time-step t ∈ {0, 1, 2, ...}, the agent takes an action at ∈ A
through a policy π(at|xt) ∈ Π based on the state xt ∈ X , then the agent receives a reward rt from
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a reward function r(xt, at) ∈ R and transits to the next state xt+1 given by a transition function
M∗(xt+1|xt, at) built in the environment. Π, X , and A denote the policy, state, and action spaces.

3 Related Work
We give related adversarial algorithms for model learning in the following and leave other related work
in Appx. F. In particular, ITEs in Rubin causal model [48] and causal effect estimation in structural
causal model [38] attracted widespread attention in recent years [56, 55, 58, 7]. GANTIE [58] uses a
generator to fill counterfactual outcomes for each data pair and a discriminator to judge the source
(treatment group or control group) of the filled data pair. The generator is trained to minimize the
output of the discriminator. [7] propose SCIGAN to extend GANITE to continuous ITEs estimation
via a hierarchical discriminator architecture. In real-world applications, environment model learning
based on Generative Adversarial Imitation Learning (GAIL) has also been adopted for sequential
decision-making problems [25]. GAIL is first proposed for policy imitation [25], which uses the
imitated policy to generate trajectories by interacting with the environment. The policy is learned
with the trajectories through RL which maximizes the cumulative rewards given by the discriminator.
[47, 11] use GAIL for environment model learning by regarding the environment model as the
generator and the behavior policy as the “environment” in standard GAIL. [16] further inject the
technique into a unified objective for model-based RL, which joints model and policy optimization.
Our study reveals the connection between adversarial model learning and the WERM through IPS,
where previous adversarial model learning methods can be regarded as partial implementations of
GALILEO, explaining the effectiveness of the former.

4 Adversarial Counterfactual Environment Model Learning
In this section, we first propose a new offline model-learning objective for sequential decision-making
setting in Sec. 4.1; In Sec. 4.2, we give a surrogate objective to the proposed objective; Finally, we
give a practical solution in Sec. 4.3.

4.1 Problem Formulation

In scenarios like offline policy evaluation and improvement, it is crucial for the environment model to
have generalization ability in counterfactual queries, as we need to query accurate feedback from
M for numerous different policies. Referring to the formulation of WERM through IPS in Def. 2.1,
these requirements necessitate minimizing counterfactual-query risks for M under multiple unknown
policies, rather than focusing on a specific target policy β. More specifically, the question is: If β is
unknown and can be varied, how can we generally reduce the risks in counterfactual queries? In this
article, we call the model learning problem in this setting “counterfactual environment model learning”
and propose a new objective to address the issue. To be compatible with multi-step environment
model learning, we first define a generalized WERM through IPS based on Def. 2.1:
Definition 4.1. In an MDP, given a transition function M∗ that satisfies M∗(x′|x, a) > 0,∀x ∈
X ,∀a ∈ A,∀x′ ∈ X and µ satisfies µ(a|x) > 0,∀a ∈ A,∀x ∈ X , the learning objective of
generalized WERM through IPS is:

min
M∈M

Ex,a,x′∼ρµ
M∗ [ω(x, a, x

′)ℓM (x, a, x′)], (2)

where ω(x, a, x′) =
ρβ
M∗ (x,a,x

′)

ρµ
M∗ (x,a,x′)

, ρµM∗ and ρβM∗ the training and testing data distributions collected
by policy µ and β respectively. We define ℓM (x, a, x′) := ℓ(M(x′|x, a), x′) for brevity.

In an MDP, for any given policy π, we have ρπM∗(x, a, x′) = ρπM∗(x)π(a|x)M∗(x′|x, a) where
ρπM∗(x) denotes the occupancy measure of x for policy π. This measure can be defined as (1 −
γ)Ex0∼ρ0 [

∑∞
t=0 γ

tPr(xt = x|x0,M
∗)] [51, 25] where Prπ [xt = x|x0,M

∗] is the discounted state
visitation probability that the policy π visits x at time-step t by executing in the environment M∗

and starting at the state x0. Here γ ∈ [0, 1] is the discount factor. We also define ρπM∗(x, a) :=
ρπM∗(x)π(a|x) for simplicity.

With this definition, ω can be rewritten: ω =
ρβ
M∗ (x)β(a|x)M∗(x′|x,a)

ρµ
M∗ (x)µ(a|x)M∗(x′|x,a) =

ρβ
M∗ (x,a)

ρµ
M∗ (x,a)

. In single-step

environments, for any policy π, ρπM∗(x) = ρ0(x). Consequently, we obtain ω = ρ0(x)β(a|x)
ρ0(x)µ(a|x) =

β(a|x)
µ(a|x) ,

and the objective degrade to Eq. (1). Therefore, Def. 2.1 is a special case of this generalized form.
Remark 4.2. ω is referred to as density ratio and is commonly used to correct the weighting of
rewards in off-policy datasets to estimate the value of a specific target policy in off-policy evaluation
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[35, 60]. Recent studies in offline RL also provide similar evidence through upper bound analysis,
suggesting that offline model learning should be corrected to specific target policies’ distribution
using ω [57]. We derive the objective from the perspective of selection bias correlation, further
demonstrate the necessity and effects of this term.

In contrast to previous studies, in this article, we would like to propose an objective for faithful
model learning which can generally reduce the risks in counterfactual queries in scenarios where β
is unknown and can be varied. To address the problem, we introduce adversarial policies that can
iteratively induce the worst prediction performance of the current model and propose to optimize
WERM under the adversarial policies. In particular, we propose Adversarial Weighted empirical
Risk Minimization (AWRM) based on Def. 4.1 to handle this problem.
Definition 4.3. Given the MDP transition function M∗, the learning objective of adversarial weighted
empirical risk minimization through IPS is formulated as

min
M∈M

max
β∈Π

L(ρβM∗ ,M) = min
M∈M

max
β∈Π

Ex,a,x′∼ρ
µ
M∗

[ω(x, a|ρβM∗)ℓM (x, a, x′)], (3)

where ω(x, a|ρβM∗) =
ρβ
M∗ (x,a)

ρµ
M∗ (x,a)

, and the re-weighting term ω(x, a|ρβM∗) is conditioned on the

distribution ρβM∗ of the adversarial policy β. In the following, we will ignore ρβM∗ and use ω(x, a)
for brevity.
In a nutshell, Eq. (3) minimizes the maximum model loss under all counterfactual data distributions
ρβM∗ , β ∈ Π to guarantee the generalization ability for counterfactual queried by policies in Π.

4.2 Surrogate AWRM through Optimal Adversarial Data Distribution Approximation

The main challenge of solving AWRM is constructing the data distribution ρβ
∗

M∗ of the best-response
policy β∗ in M∗ since obtaining additional data from M∗ can be expensive in real-world applications.
In this paper, instead of deriving the optimal β∗, our solution is to offline estimate the optimal
adversarial distribution ρβ

∗

M∗(x, a, x′) with respect to M , enabling the construction of a surrogate
objective to optimize M without directly querying the real environment M∗.

In the following, we select ℓM as the negative log-likelihood loss for our full derivation, instantiating
L(ρβM∗ ,M) in Eq. (3) as: Ex,a∼ρµ

M∗ [ω(x, a|ρ
β
M∗)EM∗ (− logM(x′|x, a))], where EM∗ [·] denotes

Ex′∼M∗(x′|x,a) [·]. Ideally, for any given M , it is obvious that the optimal β is the one that makes
ρβM∗(x, a) assign all densities to the point with the largest negative log-likelihood. However, this
maximization process is impractical, particularly in continuous spaces. To provide a tractable yet
relaxed solution, we introduce an L2 regularizer to the original objective in Eq. (3).

min
M∈M

max
β∈Π

L̄(ρβM∗ ,M) = min
M∈M

max
β∈Π

L(ρβM∗ ,M)− α

2
∥ρβM∗(·, ·)∥22, (4)

where α denotes the regularization coefficient of ρβM∗ and ∥ρβM∗(·, ·)∥22 =
∫
X ,A(ρ

β
M∗(x, a))2dadx.

Now we present the final results and the intuitions behind them, while providing a full deriva-
tion in Appx.A. Suppossing we have ρ̄β̄

∗

M∗ representing the approximated data distribution of the
approximated best-response policy β̄∗ under model Mθ parameterized by θ, we can find the op-
timal θ∗ of minθ maxβ∈Π L̄(ρβM∗ ,Mθ) (Eq. (4)) through iterative optimization of the objective
θt+1 = minθ L̄(ρ̄

β̄∗

M∗ ,Mθ). To this end, we approximate ρ̄β̄
∗

M∗ via the last-iteration model Mθt and
derive an upper bound objective for minθ L̄(ρ̄

β̄∗

M∗ ,Mθ):

θt+1 = min
θ

Eρ
µ
M∗

[
−1

α0(x, a)
logMθ(x

′|x, a)

(
f

(
ρµMθt

(x, a, x′)

ρµM∗(x, a, x′)

)
︸ ︷︷ ︸

discrepancy

− f

(
ρµMθt

(x, a)

ρµM∗(x, a)

)
︸ ︷︷ ︸

density−ratio baseline

+HM∗(x, a)︸ ︷︷ ︸
stochasticity

)

︸ ︷︷ ︸
W (x,a,x′)

]
,

(5)

where Eρµ
M∗ [·] denotes Ex,a,x′∼ρµ

M∗ [·], f is a convex and lower semi-continuous (l.s.c.) function
satisfying f ′(x) ≤ 0,∀x ∈ X , which is also called f function in f -divergence [2], α0(x, a) =
αMθt

ρµM∗(x, a), and HM∗(x, a) denotes the entropy of M∗(·|x, a).
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Remark 4.4 (Intuition of W ). After derivation, we found that the optimal adversarial data distribution
can be approximated by ρ̄β̄

∗

M∗(x, a) =
∫
X ρµM∗(x, a, x′)W (x, a, x′)dx′ (see Appx. A), leading to

the upper-bound objective Eq. (5), which is a WERM dynamically weighting by W . Intuitively,
W assigns more learning propensities for data points with (1) larger discrepancy between ρµMθt

(generated by model) and ρµM∗ (real-data distribution), or (2) larger stochasticity of the real model
M∗. The latter is contributed by the entropy HM∗ , while the former is contributed by the first
two terms combined. In particular, through the definition of f -divergence, we known that the
discrepancy of two distribution P and Q can be measured by

∫
X Q(x)f(P (x)/Q(x))dx, thus the

terms f(ρµMθt
(x, a, x′)/ρµM∗(x, a, x′)) can be interpreted as the discrepancy measure unit between

ρµMθt
(x, a, x′) and ρµM∗(x, a, x′), while f(ρµMθt

(x, a)/ρµM∗(x, a)) serves as a baseline on x and a

measured by f to balance the discrepancy contributed by x and a, making M focus on errors on x′.

In summary, by adjusting the weights W , the learning process will iteratively exploit subtle errors of
the current model in any data point, regardless of how many proportions it contributes in the original
data distribution, to eliminate potential unidentifiability on counterfactual data caused by selection
bias.

4.3 Tractable Solution

In Eq. (5), the terms f(ρµMθt
(x, a, x′)/ρµM∗(x, a, x′))−f(ρµMθt

(x, a)/ρµM∗(x, a)) are still intractable.
Thanks to previous successful practices in GAN [19] and GAIL [25], we achieve the objective via a
generator-discriminator-paradigm objective through similar derivation. We show the results as follows
and leave the complete derivation in Appx. A.4. In particular, by introducing two discriminators
Dφ∗

0
(x, a, x′) and Dφ∗

0
(x, a), we can optimize the surrogate objective Eq. (5) via:

θt+1 =max
θ

(
E
ρ
µ̂
Mθt

[
Aφ∗

0 ,φ
∗
1
(x, a, x′) logMθ(x

′|x, a)
]
+ Eρ

µ
M∗

[
(HM∗(x, a)−Aφ∗

0 ,φ
∗
1
(x, a, x′)) logMθ(x

′|x, a)
] )

s.t. φ∗
0 = argmax

φ0

(
Eρ

µ
M∗

[
logDφ0(x, a, x

′)
]
+ E

ρ
µ̂
Mθt

[
log(1−Dφ0(x, a, x

′))
] )

φ∗
1 = argmax

φ1

(
Eρ

µ
M∗

[logDφ1(x, a)] + E
ρ
µ̂
Mθt

[log(1−Dφ1(x, a))]
)
, (6)

where Eρµ
M
[·] is a simplification of Ex,a,x′∼ρµ

M
[·], Aφ∗

0 ,φ
∗
1
(x, a, x′) = logDφ∗

0
(x, a, x′) −

logDφ∗
1
(x, a), and φ0 and φ1 are the parameters of Dφ0

and Dφ1
respectively. We learn a pol-

icy µ̂ ≈ µ via imitation learning based on the offline dataset Dreal [40, 25]. Note that in the process,
we ignore the term α0(x, a) for simplifying the objective. The discussion on the impacts of removing
α0(x, a) is left in App. B.

Generated
data 

Offline
data      

(2) update discriminators

Discriminator Dynamics model

(1) data generation

rollout with the behavior policy 

adversarial
reweighting        

(3) update the dynamics model

Figure 3: Illustration of the GALILEO workflow.

The overall optimization pipeline is illus-
tration in Fig. 3. In Eq. (6), the reweighting
term W from Eq. (5) is split into two terms
in the RHS of the equation: the first term
is a GAIL-style objective [25], treating Mθ

as the policy generator, µ̂ as the environ-
ment, and A as the advantage function,
while the second term is WERM through
HM∗ − Aφ∗

0 ,φ
∗
1
. The first term resembles

the previous adversarial model learning ob-
jectives [46, 47, 11]. These two terms have
intuitive explanations: the first term assigns
learning weights on data generated by the
model Mθt . If the predictions of the model
appear realistic, mainly assessed by Dφ∗

0
,

the propensity weights would be increased,
encouraging the model to generate more
such kind of data; Conversely, the second term assigns weights on real data generated by M∗. If the
model’s predictions seem unrealistic (mainly assessed by −Dφ∗

0
) or stochastic (evaluated by HM∗ ),

the propensity weights will be increased, encouraging the model to pay more attention to these real
data points when improving the likelihoods.
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Figure 4: Illustration of the performance in GNFC and TCGA. The grey bar denotes the standard
error (×0.3 for brevity) of 3 random seeds.

Based on the above implementations, we propose Generative Adversarial offLIne counterfactuaL
Environment mOdel learning (GALILEO) for environment model learning. We list a brief of
GALILEO in Alg. 1 and the details in Appx. E.

Algorithm 1 Pseudocode for GALILEO

Input:
Dreal: offline dataset sampled from ρµM∗ where µ is the behavior policy; N : total iterations;
Process:

1: Approximate a behavior policy µ̂ via behavior cloning through offline dataset Dreal

2: Initialize an environment model Mθ1
3: for t = 1 : N do
4: Use µ̂ to generate a dataset Dgen with the model Mθt
5: Update the discriminators Dφ0 and Dφ1 through the second and third equations in Eq. (6)

where ρµ̂Mθt
is estimated by Dgen and ρµM∗ is estimated by Dreal

6: Generative adversarial training for Mθt by regarding Aφ∗
0 ,φ

∗
1

as the advantage function
and computing the gradient to Mθt , named gpg, with a standard policy gradient method like
TRPO [44] or PPO [45] based on Dgen.

7: Regard HM∗ −Aφ∗
0 ,φ

∗
1

as the reweighting term for WERM and compute the gradient to Mθt
based on Dreal. Record it as gsl.

8: Update the model θt+1 ← θt + gpg + gsl.
9: end for

5 Experiments

In this section, we first conduct experiments in two synthetic environments to quantify the performance
of GALILEO on counterfactual queries 3. Then we deploy GALILEO in two complex environments:
MuJoCo in Gym [53] and a real-world food-delivery platform to test the performance of GALILEO in
difficult tasks. The results are in Sec. 5.2. Finally, to further verify the abiliy GALILEO, in Sec. 5.3,
we apply models learned by GALILEO to several downstream tasks including off-policy evaluation,
offline policy improvement, and online decision-making in production environment. The algorithms
compared are: (1) SL: using standard empirical risk minimization for model learning; (2) IPW [50]: a
standard implementation of WERM based IPS; (3) SCIGAN [7]: an adversarial algorithms for model
learning used for causal effect estimation, which can be roughly regarded as a partial implementation
of GALILEO (Refer to Appx. E.2). We give a detailed description in Appx. G.2.

5.1 Environment Settings
Synthetic Environments Previous experiments on counterfactual environment model learning are
based on single-step semi-synthetic data simulation [7]. As GALILEO is compatible with single-step
environment model learning, we first benchmark GALILEO in the same task named TCGA as
previous studies do [7]. Based on the three synthetic response functions, we construct 9 tasks by
choosing different parameters of selection bias on µ which is constructed with beta distribution, and

3code https://github.com/xionghuichen/galileo.
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design a coefficient c to control the selection bias. We name the tasks with the format of “t?_bias?”.
For example, t1_bias2 is the task with the first response functions and c = 2. The details of
TCGA is in Appx. G.1.2. Besides, for sequential environment model learning under selection bias,
we construct a new synthetic environment, general negative feedback control (GNFC), which can
represent a classic type of task with policies having selection bias, where Fig. 1(a) is also an instance
of GNFC. We construct 9 tasks on GNFC by adding behavior policies µ with different scales of
uniform noise U(−e, e) with probabilities p. Similarly, we name them with the format “e?_p?”.
Continuous-control Environments We select 3 MuJoCo environments from D4RL [17] to con-
struct our model learning tasks. We compare it with a standard transition model learning algorithm
used in the previous offline model-based RL algorithms [59, 30], which is a standard supervised
learning. We name the method OFF-SL. Besides, we also implement IPW and SCIGAN as the base-
lines. In D4RL benchmark, only the “medium” tasks is collected with a fixed policy, i.e., the behavior
policy is with 1/3 performance to the expert policy), which is most matching to our proposed problem.
So we train models in datasets HalfCheetah-medium, Walker2d-medium, and Hopper-medium.
A Real-world Large-scale Food-delivery Platform We finally deploy GALILEO in a real-world
large-scale food-delivery platform. We focus on a Budget Allocation task to the Time period (BAT)
in the platform (see Appx. G.1.3 for details). The goal of the BAT task is to handle the imbalance
problem between the demanded orders from customers and the supply of delivery clerks in different
time periods by allocating reasonable allowances to those time periods. The challenge of the
environment model learning in BAT tasks is similar to the challenge in Fig. 1: the behavior policy is
a human-expert policy, which tends to increase the budget of allowance in the time periods with a
lower supply of delivery clerks, otherwise tends to decrease the budget (We gives a real-data instance
in Appx. G.1.3).

5.2 Prediction Accuracy on Shifted Data Distributions
Test in Synthetic Environments For all of the tasks, we select mean-integrated-square error
MISE = E

[∫
A (M∗(x′|x, a)−M(x′|x, a))2 da

]
as the metric, which is a metric to measure

the accuracy in counterfactual queries by considering the prediction errors in the whole action
space. The results are summarized in Fig. 4 and the detailed results can be found in Appx. H. The
results show that the property of the behavior policy (i.e., e and p) dominates the generalization
ability of the baseline algorithms. When e = 0.05, almost all of the baselines fail and give a
completely opposite response curve, while GALILEO gives the correct response. (see Fig. 5). IPW
still performs well when 0.2 ≤ e ≤ 1.0 but fails when e = 0.05, p <= 0.2. We also found
that SCIGAN can reach a better performance than other baselines when e = 0.05, p <= 0.2,
but the results in other tasks are unstable. GALILEO is the only algorithm that is robust to the
selection bias and outputs correct response curves in all of the tasks. Based on the experiment,
we also indicate that the commonly used overlap assumption is unreasonable to a certain extent
especially in real-world applications since it is impractical to inject noises into the whole action space.
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Figure 5: Illustration
of the averaged re-
sponse curves in task
e0.05_p0.2.

The problem of overlap assumption being violated, e.g., e < 1 in our setting,
should be taken into consideration otherwise the algorithm will be hard to use
in practice if it is sensitive to the noise range. On the other hand, we found
the phenomenon in TCGA experiment is similar to the one in GNFC, which
demonstrates the compatibility of GALILEO to single-step environments.

We also found that the results of IPW are unstable in TCGA experiment. It
might be because the behavior policy is modeled with beta distribution while
the propensity score µ̂ is modeled with Gaussian distribution. Since IPW
directly reweight loss with 1

µ̂ , the results are sensitive to the error of µ̂.

Finally, we plot the averaged response curves which are constructed by
equidistantly sampling action from the action space and averaging the feed-
back of the states in the dataset as the averaged response. One result is
in Fig. 5 (all curves can be seen in Appx. H). For those tasks where base-
lines fail in reconstructing response curves, GALILEO not only reaches a better MISE score but
reconstructs almost exact responses, while the baselines might give completely opposite responses.
Test in MuJoCo Benchmarks We test the prediction error of the learned model in corresponding
unseen “expert” and “medium-replay” datasets. Fig. 6 illustrates the results in halfcheetah. We can
see that all algorithms perform well in the training datasets. OFF-SL can even reach a bit lower
error. However, when we verify the models through “expert” and “medium-replay” datasets, which
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Figure 6: Illustration of learning curves of the halfcheetah tasks (full results are in Appx. H.5). The
figures with titles ending in “(train)” means the dataset is used for training while the titles ending in
“(test)” means the dataset is just used for testing. The X-axis records the steps of the environment
model update, and the Y-axis is the prediction errors in the corresponding steps evaluated by the
datasets. The solid curves are the mean reward and the shadow is the standard error of three seeds.

are collected by other policies, the performance of GALILEO is more stable and better than all
other algorithms. As the training continues, the baseline algorithms even gets worse and worse. The
phenomenon are similar among three datasets, and we leave the full results in Appx. H.5.

0.0 0.2 0.4 0.6 0.8 1.0
normalized allocated allowances

0.90

0.92

0.94

0.96

0.98

1.00

re
sc

al
ed

 a
ve

ra
ge

d 
re

sp
on

se

GALILEO
SL

(a) response curves in City A

0.0 0.2 0.4 0.6 0.8 1.0
cumulative samples (rescaled to 1)

1.0

0.5

0.0

0.5

1.0

re
sc

al
ed

 c
um

ul
at

iv
e 

tre
at

m
en

t e
ffe

ct
s

random
GALILEO
SL

(b) AUUC curves

0 5 10 15 20
day number

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

re
sc

al
ed

 fi
ve

-m
in

ut
e 

or
de

r-
ta

ke
n 

ra
te

treatment group (GALILEO)
control group
the day starting A/B test

(c) A/B test in the City A
Figure 7: Parts of the results in BAT tasks. Fig. 7(a) demonstrate the averaged response curves of
the SL and GALILEO model in City A. It is expected to be monotonically increasing through our
prior knowledge. In Fig. 7(b) show the AUCC curves, where the model with larger areas above the
“random” line makes better predictions in randomized-controlled-trials data [61].

Test in a Real-world Dataset We first learn a model to predict the supply of delivery clerks
(measured by fulfilled order amount) on given allowances. Although the SL model can efficiently
fit the offline data, the tendency of the response curve is easily to be incorrect. As can be seen in
Fig. 7(a), with a larger budget of allowance, the prediction of the supply is decreased in SL, which
obviously goes against our prior knowledge. This is because, in the offline dataset, the corresponding
supply will be smaller when the allowance is larger. It is conceivable that if we learn a policy through
the model of SL, the optimal solution is canceling all of the allowances, which is obviously incorrect
in practice. On the other hand, the tendency of GALILEO’s response is correct. In Appx. H.7, we
plot all the results in 6 cities. We further collect some randomized controlled trials data, and the Area
Under the Uplift Curve (AUUC) [6] curve in Fig. 7(b) verify that GALILEO gives a reasonable sort
order on the supply prediction while the standard SL technique fails to achieve this task.

5.3 Apply GALILEO to Downstream Tasks

Table 1: Results of OPE on DOPE benchmark. We list the
averaged performances on three tasks. The detailed results
are in Appx. H.6. ± is the standard deviation among the
tasks. We bold the best scores for each metric.

Algorithm Norm. value gap Rank corr. Regret@1

GALILEO 0.37 ± 0.24 0.44 ± 0.10 0.09 ± 0.02
Best DICE 0.48 ± 0.19 0.15 ± 0.04 0.42 ± 0.28
VPM 0.71 ± 0.04 0.29 ± 0.15 0.17 ± 0.11
FQE (L2) 0.54 ± 0.09 -0.19 ± 0.10 0.34 ± 0.03
IS 0.67 ± 0.01 -0.40 ± 0.15 0.36 ± 0.27
Doubly Rubost 0.57 ± 0.07 -0.14 ± 0.17 0.33 ± 0.06

Off-policy Evaluation (OPE) We
first verify the ability of the models
in MuJoCo environments by adopting
them into off-policy evaluation tasks.
We use 10 unseen policies constructed
by DOPE benchmark [18] to conduct
our experiments. We select three
common-used metrics: value gap, re-
gret@1, and rank correlation and aver-
aged the results among three tasks in
Tab. 1. The baselines and the corre-
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Table 2: Results of policy performance directly optimized through SAC [20] using the learned
dynamics models and deployed in MuJoCo environments. MAX-RETURN is the policy performance
of SAC in the MuJoCo environments, and “avg. norm.” is the averaged normalized return of the
policies in the 9 tasks, where the returns are normalized to lie between 0 and 100, where a score of 0
corresponds to the worst policy, and 100 corresponds to MAX-RETURN.

Task Hopper Walker2d HalfCheetah avg. norm.

Horizon H=10 H=20 H=40 H=10 H=20 H=40 H=10 H=20 H=40 /

GALILEO 13.0 ± 0.1 33.2 ± 0.1 53.5 ± 1.2 11.7 ± 0.2 29.9 ± 0.3 61.2 ± 3.4 0.7 ± 0.2 -1.1 ± 0.2 -14.2 ± 1.4 51.1
OFF-SL 4.8 ± 0.5 3.0 ± 0.2 4.6 ± 0.2 10.7 ± 0.2 20.1 ± 0.8 37.5 ± 6.7 0.4 ± 0.5 -1.1 ± 0.6 -13.2 ± 0.3 21.1
IPW 5.9 ± 0.7 4.1 ± 0.6 5.9 ± 0.2 4.7 ± 1.1 2.8 ± 3.9 14.5 ± 1.4 1.6 ± 0.2 0.5 ± 0.8 -11.3 ± 0.9 19.7
SCIGAN 12.7 ± 0.1 29.2 ± 0.6 46.2 ± 5.2 8.4 ± 0.5 9.1 ± 1.7 1.0 ± 5.8 1.2 ± 0.3 -0.3 ± 1.0 -11.4 ± 0.3 41.8

MAX-RETURN 13.2 ± 0.0 33.3 ± 0.2 71.0 ± 0.5 14.9 ± 1.3 60.7 ± 11.1 221.1 ± 8.9 2.6 ± 0.1 13.3 ± 1.1 49.1 ± 2.3 100.0

sponding results we used are the same as the one proposed by [18]. As seen in Tab. 1, compared with
all the baselines, OPE by GALILEO always reach the better performance with a large margin (at
least 23%, 193% and 47% respectively), which verifies that GALILEO can eliminate the effect of
selection bias and give correct evaluations on unseen policies.

Offline Policy Improvement We then verify the generalization ability of the models in MuJoCo
environments by adopting them into offline model-based RL. To strictly verify the ability of the
models, we abandon all tricks to suppress policy exploration and learning in risky regions as current
offline model-based RL algorithms [59] do, and we just use the standard SAC algorithm [20] to fully
exploit the models to search an optimal policy. Unfortunately, we found that the compounding error
will still be inevitably large in the 1,000-step rollout, which is the standard horizon in MuJoCo tasks,
leading all models to fail to derive a reasonable policy. To better verify the effects of models on policy
improvement, we learn and evaluate the policies with three smaller horizons: H ∈ {10, 20, 40}. The
results are listed in Tab. 2. We first averaged the normalized return (refer to “avg. norm.”) under each
task, and we can see that the policy obtained by GALILEO is significantly higher than other models
(the improvements are 24% to 161%). But in HalfCheetah, IPW works slightly better. However,
compared with MAX-RETURN, it can be found that all methods fail to derive reasonable policies
because their policies’ performances are far away from the optimal policy. By further checking the
trajectories, we found that all the learned policies just keep the cheetah standing in the same place or
even going backward. This phenomenon is also similar to the results in MOPO [59]. In MOPO’s
experiment in the medium datasets, the truncated-rollout horizon used in Walker and Hopper for
policy training is set to 5, while HalfCheetah has to be set to the minimal value: 1. These phenomena
indicate that HalfCheetah may still have unknown problems, resulting in the generalization bottleneck
of the models.

Online Decision-making in a Production Environment Finally, we search for the optimal policy
via model-predict control (MPC) using cross-entropy planner [21] based on the learned model and
deploy the policy in a real-world platform. The results of A/B test in City A is shown in Fig. 7(c). It
can be seen that after the day of the A/B test, the treatment group (deploying our policy) significant
improve the five-minute order-taken rate than the baseline policy (the same as the behavior policy). In
summary, the policy improves the supply from 0.14 to 1.63 percentage points to the behavior policies
in the 6 cities. The details of these results are in Appx. H.7.

6 Discussion and Future Work
In this work, we propose AWRM which handles the generalization challenges of the counterfactual
environment model learning. By theoretical modeling, we give a tractable solution to handle AWRM
and propose GALILEO. GALILEO is verified in synthetic environments, complex robot control tasks,
and a real-world platform, and shows great generalization ability on counterfactual queries.

Giving correct answers to counterfactual queries is important for policy learning. We hope the work
can inspire researchers to develop more powerful tools for counterfactual environment model learning.
The current limitation lies in: There are several simplifications in the theoretical modeling process
(further discussion is in Appx. B), which can be modeled more elaborately. Besides, experiments on
MuJoCo indicate that these tasks are still challenging to give correct predictions on counterfactual
data. These should also be further investigated in future work.
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A Proof of Theoretical Results

In the proof section, we replace the notation of E with an integral for brevity. Now we rewrite the
original objective L̄(ρβM∗ ,M) as:

min
M∈M

max
β∈Π

∫
X ,A

ρµM∗(x, a)ω(x, a)

∫
X
M∗(x′|x, a) (− logM(x′|x, a)) dx′dadx− α

2
∥ρβM∗(·, ·)∥22,

(7)

where ω(x, a) =
ρβ
M∗ (x,a)

ρµ
M∗ (x,a)

and ∥ρβM∗(·, ·)∥22 =
∫
X ,A ρβM∗(x, a)2dadx, which is the squared

l2-norm. In an MDP, given any policy π, ρπM∗(x, a, x′) = ρπM∗(x)π(a|x)M∗(x′|x, a) where
ρπM∗(x) denotes the occupancy measure of x for policy π, which can be defined [51, 25] as
ρπM∗(x) := (1 − γ)Ex0∼ρ0

[
∑∞

t=0 γ
tPr(xt = x|x0,M

∗)] where Prπ [xt = x|x0,M
∗] is the state

visitation probability that π starts at state x0 in model M∗ and receive x at timestep t and γ ∈ [0, 1]
is the discount factor.

minM∈M maxβ∈Π L(ρβM∗ ,M)

estimate the optimal adversarial
distribution ρβ̄

∗

M∗ given M (Sec. A.1)

derive ρ̄β̄
∗

M∗ as a generalized rep-
resentation of ρβ̄

∗

M∗ (Sec. A.2)

let ρβ̄
∗

M∗ as the distribution of the best-response
policy argmaxβ∈Π L(ρβM∗ ,M), we have the sur-
rogate objective minM∈M L(ρ̄β̄

∗

M∗ ,M) (Sec. A.3)

tractable solution (Sec. A.4)

intermediary policy κ generator function f

(model an easy-to-
estimate distribution of
the best-response policy
β̄∗)

approximate ρ̄β̄
∗

M∗ with
variational representation

Figure 8: The overall pipeline to model the tractable solution to AWRM. f is a generator function
defined by f -divergence [37]. κ is an intermediary policy introduced in the estimation.

The overall pipeline to model the tractable solution to AWRM is given in Fig. 8. In the following, we
will summarize the modelling process based on Fig. 8. We first approximate the optimal distribution
ρβ̄

∗

M∗ via Lemma. A.1.

Lemma A.1. Given any M in L̄(ρβM∗ ,M), the distribution ρβ̄
∗

M∗(x, a) of the ideal best-response
policy β̄∗ satisfies:

1

αM
(DKL(M

∗(·|x, a),M(·|x, a)) +HM∗(x, a)), (8)

where DKL(M
∗(·|x, a),M(·|x, a)) is the Kullback-Leibler (KL) divergence between M∗(·|x, a) and

M(·|x, a), HM∗(x, a) denotes the entropy of M∗(·|x, a), and αM is the regularization coefficient α
in Eq. (4) and also as a normalizer of Eq. (8).
Note that the ideal best-response policy β̄∗ is not the real best-response policy β∗. The distribution
ρβ̄

∗

M∗ is an approximation of the real optimal adversarial distribution. We give a discussion of the
rationality of the ideal best-response policy β̄∗ as a replacement of the real best-response policy
β∗ in Remark A.4. Intuitively, ρβ̄

∗

M∗ has larger densities on the data where the divergence between
the approximation model and the real model (i.e., DKL(M

∗(·|x, a),M(·|x, a))) is larger or the
stochasticity of the real model (i.e., HM∗ ) is larger.

However, the integral process of DKL in Eq. (8) is intractable in the offline setting as it explicitly
requires the conditional probability function of M∗. Our solution to solve the problem is utilizing
the offline dataset Dreal as the empirical joint distribution ρµM∗(x, a, x′) and adopting practical
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techniques for distance estimation on two joint distributions, like GAN [19, 37], to approximate
Eq. (8). To adopt that solution, we should first transform Eq. (8) into a form under joint distributions.
Without loss of generality, we introduce an intermediary policy κ, of which µ can be regarded as a
specific instance. Then we have M(x′|x, a) = ρκM (x, a, x′)/ρκM (x, a) for any M if ρκM (x, a) > 0.
Assuming ∀x ∈ X ,∀a ∈ A, ρκM∗(x, a) > 0 if ρβ̄

∗

M∗(x, a) > 0, which will hold when κ overlaps with
µ, then Eq. (8) can transform to:

1

α0(x, a)

(∫
X
ρκM∗(x, a, x′) log

ρκM∗(x, a, x′)

ρκM (x, a, x′)
dx′ − ρκM∗(x, a)

(
log

ρκM∗(x, a)

ρκM (x, a)
−HM∗(x, a)

))
,

where α0(x, a) = αMρκM∗(x, a). We notice that the form ρκM∗ log
ρκ
M∗
ρκ
M

is the integrated function in
reverse KL divergence, which is an instance of f function in f -divergence [2]. Replacing that form
with f function, we obtain a generalized representation of ρβ̄

∗

M∗ :

ρ̄β̄
∗

M∗ :=
1

α0(x, a)

(∫
X
ρκM∗(x, a, x′)f

(
ρκM (x, a, x′)

ρκM∗(x, a, x′)

)
dx′ − ρκM∗(x, a)

(
f

(
ρκM (x, a)

ρκM∗(x, a)

)
−HM∗(x, a)

))
,

(9)

where f : R+ → R is a convex and lower semi-continuous (l.s.c.) function. ρ̄β̄
∗

M∗ gives a generalized
representation of the optimal adversarial distribution to maximize the error of the model. Based on
Eq. (9), we have a surrogate objective of AWRM which can avoid querying M∗ to construct ρβ

∗

M∗ :

Theorem A.2. Let ρ̄β̄
∗

M∗ as the data distribution of the best-response policy β̄∗ in Eq. (4) under model
Mθ parameterized by θ, then we can find the optimal θ∗ of minθ maxβ∈Π L̄(ρβM∗ ,Mθ) (Eq. (4))
via iteratively optimizing the objective θt+1 = minθ L̄(ρ̄

β̄∗

M∗ ,Mθ), where ρ̄β̄
∗

M∗ is approximated via
the last-iteration model Mθt . Based on Corollary A.9, we derive an upper bound objective for
minθ L̄(ρ̄

β̄∗

M∗ ,Mθ):

θt+1 = min
θ

Eρκ
M∗

[
−1

α0(x, a)
logMθ(x

′|x, a)

(
f

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
− f

(
ρκMθt

(x, a)

ρκM∗(x, a)

)
+HM∗(x, a)

)
︸ ︷︷ ︸

W (x,a,x′)

]
,

where Eρκ
M∗ [·] denotes Ex,a,x′∼ρκ

M∗ [·], f is a l.s.c function satisfying f ′(x) ≤ 0,∀x ∈ X , and
α0(x, a) = αMθt

ρκM∗(x, a).

Thm. A.2 approximately achieve AWRM by using κ and a pseudo-reweighting module W . W assigns
learning propensities for data points with larger differences between distributions ρκMθt

and ρκM∗ . By
adjusting the weights, the learning process will exploit subtle errors in any data point, whatever how
many proportions it contributes, to correct potential generalization errors on counterfactual data.
Remark A.3. In practice, we need to use real-world data to construct the distribution ρκM∗ . In the
offline model-learning setting, we only have a real-world dataset Dreal collected by the behavior
policy µ, which is the empirical distribution of ρµM∗ . Let κ = µ, we have

θt+1 = min
θ

Eρ
µ
M∗

[
−1

α0(x, a)
logMθ(x

′|x, a)

(
f

(
ρµMθt

(x, a, x′)

ρµM∗(x, a, x′)

)
− f

(
ρµMθt

(x, a)

ρµM∗(x, a)

)
+HM∗(x, a)

)
︸ ︷︷ ︸

W (x,a,x′)

]
,

which is Eq. (5) in the main body.

In Thm. A.2, the terms f(ρκMθt
(x, a, x′)/ρκM∗(x, a, x′)) − f(ρκMθt

(x, a)/ρκM∗(x, a)) are still in-
tractable. Thanks to previous successful practices in GAN [19] and GAIL [25], we achieve the
objective via a generator-discriminator-paradigm objective through similar derivation. We show the
results as follows and leave the complete derivation in Appx. A.4. In particular, by introducing two
discriminators Dφ∗

0
(x, a, x′) and Dφ∗

0
(x, a), letting κ = µ, we can optimize the surrogate objective

Eq. (5) via:

θt+1 =max
θ

(
E
ρ
µ̂
Mθt

[
Aφ∗

0 ,φ
∗
1
(x, a, x′) logMθ(x

′|x, a)
]
+ Eρ

µ
M∗

[
(HM∗(x, a)−Aφ∗

0 ,φ
∗
1
(x, a, x′)) logMθ(x

′|x, a)
] )

s.t. φ∗
0 = argmax

φ0

(
Eρ

µ
M∗

[
logDφ0(x, a, x

′)
]
+ E

ρ
µ̂
Mθt

[
log(1−Dφ0(x, a, x

′))
] )

φ∗
1 = argmax

φ1

(
Eρ

µ
M∗

[logDφ1(x, a)] + E
ρ
µ̂
Mθt

[log(1−Dφ1(x, a))]
)
,
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where Eρµ
M
[·] is a simplification of Ex,a,x′∼ρµ

M
[·], Aφ∗

0 ,φ
∗
1
(x, a, x′) = logDφ∗

0
(x, a, x′) −

logDφ∗
1
(x, a), and φ0 and φ1 are the parameters of Dφ0

and Dφ1
respectively. We learn a pol-

icy µ̂ ≈ µ via imitation learning based on the offline dataset Dreal [40, 25]. Note that in the process,
we ignore the term α0(x, a) for simplifying the objective. The discussion on the impacts of removing
α0(x, a) is left in App. B.

A.1 Proof of Lemma A.1

Proof. Given a transition function M of an MDP, the distribution of the best-response policy β∗

satisfies:

ρβ
∗

M∗ =argmax
ρβ
M∗

∫
X ,A

ρµM∗(x, a)ω(x, a)

∫
X
M∗(x′|x, a) (− logM(x′|x, a)) dx′dadx− α

2
∥ρβM∗(·, ·)∥22

=argmax
ρβ
M∗

∫
X ,A

ρβM∗(x, a)

∫
X
M∗(x′|x, a) (− logM(x′|x, a)) dx′︸ ︷︷ ︸

g(x,a)

dadx− α

2
∥ρβM∗(·, ·)∥22

=argmax
ρβ
M∗

2

α

∫
X ,A

ρβM∗(x, a)g(x, a)dadx− ∥ρβM∗(·, ·)∥22

=argmax
ρβ
M∗

2

α

∫
X ,A

ρβM∗(x, a)g(x, a)dadx− ∥ρβM∗(·, ·)∥22 −
∥g(·, ·)∥22

α2

=argmax
ρβ
M∗

−
(
−2
∫
X ,A

ρβM∗(x, a)
g(x, a)

α
dadx+ ∥ρβM∗(·, ·)∥22 +

∥g(·, ·)∥22
α2

)
=argmax

ρβ
M∗

−∥ρβM∗(·, ·)−
g(·, ·)
α
∥22.

We know that the occupancy measure ρβM∗ is a density function with a constraint∫
X
∫
A ρβM∗(x, a)dadx = 1. Assuming the occupancy measure ρβM∗ has an upper bound c, that

is 0 ≤ ρβM∗(x, a) ≤ c,∀a ∈ A,∀x ∈ X , constructing a regularization coefficient αM =∫
X
∫
A(DKL(M

∗(·|x, a),M(·|x, a)) + HM∗(x, a))dxda as a constant value given any M , then
we have

ρβ
∗

M∗(x, a) =
g(x, a)

αM

=

∫
X M∗(x′|x, a) log M∗(x′|x,a)

M(x′|x,a) dx−
∫
X M∗(x′|x, a) logM∗(x′|x, a)dx

αM

=
DKL(M

∗(·|x, a),M(·|x, a)) +HM∗(x, a)

αM

∝
(
DKL(M

∗(·|x, a),M(·|x, a)) +HM∗(x, a)
)
,

which is the optimal density function of Eq. (7) with α = αM .

Note that in some particular M∗, we still cannot construct a β that can generate an occupancy
specified by g(x, a)/αM for any M . We can only claim the distribution of the ideal best-response
policy β̄∗ satisfies:

ρβ̄
∗

M∗(x, a) =
1

αM
(DKL(M

∗(·|x, a),M(·|x, a)) +HM∗(x, a)), (10)

where αM is a normalizer that αM =
∫
X
∫
A(DKL(M

∗(·|x, a),M(·|x, a)) +HM∗(x, a))dxda. We
give a discussion of the rationality of the ideal best-response policy β̄∗ as a replacement of the real
best-response policy β∗ in Remark A.4.
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Remark A.4. The optimal solution Eq. (10) relies on g(x, a). In some particular M∗, it is
intractable to derive a β that can generate an occupancy specified by g(x, a)/αM . Consider
the following case: a state x1 in M∗ might be harder to reach than another state x2, e.g.,
M∗(x1|x, a) < M∗(x2|x, a),∀x ∈ X ,∀a ∈ A, then it is impossible to find a β that the occu-
pancy satisfies ρβM∗(x1, a) > ρβM∗(x2, a). In this case, Eq. (10) can be a sub-optimal solution. Since
this work focuses on task-agnostic solution derivation while the solution to the above problem should
rely on the specific description of M∗, we leave it as future work. However, we point out that
Eq. (10) is a reasonable re-weighting term even as a sub-optimum: ρβ̄

∗

M∗ gives larger densities on
the data where the distribution distance between the approximation model and the real model (i.e.,
DKL(M

∗,M)) is larger or the stochasticity of the real model (i.e., HM∗ ) is larger.

A.2 Proof of Eq. (9)

The integral process of DKL in Eq. (8) is intractable in the offline setting as it explicitly requires
the conditional probability function of M∗. Our motivation for the tractable solution is utilizing
the offline dataset Dreal as the empirical joint distribution ρµM∗(x, a, x′) and adopting practical
techniques for distance estimation on two joint distributions, like GAN [19, 37], to approximate
Eq. (8). To adopt that solution, we should first transform Eq. (8) into a form under joint distributions.
Without loss of generality, we introduce an intermediary policy κ, of which µ can be regarded as a
specific instance. Then we have M(x′|x, a) = ρκM (x, a, x′)/ρκM (x, a) for any M if ρκM (x, a) > 0.
Assuming ∀x ∈ X ,∀a ∈ A, ρκM∗(x, a) > 0 if ρβ̄

∗

M∗(x, a) > 0, which will hold when κ overlaps with
µ, then Eq. (8) can transform to:

ρβ̄
∗

M∗(x, a) =
DKL(M

∗(·|x, a),M(·|x, a)) +HM∗(x, a)

αM

=
1

αM

∫
X
M∗(x′|x, a)

(
log

M∗(x′|x, a)
M(x′|x, a)

− logM∗(x′|x, a)
)
dx′

=
1

αMρκM∗(x, a)

∫
X
ρκM∗(x, a)M∗(x′|x, a)

(
log

M∗(x′|x, a)
M(x′|x, a)

− logM∗(x′|x, a)
)
dx′

(11)

=
1

αMρκM∗(x, a)

∫
X
ρκM∗(x, a, x′)

(
log

ρκM∗(x, a, x′)

ρκM (x, a, x′)
+ log

ρκM (x, a)

ρκM∗(x, a)
− logM∗(x′|x, a)

)
dx′

=
1

αMρκM∗(x, a)

(∫
X
ρκM∗(x, a, x′) log

ρκM∗(x, a, x′)

ρκM (x, a, x′)
dx′−

ρκM∗(x, a) log
ρκM∗(x, a)

ρκM (x, a)

∫
X
M∗(x′|x, a)dx′︸ ︷︷ ︸

=1

−ρκM∗(x, a)

∫
X
M∗(x′|x, a) logM∗(x′|x, a)dx′

)

=
1

α0(x, a)

(∫
X
ρκM∗(x, a, x′) log

ρκM∗(x, a, x′)

ρκM (x, a, x′)
dx′ − ρκM∗(x, a) log

ρκM∗(x, a)

ρκM (x, a)
+ ρκM∗(x, a)HM∗(x, a)

)
(12)

where α0(x, a) = αMρκM∗(x, a).

Definition A.5 (f -divergence). Given two distributions P and Q, two absolutely continuous density
functions p and q with respect to a base measure dx defined on the domain X , we define the
f -divergence [37],

Df (P∥Q) =

∫
X
q(x)f

(
p(x)

q(x)

)
dx, (13)

where the generator function f : R+ → R is a convex, lower-semicontinuous function.

We notice that the terms ρκM∗(x, a, x′) log
ρκ
M∗ (x,a,x

′)
ρκ
M (x,a,x′) and ρκM∗(x, a) log

ρκ
M∗ (x,a)
ρκ
M (x,a) are the integrated

functions in reverse KL divergence, which is an instance of f function in f -divergence (See Reverse-
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KL divergence of Tab.1 in [37] for more details). Replacing that form q log q
p with qf(pq ), we obtain

a generalized representation of ρβ̄
∗

M∗ :

ρ̄β̄
∗

M∗ :=
1

α0(x, a)

(∫
X
ρκM∗(x, a, x′)f

(
ρκM (x, a, x′)

ρκM∗(x, a, x′)

)
dx′ − ρκM∗(x, a)

(
f

(
ρκM (x, a)

ρκM∗(x, a)

)
−HM∗(x, a)

))
,

(14)

A.3 Proof of Thm. A.2

We first introduce several useful lemmas for the proof.

Lemma A.6. Rearrangement inequality The rearrangement inequality states that, for two sequences
a1 ≥ a2 ≥ . . . ≥ an and b1 ≥ b2 ≥ . . . ≥ bn, the inequalities

a1b1 + a2b2 + · · ·+ anbn ≥ a1bπ(1) + a2bπ(2) + · · ·+ anbπ(n) ≥ a1bn + a2bn−1 + · · ·+ anb1

hold, where π(1), π(2), . . . , π(n) is any permutation of 1, 2, . . . , n.

Lemma A.7. For two sequences a1 ≥ a2 ≥ . . . ≥ an and b1 ≥ b2 ≥ . . . ≥ bn, the inequalities
n∑

i=1

1

n
aibi ≥

n∑
i=1

1

n
ai
∑ 1

n
bi

hold.

Proof. By rearrangement inequality, we have
n∑

i=1

aibi ≥ a1b1 + a2b2 + · · ·+ anbn

n∑
i=1

aibi ≥ a1b2 + a2b3 + · · ·+ anb1

n∑
i=1

aibi ≥ a1b3 + a2b4 + · · ·+ anb2

...
n∑

i=1

aibi ≥ a1bn + a2b1 + · · ·+ anbn−1

Then we have

n

n∑
i=1

aibi ≥
n∑

i=1

ai

n∑
i=1

bi

n∑
i=1

1

n
aibi ≥

n∑
i=1

1

n
ai
∑ 1

n
bi

Now we extend Lemma A.7 into the continuous integral scenario:

Lemma A.8. Given X ⊂ R, for two functions f : X → R and g : X → R that f(x) ≥ f(y) if and
only if g(x) ≥ g(y), ∀x, y ∈ X , the inequality∫

X
p(x)f(x)g(x)dx ≥

∫
X
p(x)f(x)dx

∫
X
p(x)g(x)dx

holds, where p : X → R and p(x) > 0,∀x ∈ X and
∫
X p(x)dx = 1.

Proof. Since (f(x)− f(y))(g(x)− g(y)) ≥ 0,∀x, y ∈ X , we have
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∫
x∈X

∫
y∈X

p(x)p(y)(f(x)− f(y))(g(x)− g(y))dydx ≥ 0∫
x∈X

∫
y∈X

p(x)p(y)f(x)g(x) + p(x)p(y)f(y)g(y)− p(x)p(y)f(x)g(y)− p(x)p(y)f(y)g(x)dydx ≥ 0∫
x∈X

∫
y∈X

p(x)p(y)f(x)g(x) + p(x)p(y)f(y)g(y)dydx ≥
∫
x∈X

∫
y∈X

p(x)p(y)f(x)g(y) + p(x)p(y)f(y)g(x)dydx∫
x∈X

(∫
y∈X

p(x)p(y)f(x)g(x)dy +

∫
y∈X

p(x)p(y)f(y)g(y)dy

)
dx ≥

∫
x∈X

∫
y∈X

p(x)p(y)f(x)g(y) + p(x)p(y)f(y)g(x)dydx∫
x∈X

(
p(x)f(x)g(x) +

∫
y∈X

p(x)p(y)f(y)g(y)dy

)
dx ≥

∫
x∈X

∫
y∈X

p(x)p(y)f(x)g(y) + p(x)p(y)f(y)g(x)dydx∫
x∈X

p(x)f(x)g(x)dx+

∫
x∈X

∫
y∈X

p(x)p(y)f(y)g(y)dydx ≥
∫
x∈X

∫
y∈X

p(x)p(y)f(x)g(y) + p(x)p(y)f(y)g(x)dydx∫
x∈X

p(x)f(x)g(x)dx+

∫
y∈X

p(y)f(y)g(y)dy ≥
∫
x∈X

∫
y∈X

p(x)p(y)f(x)g(y) + p(x)p(y)f(y)g(x)dydx

2

∫
x∈X

p(x)f(x)g(x)dx ≥ 2

∫
y∈X

∫
x∈X

p(x)p(y)f(x)g(y)dydx

2

∫
x∈X

p(x)f(x)g(x)dx ≥ 2

∫
x∈X

p(x)f(x)dx

∫
x∈X

p(x)g(x)dx∫
x∈X

p(x)f(x)g(x)dx ≥
∫
x∈X

p(x)f(x)dx

∫
x∈X

p(x)g(x)dx

Corollary A.9. Let g(p(x)q(x) ) = − log p(x)
q(x) where p(x) > 0,∀x ∈ X and q(x) > 0,∀x ∈ X , for

υ > 0, the inequality∫
X
q(x)f(υ

p(x)

q(x)
)g(

p(x)

q(x)
)dx ≥

∫
X
q(x)f(υ

p(x)

q(x)
)dx

∫
X
q(x)g(

p(x)

q(x)
)dx,

holds if f ′(x) ≤ 0,∀x ∈ X . It is not always satisfied for f functions of f -divergence. We list a
comparison of f on that condition in Tab. 3.

Proof. g′(x) = − log x = − 1
x < 0,∀x ∈ X . Suppose f ′(x) ≤ 0,∀x ∈ X , we have f(x) ≥ f(y)

if and only if g(x) ≥ g(y), ∀x, y ∈ X holds. Thus f(υ p(x)
q(x) ) ≥ f(υ p(y)

q(y) ) if and only if g(p(x)q(x) ) ≥
g(p(y)q(y) ), ∀x, y ∈ X holds for all υ > 0. By defining F (x) = f(υ p(x)

q(x) )) and G(x) = g(p(x)q(x) ) and
using Lemma A.8, we have:∫

X
q(x)F (x)G(x)dx ≥

∫
X
q(x)F (x)dx

∫
X
q(x)G(x)dx.

Then we know∫
X
q(x)f(υ

p(x)

q(x)
)g(

p(x)

q(x)
)dx ≥

∫
X
q(x)f(υ

p(x)

q(x)
)dx

∫
X
q(x)g(

p(x)

q(x)
)dx

holds.

Now, we prove Thm. A.2. For better readability, we first rewrite Thm. A.2 as follows:

Theorem A.10. Let ρ̄β̄
∗

M∗ as the data distribution of the best-response policy β̄∗ in Eq. (4) under model
Mθ parameterized by θ, then we can find the optimal θ∗ of minθ maxβ∈Π L̄(ρβM∗ ,Mθ) (Eq. (4))
via iteratively optimizing the objective θt+1 = minθ L̄(ρ̄

β̄∗

M∗ ,Mθ), where ρ̄β̄
∗

M∗ is approximated
via the last-iteration model Mθt . Based on Corollary A.9, we have an upper bound objective for
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Table 3: Properties of f ′(x) ≤ 0,∀x ∈ X for f -divergences.

Name Generator function f(x) If f ′(x) ≤ 0,∀x ∈ X
Kullback-Leibler x log x False
Reverse KL − log x True
Pearson χ2 (x− 1)2 False
Squared Hellinger (

√
x− 1)2 False

Jensen-Shannon −(x+ 1) log 1+x
2 + x log x False

GAN x log x− (x+ 1) log(x+ 1) True

minθ L̄(ρ̄
β̄∗

M∗ ,Mθ) and derive the following objective

θt+1 = argmax
θ

Eρκ
M∗

[
1

α0(x, a)
logMθ(x

′|x, a)

(
f

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
− f

(
ρκMθt

(x, a)

ρκM∗(x, a)

)
+HM∗(x, a)

)
︸ ︷︷ ︸

W (x,a,x′)

]
,

where α0(x, a) = αMθt
ρκM∗(x, a), Eρκ

M∗ [·] denotes Ex,a,x′∼ρκ
M∗ [·], f is the generator function in

f -divergence which satisfies f ′(x) ≤ 0,∀x ∈ X , and θ is the parameters of M . Mθt denotes a
probability function with the same parameters as the learned model (i.e., θ̄ = θ) but the parameter is
fixed and only used for sampling.

Proof. Let ρ̄β̄
∗

M∗ as the data distribution of the best-response policy β̄∗ in Eq. (4) under model Mθ

parameterized by θ, then we can find the optimal θt+1 of minθ maxβ∈Π L̄(ρβM∗ ,Mθ) (Eq. (4)) via
iteratively optimizing the objective θt+1 = minθ L̄(ρ̄

β̄∗

M∗ ,Mθ), where ρ̄β̄
∗

M∗ is approximated via the
last-iteration model Mθt :

θt+1 = min
θ

∫
X ,A

ρ̄β̄
∗

M∗(x, a)

∫
X
M∗(x′|x, a)

(
− logMθ(x

′|x, a)
)
dx′dadx (15)

= min
θ

∫
X ,A

1

α0(x, a)

(∫
X
ρκM∗(x, a, x′)f

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
dx′
∫
X
M∗(x′|x, a)(− logMθ(x

′|x, a))dx′

− ρκM∗(x, a)

(
f

(
ρκMθt

(x, a)

ρκM∗(x, a)

)
−HM∗(x, a)

)∫
X
M∗(x′|x, a)(− logMθ(x

′|x, a))dx′

)
dadx

= min
θ

∫
X ,A

1

α0(x, a)

(∫
X
ρκM∗(x, a, x′)f

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
dx′
(∫

X
M∗(x′|x, a)(− log

Mθ(x
′|x, a)

M∗(x′|x, a) )dx
′ +HM∗(x, a)

)

− ρκM∗(x, a)

(
f

(
ρκMθt

(x, a)

ρκM∗(x, a)

)
−HM∗(x, a)

)∫
X
M∗(x′|x, a)(− logMθ(x

′|x, a))dx′

)
dadx

≤ min
θ

∫
X ,A

1

α0(x, a)

(
ρκM∗(x, a)

∫
X
M∗(x′|x, a)f

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
(− log

Mθ(x
′|x, a)

M∗(x′|x, a) )dx
′

︸ ︷︷ ︸
based on Corollary A.9

− ρκM∗(x, a)

(
f

(
ρκMθt

(x, a)

ρκM∗(x, a)

)
−HM∗(x, a)

)∫
X
M∗(x′|x, a)(− logMθ(x

′|x, a))dx′

)
dadx

= min
θ

∫
X ,A

1

α0(x, a)

(
ρκM∗(x, a)

∫
X

(
M∗(x′|x, a)f

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
(− logMθ(x

′|x, a))

)
dx′

− ρκM∗(x, a)

(
f

(
ρκMθt

(x, a)

ρκM∗(x, a)

)
−HM∗(x, a)

)∫
X
M∗(x′|x, a)(− logMθ(x

′|x, a))dx′

)
dadx

= max
θ

∫
X ,A,X

1

α0(x, a)
ρκM∗(x, a, x′) logMθ(x

′|x, a)

(
f

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
− f

(
ρκMθt

(x, a)

ρκM∗(x, a)

)
+HM∗(x, a)

)
dx′dadx,

(16)
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where Mθt is introduced to approximate the term ρ̄β̄
∗

M∗ and fixed when optimizing θ. In Eq. (15),
∥ρβM∗(·, ·)∥22 for Eq. (7) is eliminated as it does not contribute to the gradient of θ. Assume f ′(x) ≤

0,∀x ∈ X , let υ(x, a) :=
ρκ
Mθt

(x,a)

ρκ
M∗ (x,a)

> 0, p(x′|x, a) = Mθ(x
′|x, a), and q(x′|x, a) = M∗(x′|x, a),

the first inequality can be derived by adopting Corollary A.9 and eliminating the first HM∗ since it
does not contribute to the gradient of θ.

A.4 Proof of the Tractable Solution

Now we are ready to prove the tractable solution:

Proof. The core challenge is that the term f(
ρκ
Mθt

(x,a,x′)

ρκ
M∗ (x,a,x′) )− f(

ρκ
Mθt

(x,a)

ρκ
M∗ (x,a)

) is still intractable. In the
following, we give a tractable solution to Thm. A.2. First, we resort to the first-order approximation.
Given some u ∈ (1− ξ, 1 + ξ), ξ > 0, we have

f(u) ≈ f(1) + f ′(u)(u− 1), (17)

where f ′ is the first-order derivative of f . By Taylor’s formula and the fact that f ′(u) of the generator
function f is bounded in (1− ξ, 1 + ξ), the approximation error is no more than O(ξ2). Substituting
u with p(x)

q(x) in Eq. (17), the pattern f(p(x)q(x) ) in Eq. (16) can be converted to p(x)
q(x)f

′(p(x)q(x) )− f ′(p(x)q(x) )+

f(1), then we have:

θt+1 = argmax
θ

1

α0(x, a)

∫
X ,A

(
ρκM∗(x, a)

∫
X
M∗(x′|x, a)f

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
logMθ(x

′|x, a)dx′−

ρκM∗(x, a)f

(
ρκMθt

(x, a)

ρκM∗(x, a)

)∫
X
M∗(x′|x, a) logMθ(x

′|x, a)dx′+

ρκM∗(x, a)HM∗(x, a)

∫
X
M∗(x′|x, a) logMθ(x

′|x, a)dx′

)
dadx

≈ argmax
θ

∫
X ,A

(
ρκMθt

(x, a)

∫
X
Mθt(x

′|x, a)f ′

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
logMθ(x

′|x, a)dx′−

ρκM∗(x, a)

∫
X
M∗(x′|x, a)

(
f ′

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
− f(1)

)
logMθ(x

′|x, a)dx′−

ρκMθt
(x, a)f ′

(
ρκMθt

(x, a)

ρκM∗(x, a)

)∫
X
M∗(x′|x, a) logMθ(x

′|x, a)dx′+

ρκM∗(x, a)

(
f ′

(
ρκMθt

(x, a)

ρκM∗(x, a)

)
− f(1)

)∫
X
M∗(x′|x, a) logMθ(x

′|x, a)dx′+

ρκM∗(x, a)HM∗(x, a)

∫
X
M∗(x′|x, a) logMθ(x

′|x, a)dx′

)
dadx

= argmax
θ

∫
X ,A,X

1

α0(x, a)
ρκMθt

(x, a, x)

(
f ′

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
− f ′

(
ρκMθt

(x, a)

ρκM∗(x, a)

))
logMθ(x

′|x, a)dx′dadx+

∫
X ,A,X

1

α0(x, a)
ρκM∗(x, a, x′)

(
f ′

(
ρκMθt

(x, a)

ρκM∗(x, a)

)
− f ′

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
+HM∗(x, a)

)
logMθ(x

′|x, a)dx′dadx.

Note that the part ρκM∗(x, a) in ρκM∗(x, a, x′) can be canceled because of α0(x, a) = αMθt
ρκM∗(x, a),

but we choose to keep it and ignore α0(x, a). The benefit is that we can estimate ρκM∗(x, a, x′) from
an empirical data distribution through data collected by κ in M∗ directly, rather than from a uniform
distribution which is harder to be generated. Although keeping ρκM∗(x, a) incurs extra bias in theory,
the results in our experiments show that it has not made significant negative effects in practice. We
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leave this part of modeling in future work. In particular, by ignoring α0(x, a), we have:

θt+1 = argmax
θ

∫
X ,A,X

ρκMθt
(x, a, x)

(
f ′

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
− f ′

(
ρκMθt

(x, a)

ρκM∗(x, a)

))
logMθ(x

′|x, a)dx′dadx+

(18)∫
X ,A,X

ρκM∗(x, a, x′)

(
f ′

(
ρκMθt

(x, a)

ρκM∗(x, a)

)
− f ′

(
ρκMθt

(x, a, x′)

ρκM∗(x, a, x′)

)
+HM∗(x, a)

)
logMθ(x

′|x, a)dx′dadx.

(19)

We can estimate f ′
(

ρκ
Mθt

(x,a)

ρκ
M∗ (x,a)

)
and f ′

(
ρκ
Mθt

(x,a,x′)

ρκ
M∗ (x,a,x′)

)
through Lemma A.11.

Lemma A.11 (f ′(pq ) estimation [36]). Given a function Tφ : X → R parameterized by φ ∈ Φ, if f
is convex and lower semi-continuous, by finding the maximum point of φ in the following objective:

φ∗ = argmax
φ

Ex∼p(x) [Tφ(x)]− Ex∼q(x) [f
∗(Tφ(x))] ,

we have f ′(p(x)q(x) ) = Tφ∗(x). f∗ is Fenchel conjugate of f [23].

In particular,

φ∗
0 = argmax

φ0

Ex,a,x′∼ρκ
M∗ [Tφ0(x, a, x

′)]− Ex,a,x′∼ρκ
Mθt

[f∗(Tφ0(x, a, x
′))]

φ∗
1 = argmax

φ1

Ex,a∼ρκ
M∗ [Tφ1

(x, a)]− Ex,a∼ρκ
Mθt

[f∗(Tφ1
(x, a))] ,

then we have f ′
(

ρκ
Mθt

(x,a,x′)

ρκ
M∗ (x,a,x′)

)
≈ Tφ∗

0
(x, a, x′) and f ′

(
ρκ
Mθt

(x,a)

ρκ
M∗ (x,a)

)
≈ Tφ∗

1
(x, a). Given φ∗

0 and

φ∗
1, let Aφ∗

0 ,φ
∗
1
(x, a, x′) = Tφ∗

0
(x, a, x′)− Tφ∗

1
(x, a), then we can optimize θ via:

θt+1 = argmax
θ

∫
X ,A,X

ρκMθt
(x, a, x)

(
Tφ∗

0
(x, a, x′)− Tφ∗

1
(x, a)

)
logMθ(x

′|x, a)dx′dadx+∫
X ,A,X

ρκM∗(x, a, x′)
(
Tφ∗

1
(x, a)− Tφ∗

0
(x, a, x′) +HM∗(x, a)

)
logMθ(x

′|x, a)dx′dadx

= argmax
θ

∫
X ,A,X

ρκMθt
(x, a, x)Aφ∗

0 ,φ
∗
1
(x, a, x′) logMθ(x

′|x, a)dx′dadx+∫
X ,A,X

ρκM∗(x, a, x′)(−Aφ∗
0 ,φ

∗
1
(x, a, x′) +HM∗(x, a)) logMθ(x

′|x, a)dx′dadx.

Based on the specific f -divergence, we can represent T and f∗(T ) with a discriminator Dφ. It
can be verified that f(u) = u log u − (u + 1) log(u + 1), Tφ(u) = logDφ(u), and f∗(Tφ(u)) =
− log(1−Dφ(u)) proposed in [37] satisfies the condition f ′(x) ≤ 0,∀x ∈ X (see Tab. 3). We select
the former in the implementation and convert the tractable solution to:

θt+1 = argmax
θ

Eρκ
Mθt

[
Aφ∗

0 ,φ
∗
1
(x, a, x′) logMθ(x

′|x, a)
]
+ Eρκ

M∗

[
(HM∗(x, a)−Aφ∗

0 ,φ
∗
1
(x, a, x′)) logMθ(x

′|x, a)
]

s.t. φ∗
0 = argmax

φ0

Eρκ
M∗

[
logDφ0(x, a, x

′)
]
+ Eρκ

Mθt

[
log(1−Dφ0(x, a, x

′))
]

φ∗
1 = argmax

φ1

Eρκ
M∗ [logDφ1(x, a)] + Eρκ

Mθt

[log(1−Dφ1(x, a))] ,

(20)

where Aφ∗
0 ,φ

∗
1
(x, a, x′) = logDφ∗

0
(x, a, x′) − logDφ∗

1
(x, a), Eρκ

Mθt

[·] is a simplification of

Ex,a,x′∼ρκ
Mθt

[·].

Remark A.12. In practice, we need to use the real-world data to construct the distribution ρκM∗

and the generative data to construct ρκMθt
. In the offline model-learning setting, we only have a

real-world datasetDreal collected by the behavior policy µ. We can learn a policy µ̂ ≈ µ via imitation
learning based on Dreal [40, 25] and let µ̂ be the policy κ. Then we can regard Dreal as the empirical
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data distribution of ρκM∗ and the trajectories collected by µ̂ in the model Mθt as the empirical data
distribution of ρκMθt

. Based on the above specializations, we have:

θt+1 =max
θ

(
E
ρ
µ̂
Mθt

[
Aφ∗

0 ,φ
∗
1
(x, a, x′) logMθ(x

′|x, a)
]
+ Eρ

µ
M∗

[
(HM∗(x, a)−Aφ∗

0 ,φ
∗
1
(x, a, x′)) logMθ(x

′|x, a)
] )

s.t. φ∗
0 = argmax

φ0

(
Eρ

µ
M∗

[
logDφ0(x, a, x

′)
]
+ E

ρ
µ̂
Mθt

[
log(1−Dφ0(x, a, x

′))
] )

φ∗
1 = argmax

φ1

(
Eρ

µ
M∗

[logDφ1(x, a)] + E
ρ
µ̂
Mθt

[log(1−Dφ1(x, a))]
)
,

which is Eq. (6) in the main body.

B Discussion and Limitations of the Theoretical Results

We summarize the limitations of current theoretical results and future work as follows:

1. As discussed in Remark A.4, the solution Eq. (10) relies on ρβM∗(x, a) ∈ [0, c],∀a ∈
A,∀x ∈ X . In some particular M∗, it is intractable to derive a β that can generate an
occupancy specified by g(x, a)/αM . If more knowledge of M∗ or β∗ is provided or some
mild assumptions can be made on the properties of M∗ or β∗, we may model ρ in a more
sophisticated approach to alleviating the above problem.

2. In the tractable solution derivation, we ignore the term α0(x, a) = αMθt
ρκM∗(x, a) (See

Eq. (19)). The benefit is that ρκM∗(x, a, x′) in the tractable solution can be estimated through
offline datasets directly. Although the results in our experiments show that it does not
produce significant negative effects in these tasks, ignoring ρκM∗(x, a) indeed incurs extra
bias in theory. In future work, techniques for estimating ρκM∗(x, a) [33] can be incorporated
to correct the bias. On the other hand, αMθt

is also ignored in the process. αMθt
can be

regarded as a global rescaling term of the final objective Eq. (19). Intuitively, it constructs
an adaptive learning rate for Eq. (19), which increases the step size when the model is
better fitted and decreases the step size otherwise. It can be considered to further improve
the learning process in future work, e.g., cooperating with empirical risk minimization by
balancing the weights of the two objectives through αMθt

.

C Societal Impact

This work studies a method toward counterfactual environment model learning. Reconstructing an
accurate environment of the real world will promote the wide adoption of decision-making policy
optimization methods in real life, enhancing our daily experience. We are aware that decision-making
policy in some domains like recommendation systems that interact with customers may have risks of
causing price discrimination and misleading customers if inappropriately used. A promising way to
reduce the risk is to introduce fairness into policy optimization and rules to constrain the actions (Also
see our policy design in Sec. G.1.3). We are involved in and advocating research in such directions.
We believe that business organizations would like to embrace fair systems that can ultimately bring
long-term financial benefits by providing a better user experience.

D AWRM-oracle Pseudocode

We list the pseudocode of AWRM-oracle in Alg. 2.

E Implementation

E.1 Details of the GALILEO Implementation

The approximation of Eq. (17) holds only when p(x)/q(x) is close to 1, which might not be satisfied.
To handle the problem, we inject a standard supervised learning loss

argmax
θ

Eρκ
M∗ [logMθ(x

′|x, a)] (21)
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Algorithm 2 AWRM with Oracle Counterfactual Datasets

Input:
Φ: policy space; N : total iterations
Process:

1: Generate counterfactual datasets {Dπϕ
} for all adversarial policies πϕ, ϕ ∈ Φ

2: Initialize an environment model Mθ

3: for i = 1:N do
4: Select Dπϕ

with worst prediction errors through Mθ from {Dπϕ
}

5: Optimize Mθ with standard supervised learning based on Dπϕ

6: end for

to replace the second term of the above objective when the output probability of D is far away from
0.5 (f ′(1) = log 0.5).

In the offline model-learning setting, we only have a real-world dataset D collected by the behavior
policy µ. We learn a policy µ̂ ≈ µ via behavior cloning with D [40, 25] and let µ̂ be the policy κ. We
regard D as the empirical data distribution of ρκM∗ and the trajectories collected by µ̂ in the model
Mθt as the empirical data distribution of ρκMθt

. But the assumption ∀x ∈ X ,∀a ∈ A, µ(a|x) > 0

might not be satisfied. In behavior cloning, we model µ̂ with a Gaussian distribution and constrain
the lower bound of the variance with a small value ϵµ > 0 to keep the assumption holding. Besides,
we add small Gaussian noises u ∼ N (0, ϵD) to the inputs of Dφ to handle the mismatch between
ρµM∗ and ρµ̂M∗ due to ϵµ. In particular, for φ0 and φ1 learning, we have:

φ∗
0 = argmax

φ0

Eρκ
M∗ ,u

[
logDφ0(x+ ux, a+ ua, x

′ + ux′)
]
+ Eρκ

Mθt
,u
[
log(1−Dφ0(x+ ux, a+ ua, x

′ + ux′))
]

φ∗
1 = argmax

φ1

Eρκ
M∗ ,u [logDφ1(x+ ux, a+ ua)] + Eρκ

Mθt
,u [log(1−Dφ1(x+ ux, a+ ua))] ,

where Eρκ
Mθt

,u[·] is a simplification of Ex,a,x′∼ρκ
Mθt

,u∼N (0,ϵD)[·] and u = [ux, ua, ux′ ].

On the other hand, we notice that the first term in Eq. (20) is similar to the objective of GAIL [25]
by regarding Mθ as the policy to learn and κ as the environment to generate data. For better
capability in sequential environment model learning, here we introduce some practical tricks
inspired by GAIL for model learning [47, 46]: we introduce an MDP for κ and Mθ, where
the reward is defined by the discriminator D, i.e., r(x, a, x′) = logD(x, a, x′). Mθ is learned
to maximize the cumulative rewards. With advanced policy gradient methods [44, 45], the
objective is converted to maxθ

[
Aφ∗

0 ,φ
∗
1
(x, a, x′) logMθ(x, a, x

′)
]
, where A = Qκ

Mθt
− V κ

Mθt
,

Qκ
Mθ̄

(x, a, x′) = E [
∑∞

t=0 γ
tr(xt, at, xt+1) | (xt, at, xt+1) = (x, a, x′), κ,Mθt ], and V κ

Mθ̄
(x, a) =

EMθ̄

[
Qκ

Mθ̄
(x, a, x′)

]
. A in Eq. (20) can also be constructed similarly. Although it looks unnecessary

in theory since the one-step optimal model Mθ is the global optimal model in this setting, the technique
is helpful in practice as it makes A more sensitive to the compounding effect of one-step prediction
errors: we would consider the cumulative effects of prediction errors induced by multi-step transitions
in environments. In particular, to consider the cumulative effects of prediction errors induced by
multi-step of transitions in environments, we overwrite function Aφ∗

0 ,φ
∗
1

as Aφ∗
0 ,φ

∗
1
= Qκ

Mθt
− V κ

Mθt
,

where Qκ
Mθt

(x, a, x′) = E
[∑∞

t γt logDφ∗
0
(xt, at, xt+1)|(xt, at, xt+1) = (x, a, x′), κ,Mθt

]
and

V κ
Mθt

(x, a) = E
[∑∞

t γt logDφ∗
1
(xt, at)|(xt, at) = (x, a), κ,Mθt

]
. To give an algorithm for single-

step environment model learning, we can just set γ in Q and V to 0.
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Algorithm 3 GALILEO pseudocode

Input:
Dreal: offline dataset sampled from ρµM∗ where µ is the behavior policy;
N : total iterations;
Process:

1: Approximate a behavior policy µ̂ via behavior cloning
2: Initialize an environment model Mθ1
3: for t = 1 : N do
4: Use µ̂ to generate a dataset Dgen with the model Mθt

5: Update the discriminators Dφ0 and Dφ1 via Eq. (25) and Eq. (26) respectively, where ρµ̂Mθt

is estimated by Dgen and ρµM∗ is estimated by Dreal

6: Update Q and V via Eq. (23) and Eq. (24) through Dgen, Dφ0
, and Dφ1

7: Update the model Mθt via the first term of Eq. (22), which is implemented with a standard
policy gradient method like TRPO [44] or PPO [45]. Record the policy gradient gpg

8: if p0 < EDgen
[Dφ0

(xt, at, xt+1)] < p1 then
9: Compute the gradient of Mθt via the second term of Eq. (22) and record it as gsl

10: else
11: Compute the gradient of Mθt via Eq. (21) and record it as gsl
12: end if
13: Rescale gsl via Eq. (27)
14: Update the model Mθt via the gradient gsl and obtain Mθt+1

15: end for

offline dataset
𝒟!"#$

behavior policy
"𝜇(𝑎|𝑠)

dynamics model
𝑀%!

pretrain: approximated the behavior
policy (line 1)

(1) generate a dataset (line 4)

fake dataset
𝒟&"'

discriminators and value functions
𝐷("(𝑠, 𝑎, 𝑠′), 𝐷(# 𝑠, 𝑎 ,

𝑄 and 𝑉

(2) update the discriminators
and the value functions

(line 5 to 6)

(3) approximate the AWRM through Eq. 23
to update the dynamics model

(line 7 to 14)

neural networks fake dataset offline dataset

Figure 9: Illustration of the workflow of the GALILEO algorithm.

By adopting the above implementation techniques, we convert the objective into the following
formulation

θt+1 = argmax
θ

Eρκ
Mθt

[
Aφ∗

0 ,φ
∗
1
(x, a, x′) logMθ(x

′|x, a)
]
+ Eρκ

M∗

[
(HM∗(x, a)−Aφ∗

0 ,φ
∗
1
(x, a, x′)) logMθ(x

′|x, a)
]

(22)

s.t. Qκ
Mθt

(x, a, x′) = E

[
∞∑
t

γt logDφ∗
0
(xt, at, xt+1)|(xt, at, xt+1) = (x, a, x′), κ,Mθt

]
(23)

V κ
Mθt

(x, a) = E

[
∞∑
t

γt logDφ∗
1
(xt, at)|(xt, at) = (x, a), κ,Mθt

]
(24)

φ∗
0 = argmax

φ0

Eρκ
M∗ ,u

[
logDφ0(x+ ux, a+ ua, x

′ + ux′)
]
+ Eρκ

Mθt
,u

[
log(1−Dφ0(x+ ux, a+ ua, x

′ + ux′))
]

(25)

φ∗
1 = argmax

φ1

Eρκ
M∗ ,u [logDφ1(x+ ux, a+ ua)] + Eρκ

Mθt
,u [log(1−Dφ1(x+ ux, a+ ua))] ,

(26)
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where Aφ∗
0 ,φ

∗
1
(x, a, x′) = Qκ

Mθ
(x, a, x′) − V κ

Mθ
(x, a). In practice, GALILEO optimizes the first

term of Eq. (22) with conservative policy gradient algorithms (e.g., PPO [45] or TRPO [44]) to avoid
unreliable gradients for model improvements. Eq. (25) and Eq. (26) are optimized with supervised
learning. The second term of Eq. (22) is optimized with supervised learning with a re-weighting
term −Aφ∗

0 ,φ
∗
1
+HM∗ . Since HM∗ is unknown, we use HMθ

to estimate it. When the mean output
probability of a batch of data is larger than 0.6 or small than 0.4, we replace the second term of
Eq. (22) with a standard supervised learning in Eq. (21). Besides, unreliable gradients also exist in the
process of optimizing the second term of Eq. (22). In our implementation, we use the scale of policy
gradients to constrain the gradients of the second term of Eq. (22). In particular, we first compute
the l2-norm of the gradient of the first term of Eq. (22) via conservative policy gradient algorithms,
named ||gpg||2. Then we compute the l2-norm of the gradient of the second term of Eq. (22), name
||gsl||2. Finally, we rescale the gradients of the second term gsl by

gsl ← gsl
||gpg||2

max{||gpg||2, ||gsl||2}
. (27)

For each iteration, Eq. (22), Eq. (25), and Eq. (26) are trained with certain steps (See Tab. 6) following
the same framework as GAIL. Based on the above techniques, we summarize the pseudocode of
GALILEO in Alg. 3, where p0 and p1 are set to 0.4 and 0.6 in all of our experiments. The overall
architecture is shown in Fig. 9.

E.2 Connection with Previous Adversarial Algorithms

Standard GAN [19] can be regarded as a partial implementation including the first term of Eq. (22)
and Eq. (25) by degrading them into the single-step scenario. In the context of GALILEO, the
objective of GAN is

θt+1 = argmax
θ

Eρκ
Mθt

[Aφ∗(x, a, x′) logMθ(x
′|x, a)]

s.t. φ∗ = argmax
φ

Eρκ
M∗ [logDφ(x, a, x

′)] + Eρκ
Mθt

[log(1−Dφ(x, a, x
′))] ,

where Aφ∗(x, a, x′) = logDφ∗(x, a, x′). In the single-step scenario, ρκMθt
(x, a, x′) =

ρ0(x)κ(a|x)Mθt(x
′|a, x). The term Eρκ

Mθt

[Aφ∗(x, a, x′) logMθ(x
′|x, a)] can convert to

Eρκ
Mθ

[logDφ∗(x, a, x′)] by replacing the gradient of Mθt(x
′|x, a)∇θ logMθ(x

′|x, a) with
∇θMθ(x

′|x, a) [51]. Previous algorithms like GANITE [58] and SCIGAN [7] can be regarded
as variants of the above training framework.

The first term of Eq. (22) and Eq. (25) are similar to the objective of GAIL by regarding Mθ as
the “policy” to imitate and µ̂ as the “environment” to collect data. In the context of GALILEO, the
objective of GAIL is:

θt+1 = argmax
θ

Eρκ
Mθt

[
Aφ∗(x, a, x′) logMθ(x

′|x, a)
]

s.t. Qκ
Mθt

(x, a, x′) = E

[
∞∑
t

γt logDφ∗(xt, at, xt+1)|(xt, at, xt+1) = (x, a, x′), κ,Mθt

]
φ∗ = argmax

φ
Eρκ

M∗

[
logDφ(x, a, x

′)
]
+ Eρκ

Mθt

[
log(1−Dφ(x, a, x

′))
]
,

where Aφ∗(x, a, x′) = Qκ
Mθ

(x, a, x′)− V κ
Mθ

(x, a) and V κ
Mθt

(x, a) = EMθt (x,a)
[Qκ(x, a, x′)].

F Additional Related Work

Our primitive objective is inspired by weighted empirical risk minimization (WERM) based on
inverse propensity score (IPS). WERM is originally proposed to solve the generalization problem of
domain adaptation in machine learning literature. For instance, we would like to train a predictor
M(y|x) in a domain with distribution Ptrain(x) to minimize the prediction risks in the domain with
distribution Ptest(x), where Ptest ̸= Ptest. To solve the problem, we can train a weighted objective
with maxM Ex∼Ptrain

[ Ptest(x)
Ptrain(x)

logM(y|x)], which is called weighted empirical risk minimization
methods [5, 4, 15, 9, 42]. These results have been extended and applied to causal inference, where
the predictor is required to be generalized from the data distribution in observational studies (source
domain) to the data distribution in randomized controlled trials (target domain) [48, 3, 22, 29, 28].
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In this case, the input features include a state x (a.k.a. covariates) and an action a (a.k.a. treatment
variable) which is sampled from a policy. We often assume the distribution of x, P (x) is consistent
between the source domain and the test domain, then we have Ptest(x)

Ptrain(x)
= P (x)β(a|x)

P (x)µ(a|x) = β(a|x)
µ(a|x) ,

where µ and β are the policies in source and target domains respectively. In [48, 3, 22], the policy in
randomized controlled trials is modeled as a uniform policy, then Ptest(x)

Ptrain(x)
= P (x)β(a|x)

P (x)µ(a|x) =
β(a|x)
µ(a|x) ∝

1
µ(a|x) . 1

µ(a|x) is also known as inverse propensity score (IPS). In [28], it assumes that the policy in

the target domain is predefined as β(a|x) before environment model learning, then it uses β
µ as the

IPS. The differences between AWRM and previous works are fallen in two aspects: (1) We consider
the distribution-shift problem in the sequential decision-making scenario. In this scenario, we not
only consider the action distribution mismatching between the behavior policy µ and the policy to
evaluation β, but also the follow-up effects of policies to the state distribution; (2) For faithful offline
policy optimization, we require the environment model to have generalization ability in numerous
different policies. The objective of AWRM is proposed to guarantee the generalization ability of M
in numerous different policies instead of a specific policy.

On a different thread, there are also studies that bring counterfactual inference techniques of causal
inference into model-based RL [8, 39, 49]. These works consider that the transition function is
relevant to some hidden noise variables and use Pearl-style structural causal models (SCMs), which
is a directed acyclic graphs to define the causality of nodes in an environment, to handle the problem.
SCMs can help RL in different ways: [8] approximate the posterior of the noise variables based
on the observation of data, and environment models are learned based on the inferred noises. The
generalization ability is improved if we can infer the correct value of the noise variables. [39]
discover several local causal structural models of a global environment model, then data augmentation
strategies by leveraging these local structures to generate counterfactual experiences. [49] proposes a
representation learning technique for causal factors, which is an instance of the hidden noise variables,
in partially observable Markov decision processes (POMDPs). With the learned representation of
causal factors, the performance of policy learning and transfer in downstream tasks will be improved.

Instead of considering the hidden noise variables in the environments, our study considers the
environment model learning problem in the fully observed setting and focuses on unbiased causal
effect estimation in the offline dataset under behavior policies collected with selection bias.

In offline model-based RL, the problem is called distribution shift [59, 31, 14] which has received
great attentions. However, previous algorithms do not handle the model learning challenge directly
but propose techniques to suppress policy sampling and learning in risky regions [59, 30]. Although
these algorithms have made great progress in offline policy optimization in many tasks, so far, how to
learn a better environment model in this scenario has rarely been discussed.

We are not the first article to use the concept of density ratio for weighting. In off-policy estimation,
[32, 35, 60] use density ratio to evaluate the value of a given target policy β. These methods attempt
to solve an accurate approximation of ω(s, a|ρβ). The objective of our work, AWRM, is for the
model to provide faithful feedback for different policies, formalized as minimizing the model error of
the density function for any β in the policy space Π. The core of this problem is how to obtain an
approximation of the density function of the best-response β∗ corresponding to the current model,
and then approximate the corresponding ω(s, a|ρβ∗

)). It should be emphasized that since β∗ is
unknown in advance and will change as the induction bias of M is changed, the solutions proposed
in [32, 35, 60] cannot be applied to AWRM; Recently, [24, 57] use density ratio weighting to learn
a model. The purpose of weighting is to make the model adapt to the current policy learning and
adjust the model learning according to the current policy, which is the same as the WERM objective
proposed in Def. 4.1. [54] also utilizes density ratio weighting to learn a model. Instead of estimating
them based on the offline dataset and target policy as previous works do, they propose to design an
adversarial model learning objective by constructing two function classes V andW , satisfying the
target policy’s value Vβ and density ratio ωβ are covered, i.e., Vβ ∈ V and ωβ ∈ W . Different from
previous articles, our approach uses adversarial weighting to learn a universal model that provides
good feedback for any target policy β ∈ Π, i.e., AWRM, instead of learning a model suitable to a
specific target policy.
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G Experiment Details

G.1 Settings

G.1.1 General Negative Feedback Control (GNFC)

The design of GNFC is inspired by a classic type of scenario that behavior policies µ have selection
bias and easily lead to counterfactual risks: For some internet platforms, we would like to allocate
budgets to a set of targets (e.g., customers or cities) to increase the engagement of the targets in the
platforms. Our task is to train a model to predict targets’ feedback on engagement given targets’
features and allocated budgets.

In these tasks, for better benefits, the online working policy (i.e., the behavior policy) will tend to cut
down the budgets if targets have better engagement, otherwise, the budgets might be increased. The
risk of counterfactual environment model learning in the task is that: the object with better historical
engagement will be sent to smaller budgets because of the selection bias of the behavior policies, then
the model might exploit this correlation for learning and get a conclusion that: increasing budgets
will reduce the targets’ engagement, which violates the real causality. We construct an environment
and a behavior policy to mimic the above process. In particular, the behavior policy µGNFC is

µGNFC(x) =
(62.5−mean(x))

15
+ ϵ,

where ϵ is a sample noise, which will be discussed later. The environment includes two parts:

(1) response function M1(y|x, a):
M1(y|x, a) = N (mean(x) + a, 2)

(2) mapping function M2(x
′|x, y):

M2(x
′|x, a, y) = y −mean(x) + x

The transition function M∗ is a composite of M∗(x′|x, a) = M2(x
′|x, a,M1(y|x, a)). The behavior

policies have selection bias: the actions taken are negatively correlated with the states, as illustrated
in Fig. 10(a) and Fig. 10(b). We control the difficulty of distinguishing the correct causality of x, a,
and y by designing different strategies of noise sampling on ϵ. In principle, with a larger number or
more pronounced disturbances, there are more samples violating the correlation between x and a,
then more samples can be used to find the correct causality. Therefore, we can control the difficulty
of counterfactual environment model learning by controlling the strength of disturbance. In particular,
we sample ϵ from a uniform distribution U(−e, e) with probability p. That is, ϵ = 0 with probability
1− p and ϵ ∼ U(−e, e) with probability p. Then with larger p, there are more samples in the dataset
violating the negative correlation (i.e., µGNFC), and with larger e, the difference of the feedback
will be more obvious. By selecting different e and p, we can construct different tasks to verify the
effectiveness and ability of the counterfactual environment model learning algorithm.
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Figure 10: Illustration of information about the collected dataset in GNFC. Each color of the line
denotes one of the collected trajectories. The X-axis denotes the timestep of a trajectory.
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G.1.2 The Cancer Genomic Atlas (TCGA)

The Cancer Genomic Atlas (TCGA) is a project that has profiled and analyzed large numbers of
human tumors to discover molecular aberrations at the DNA, RNA, protein, and epigenetic levels. The
resulting rich data provide a significant opportunity to accelerate our understanding of the molecular
basis of cancer. We obtain features, x, from the TCGA dataset and consider three continuous
treatments as done in SCIGAN [7]. Each treatment, a, is associated with a set of parameters, v1,
v2, v3, that are sampled randomly by sampling a vector from a standard normal distribution and
scaling it with its norm. We assign interventions by sampling a treatment, a, from a beta distribution,
a | x ∼ Beta (α, β). α ≥ 1 controls the sampling bias and β = α−1

a∗ + 2 − α, where a∗ is the
optimal treatment. This setting of β ensures that the mode of Beta (α, β) is a∗.

The calculation of treatment response and optimal treatment are shown in Table 4.

Table 4: Treatment response used to generate semi-synthetic outcomes for patient features x. In the
experiments, we set C = 10.

Treatment Treatment Response Optimal treatment

1 f1(x, a1) = C
((

v1
1

)T
x+ 12

(
v1
2

)T
xa1 − 12

(
v1
3

)T
xa21

)
a∗1 =

(v1
2)

T
x

2(v1
3)

T
x

2 f2(x, a2) = C
((

v2
1

)T
x+ sin

(
π
(

v2T
2 x

v2T
3 x

)
a2

))
a∗2 =

(v2
3)

T
x

2(v2
2)

T
x

3 f3(x, a3) = C
((

v3
1

)T
x+ 12a3(a3 − b)2 , where b = 0.75

(v3
2)

T
x

(v3
3)

T
x

)
3
b if b ≥ 0.75, 1 if b < 0.75

We conduct experiments on three different treatments separately and change the value of bias α to
assess the robustness of different methods to treatment bias. When the bias of treatment is large,
which means α is large, the training set contains data with a strong bias on treatment so it would be
difficult for models to appropriately predict the treatment responses out of the distribution of training
data.

G.1.3 Budget Allocation task to the Time period (BAT)

1. customers send
take-out food orders remotely

based on the platform

3. delivery clerks
take food

from the stores

2. stores make food

4. delivery clerks
send the food

to the customers
customers

stores

delivery
clerk

5. The platform will pay
the delivery clerks for

fulfilling the orderplatform

Figure 11: Illustration of the workflow of the food-delivery platform.

We deploy GALILEO in a real-world large-scale food-delivery platform. The platform contains
various food stores, and food delivery clerks. The overall workflow is as follows: the platform
presents the nearby food stores to the customers and the customers make orders, i.e., purchase
take-out foods from some stores on the platform. The food delivery clerks can select orders from
the platform to fulfill. After an order is selected to fulfill, the delivery clerks will take the ordered
take-out foods from the stores and then send the food to the customers. The platform will pay the
delivery clerks (mainly in proportion to the distance between the store and the customers’ location)
once the orders are fulfilled. An illustration of the workflow can be found in Fig. 11.
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Figure 12: Illustration of relationship between user feedback and the actions of the offline dataset in
the real-world food-delivery platform.

However, there is an imbalance problem between the demanded orders from customers and the supply
of delivery clerks to fulfill these orders. For example, at peak times like lunchtime, there will be
many more demanded orders than at other times, and the existed delivery clerks might not be able to
fulfill all of these orders timely. The goal of the Budget Allocation task to the Time period (BAT) is
to handle the imbalance problem in time periods by sending reasonable allowances to different time
periods. More precisely, the goal of BAT is to make all orders (i.e., the demand) sent in different time
periods can be fulfilled (i.e., the supply) timely.

The core challenge of the environment model learning in BAT tasks is similar to the challenge in
Fig. 1. Specifically, the behavior policy in BAT tasks is a human-expert policy, which will tend to
increase the budget of allowance in the time periods with a lower supply of delivery clerks, otherwise
will decrease the budget (Fig. 12 gives an instance of this phenomenon in the real data).

To handle the imbalance problem in different time periods, in the platform, the orders in different
time periods t ∈ [0, 1, 2..., 23] will be allocated with different allowances c ∈ N+. For example, at
10 A.M. (i.e., t = 10), we add 0.5$ (i.e., c = 0.5) allowances to all of the demanded orders. From
10 A.M. to 11 A.M., the delivery clerks who take orders and send food to customers will receive
extra allowances. Specifically, if the platform pays the delivery clerks 2$ for fulfilling the order, now
he/she will receive 2.5$. For each day, the budget of allowance C is fixed. We should find the best
budget allocation policy π∗(c|t) of the limited budget C to make as many orders as possible can be
taken timely.

To find the policy, we first learn a model to reconstruct the response of allowance for each delivery
clerk M̂(yt+1|st, pt, ct), where yt+1 is the taken orders of the delivery clerks in state st, ct is the
allowances, pt denotes static features of the time period t. In particular, the state st includes historical
order-taken information of the delivery clerks, current orders information, the feature of weather,
city information, and so on. Then we use a rule-based mapping function f to fill the complete next
time-period states, i.e., st+1 = f(st, pt, ct, yt+1). Here we define the composition of the above
functions M̂ and f as M̂f . Finally, we learn a budget allocation policy based on the learned model.
For each day, the policy we would like to find is:

max
π

Es0∼S

[
23∑
t=0

yt|M̂f , π

]
,

s.t.,
∑
t,s∈S

ctyt ≤ C

In our experiment, we evaluate the degree of balancing between demand and supply by computing the
averaged five-minute order-taken rate, that is the percentage of orders picked up within five minutes.
Note that the behavior policy is fixed for the long term in this application. So we directly use the data
replay with a small scale of noise (See Tab. 6) to reconstruct the behavior policy for model learning
in GALILEO.

Also note that although we model the response for each delivery clerk, for fairness, the budget
allocation policy is just determining the allowance of each time period t and keeps the allowance
to each delivery clerk s the same.
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G.2 Baseline Algorithms

The algorithm we compared are: (1) Supervised Learning (SL): training a environment model to
minimize the expectation of prediction error, without considering the counterfactual risks; (2) inverse
propensity weighting (IPW) [50]: a practical way to balance the selection bias by re-weighting. It
can be regarded as ω = 1

µ̂ , where µ̂ is another model learned to approximate the behavior policy;
(3) SCIGAN: a recent proposed adversarial algorithm for model learning for continuous-valued
interventions [7]. All of the baselines algorithms are implemented with the same capacity of neural
networks (See Tab. 6).

G.2.1 Supervised Learning (SL)

As a baseline, we train a multilayer perceptron model to directly predict the response of different
treatments, without considering the counterfactual risks. We use mean square error to estimate the
performance of our model so that the loss function can be expressed as MSE = 1

n

∑n
i=1 (yi − ŷi)

2,
where n is the number of samples, y is the true value of response and ŷ is the predicted response. In
practice, we train our SL models using Adam optimizer and the initial learning rate 3e−4 on both
datasets TCGA and GNFC. The architecture of the neural networks is listed in Tab. 6.

G.2.2 Inverse Propensity Weighting (IPW)

Inverse propensity weighting [50] is an approach where the treatment outcome model uses sample
weights to balance the selection bias by re-weighting. The weights are defined as the inverse
propensity of actually getting the treatment, which can be expressed as 1

µ̂(a|x) , where x stands
for the feature vectors in a dataset, a is the corresponding action and µ̂(a|x) indicates the action
taken probability of a given the features x within the dataset. µ̂ is learned with standard supervised
learning. Standard IPW leads to large weights for the points with small sampling probabilities and
finally makes the learning process unstable. We solve the problem by clipping the propensity score:
µ̂ ← min(µ̂, 0.05), which is common used in existing studies [27]. The loss function can thus be
expressed as 1

n

∑n
i=1

1
µ̂(ai|xi)

(yi − ŷi)
2. The architecture of the neural networks is listed in Tab. 6.

G.2.3 SCIGAN

SCIGAN [7] is a model that uses generative adversarial networks to learn the data distribution of the
counterfactual outcomes and thus generate individualized response curves. SCIGAN does not place
any restrictions on the form of the treatment-does response functions and is capable of estimating
patient outcomes for multiple treatments, each with an associated parameter. SCIGAN first trains
a generator to generate response curves for each sample within the training dataset. The learned
generator can then be used to train an inference network using standard supervised methods. For
fair comparison, we increase the number of parameters for the open-source version of SCIGAN so
that the SCIGAN model can have same order of magnitude of network parameters as GALILEO. In
addition, we also finetune the hyperparameters (Tab. 5) of the enlarged SCIGAN to realize its full
strength. We set num_dosage_samples 9 and λ = 10.

Table 5: Table of hyper-parameters for SCIGAN.
Parameter Values

Number of samples 3, 5, 7, 9, 11
λ 0.1, 1, 10, 20

G.3 Hyper-parameters

We list the hyper-parameter of GALILEO in Tab. 6.

G.4 Computation Resources

We use one Tesla V100 PCIe 32GB GPU and a 32-core Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz
to train all of our models.
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Table 6: Table of hyper-parameters for all of the tasks.
Parameter GNFC TAGC MuJoCo BAT

hidden layers of all neural networks 4 4 5 5
hidden units of all neural networks 256 256 512 512
collect samples for each time of model update 5000 5000 40000 96000
batch size of discriminators 5000 5000 40000 80000
horizon 50 1 100 48 (half-hours)
ϵµ (also ϵD) 0.005 0.01 0.05 (0.1 for walker2d) 0.05
times for discriminator update 2 2 1 5
times for model update 1 1 2 20
times for supervised learning update 1 1 4 20
learning rate for supervised learning 1e-5 1e-5 3e-4 1e-5
γ 0.99 0.0 0.99 0.99
clip-ratio NAN NAN NAN 0.1
max DKL 0.001 0.001 0.001 NAN
optimization algorithm (the first term of Eq. (22)) TRPO TRPO TRPO PPO
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Figure 13: Illustration of the performance in GNFC and TCGA. The grey bar denotes the standard
error (×0.3 for brevity) of 3 random seeds.

H Additional Results

H.1 Test in Single-step Environments

The results of GNFC tasks are summarized in Fig. 13(a) and the detailed results can be found in
Tab. 11. The results show that the property of the behavior policy (i.e., e and p) dominates the
generalization ability of the baseline algorithms. When e = 0.05, almost all of the baselines fail
and give a completely opposite response curve. IPW still perform well when 0.2 ≤ e ≤ 1.0 but
fails when e = 0.05, p <= 0.2. We also found that SCIGAN can reach a better performance than
other baselines when e = 0.05, p <= 0.2, but the results in other tasks are unstable. GALILEO is
the only algorithm that is robust to the selection bias and outputs correct response curves in all of
the tasks. Based on the experiment, we also indicate that the commonly used overlap assumption is
unreasonable to a certain extent especially in real-world applications since it is impractical to inject
noises into the whole action space. The problem of overlap assumption being violated should be
taken into consideration otherwise the algorithm will be hard to use in practice if it is sensitive to the
noise range.

The results of TCGA tasks are summarized in Fig. 13(b) and the detailed results can be found
in Tab. 12. We found the phenomenon in this experiment is similar to the one in GNFC, which
demonstrates the compatibility of GALILEO to single-step environments. We also found that the
results of IPW are unstable in this experiment. It might be because the behavior policy is modeled
with beta distribution while the propensity score µ̂ is modeled with Gaussian distribution. Since
IPW directly reweight loss function with 1

µ̂ , the results are sensitive to the error on µ̂. GALILEO
also models µ̂ with Gaussian distribution but the results are more stable since GALILEO does not
re-weight through µ̂ explicitly.

We give the averaged responses for all of the tasks and the algorithms in Fig. 21 to Fig. 28. We
randomly select 20% of the states in the dataset and equidistantly sample actions from the action
space for each sampled state, and plot the averaged predicted feedback of each action. The real
response is slightly different among different figure as the randomly-selected states for testing is
different. We sample 9 points in GNFC tasks and 33 points in TAGC tasks for plotting.
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H.2 All of the Result Table

We give the result of CNFC in Tab. 11, TCGA in Tab. 12, BAT in Tab. 9, and MuJoCo in Tab. 10.

H.3 Ablation Studies

GALILEO
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Figure 14: Illustration of the ablation
studies. The error bars are the standard
error.

In Appx. E.1, we introduce several techniques to de-
velop a practical GALILEO algorithm. Based on task
e0.2_p0.05 in GNFC, we give the ablation studies to in-
vestigate the effects of these techniques. We first compare
two variants that do not handle the assumptions violation
problems: (1) NO_INJECT_NOISE: set ϵµ and ϵD to zero,
which makes the overlap assumption not satisfied;; (2)
SINGLE_SL: without replacing the second term in Eq. (6)
with standard supervised learning even when the output
probability of D is far away from 0.5. Besides, we intro-
duced several tricks inspired by GAIL and give a compari-
son of these tricks and GAIL: (3) ONE_STEP: use one-step
reward instead of cumulative rewards (i.e., Q and V; see
Eq. (23) and Eq. (24)) for re-weighting, which is imple-
mented by set γ to 0; (4) SINGE_DIS: remove Tφ∗

1
(x, a)

and replace it with EMθ

[
Tφ∗

0
(x, a, x′)

]
, which is inspired

by GAIL that uses a value function as a baseline instead of
using another discriminator; (5) PURE_GAIL: remove the
second term in Eq. (6). It can be regarded as a naive adoption of GAIL and a partial implementation
of GALILEO.

We summarize the results in Fig. 14. Based on the results of NO_INJECT_NOISE and SINGLE_SL, we
can see that handling the assumption violation problems is important and will increase the ability on
counterfactual queries. The results of PURE_GAIL tell us that the partial implementation of GALILEO
is not enough to give stable predictions on counterfactual data; On the other hand, the result of
ONE_STEP also demonstrates that embedding the cumulative error of one-step prediction is helpful
for GALILEO training; Finally, we also found that SINGLE_DIS nearly has almost no effect on the
results. It suggests that, empirically, we can use EMθ

[
Tφ∗

0
(x, a, x′)

]
as a replacement for Tφ∗

1
(x, a),

which can reduce the computation costs of the extra discriminator training.

H.4 Worst-Case Prediction Error

In theory, GALILEO increases the generalization ability by focusing on the worst-case samples’
training to achieve AWRM. To demonstrate the property, we propose a new metric named Mean-Max
Square Error (MMSE): E

[
maxa∈A (M∗(x′|x, a)−M(x′|x, a))2

]
and give the results of MMSE

for GNFC in Tab. 13 and for TCGA in Tab. 14.
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H.5 Detailed Results in the MuJoCo Tasks

We select 3 environments from D4RL [17] to construct our model learning tasks. We compare
it with a typical transition model learning algorithm used in the previous offline model-based RL
algorithms [59, 30], which is a variant of standard supervised learning. We name the method OFF-
SL. Besides, we also implement IPW and SCIGAN as the baselines. We train models in datasets
HalfCheetah-medium, Walker2d-medium, and Hopper-medium, which are collected by a behavior
policy with 1/3 performance to the expert policy, then we test them in the corresponding expert
dataset. For better training efficiency, the trajectories in the training and testing datasets are truncated,
remaining the first 100 steps. We plot the converged results and learning curves of the three MuJoCo
tasks in Tab. 10 and Fig. 15 respectively.
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Figure 15: Illustration of learning curves of the MuJoCo Tasks. The X-axis record the steps of the
environment model update, and the Y-axis is the corresponding prediction error. The figures with
titles ending in “(train)” means the dataset is used for training while the titles ending in “(test)” means
the dataset is just used for testing. The solid curves are the mean reward and the shadow is the
standard error of three seeds.

In Fig. 15, we can see that all algorithms perform well in the training datasets. OFF-SL and
SCIGAN can even reach a bit lower error in halfcheetah and walker2d. However, when we verify
the models through “expert” and “medium-replay” datasets, which are collected by other policies,
the performance of GALILEO is significantly more stable and better than all other algorithms. As
the training continues, the baseline algorithms even gets worse and worse. However, whether in
GALILEO or other baselines, the performance for testing is at least 2x worse than in the training
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dataset, and the error is large especially in halfcheetah. The phenomenon indicates that although
GALILEO can make better performances for counterfactual queries, the risks of using the models are
still large and still challenging to be further solved.

Table 7: Results of policy performance directly optimized through SAC [20] using the learned
dynamics models and deployed in MuJoCo environments. MAX-RETURN is the policy performance
of SAC in the MuJoCo environments, and “avg. norm.” is the averaged normalized return of the
policies in the 9 tasks, where the returns are normalized to lie between 0 and 100, where a score of 0
corresponds to the worst policy, and 100 corresponds to MAX-RETURN.

Task Hopper Walker2d HalfCheetah avg. norm.

Horizon H=10 H=20 H=40 H=10 H=20 H=40 H=10 H=20 H=40 /

GALILEO 13.0 ± 0.1 33.2 ± 0.1 53.5 ± 1.2 11.7 ± 0.2 29.9 ± 0.3 61.2 ± 3.4 0.7 ± 0.2 -1.1 ± 0.2 -14.2 ± 1.4 51.1
OFF-SL 4.8 ± 0.5 3.0 ± 0.2 4.6 ± 0.2 10.7 ± 0.2 20.1 ± 0.8 37.5 ± 6.7 0.4 ± 0.5 -1.1 ± 0.6 -13.2 ± 0.3 21.1
IPW 5.9 ± 0.7 4.1 ± 0.6 5.9 ± 0.2 4.7 ± 1.1 2.8 ± 3.9 14.5 ± 1.4 1.6 ± 0.2 0.5 ± 0.8 -11.3 ± 0.9 19.7
SCIGAN 12.7 ± 0.1 29.2 ± 0.6 46.2 ± 5.2 8.4 ± 0.5 9.1 ± 1.7 1.0 ± 5.8 1.2 ± 0.3 -0.3 ± 1.0 -11.4 ± 0.3 41.8

MAX-RETURN 13.2 ± 0.0 33.3 ± 0.2 71.0 ± 0.5 14.9 ± 1.3 60.7 ± 11.1 221.1 ± 8.9 2.6 ± 0.1 13.3 ± 1.1 49.1 ± 2.3 100.0

We then verify the generalization ability of the learned models above by adopting them into offline
model-based RL. Instead of designing sophisticated tricks to suppress policy exploration and learning
in risky regions as current offline model-based RL algorithms [59, 30] do, we just use the standard
SAC algorithm [20] to exploit the models for policy learning to strictly verify the ability of the
models. Unfortunately, we found that the compounding error will still be inevitably large in the
1,000-step rollout, which is the standard horizon in MuJoCo tasks, leading all models to fail to derive
a reasonable policy. To better verify the effects of models on policy optimization, we learn and
evaluate the policies with three smaller horizons: H ∈ {10, 20, 40}.
The results have been listed in Tab. 7, where the learning curve in the dynamics models and the real
environments is shown in Fig. 16 and Fig. 17. We first averaged the normalized return (refer to “avg.
norm.”) under each task, and we can see that the policy obtained by GALILEO is significantly higher
than other models (the improvements are 24% to 161%). At the same time, we found that SCIGAN
performed better in policy learning, while IPW performed similarly to SL. This is in line with our
expectations, since IPW only considers the uniform policy as the target policy for debiasing, while
policy optimization requires querying a wide variety of policies. Minimizing the prediction risks
only under a uniform policy cannot yield a good environment model for policy optimization. On the
other hand, SCIGAN, as a partial implementation of GALILEO (refer to Appx. E.2), also roughly
achieves AWRM and considers the cumulative effects of policy on the state distribution, so its overall
performance is better; In addition, we find that GALILEO achieves significant improvement in 6 of
the 9 tasks. But in HalfCheetah, IPW works slightly better. However, compared with MAX-RETURN,
it can be found that all methods fail to derive reasonable policies because their policies’ performances
are far away from the optimal policy. By further checking the trajectories, we found that all the
learned policies just keep the cheetah standing in the same place or even going backward and fall
down 4.

H.6 Off-policy Evaluation (OPE) in the MuJoCo Tasks

H.6.1 Training and Evaluation Settings

We select 3 environments from D4RL [17] to construct our model learning tasks as Appx. H.5. To
match the experiment setting in DOPE [18], here we use the whole datasets to the train GALILEO
model, instead of truncated dataset in Appx. H.5, for GALILEO model training.

OPE via a learned dynamics model is straightforward, which only needs to compute the return using
simulated trajectories generated by the evaluated policy under the learned dynamics model. Due to
the stochasticity in the model and the policy, we estimate the return for a policy with Monte-Carlo
sampling. See Alg. 4 for pseudocode, where we use γ = 0.995, N = 10, H = 1000 for all of the
tasks.

H.6.2 Metrics

The metrics we use in our paper are defined as follows:
4the videos can be found in https://github.com/xionghuichen/GALILEO
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Figure 16: Illustration of offline policy learning curves of the MuJoCo Tasks. The X-axis record the
steps of the environment model update, and the Y-axis is the corresponding returns in the dynamics
models. The solid curves are the mean reward and the shadow is the standard error of three seeds.

Absolute Error The absolute error is defined as the difference between the value and estimated value
of a policy:

AbsErr = |V π − V̂ π|, (28)

where V π is the true value of the policy and V̂ π is the estimated value of the policy.

Rank correlation Rank correlation measures the correlation between the ordinal rankings of the
value estimates and the true values, which can be written as:

RankCorr =
Cov(V π

1:N , V̂ π
1:N )

σ(V π
1:N )σ(V̂ π

1:N )
, (29)

where 1 : N denotes the indices of the evaluated policies.
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Figure 17: Illustration of offline policy learning curves of the MuJoCo Tasks. The X-axis record the
steps of the environment model update, and the Y-axis is the corresponding returns in the ground-
truth environments. The solid curves are the mean reward and the shadow is the standard error of
three seeds.

Regret@k Regret@k is the difference between the value of the best policy in the entire set, and the
value of the best policy in the top-k set (where the top-k set is chosen by estimated values). It can be
defined as:

Regret @k = max
i∈1:N

V π
i − max

j∈topk(1:N)
V π
j , (30)

where topk(1 : N ) denotes the indices of the top K policies as measured by estimated values V̂ π .

39



Algorithm 4 Off-policy Evaluation with GALILEO model

Require: GALILEO model (Mθ), evaluated policy π, number of rollouts N . set of initial states
S0, discount factor γ, horizon length H .
for i = 1 to N do

Ri = 0
Sample initial state s0 ∼ S0
Initialize τ−1 = 0
for t = 0 to H − 1 do

at ∼ π(·|st)
st+1, rt ∼Mθ(·|st, at)
Ri = Ri + γtrt

end for
end for
return 1

N

∑N
i=1 Ri
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H.6.3 Detailed Results

The results of OPE on three tasks are in Tab. 8. Firstly, we can see that for all recorded rank-
correlation scores, GALILEO is significantly better than all of the baseline methods, with at least 25
% improvements. As for regret@1, although GALILEO cannot reach the best performance among
all of the tasks, it is always one of the top-2 methods among the three tasks, which demonstrates
the stability of GALILEO. Finally, GALILEO has the smallest value gaps except for Halfcheetah.
However, for all of the top-4 methods, the value gaps in halfcheetah are around 1,200. Thus we
believe that their performances on value gaps are roughly at the same level.

Table 8: Results of OPE on DOPE benchmark. ± is the standard deviation. We bold the top-2 scores
for each metric. The results are tested on 3 random seeds. The results of the baselines are from [18].
Note that the rank correlation is “NAN” for HalfCheetah because the scores are not given in [18].

TASK HalfCheetah

METRIC Absolute value gap Rank correlation Regret@1

GALILEO 1280 ± 83 0.313 ± 0.09 0.12 ± 0.02
Best DICE 1382 ± 130 NAN 0.82 ± 0.29
VPM 1374 ± 153 NAN 0.33 ± 0.19
FQE (L2) 1211 ± 130 NAN 0.38 ± 0.13
IS 1217 ± 123 NAN 0.05 ± 0.05
Doubly Rubost 1222 ± 134 NAN 0.37 ± 0.13

TASK Walker2d

METRIC Absolute value gap Rank correlation Regret@1

GALILEO 176 ± 52 0.57 ± 0.08 0.08 ± 0.06
Best DICE 273 ± 31 0.12 ± 0.38 0.27 ± 0.43
VPM 426 ± 60 0.44 ± 0.21 0.08 ± 0.06
FQE (L2) 350 ± 79 -0.09 ± 0.36 0.31 ± 0.10
IS 428 ± 60 -0.25 ± 0.35 0.70 ± 0.39
Doubly Rubost 368 ± 74 0.02 ± 0.37 0.25 ± 0.09

TASK Hopper

METRIC Absolute value gap Rank correlation Regret@1

GALILEO 156 ± 23 0.45 ± 0.1 0.08 ± 0.08
Best DICE 215 ± 41 0.19 ± 0.33 0.18 ± 0.19
VPM 433 ± 44 0.13 ± 0.37 0.10 ± 0.14
FQE (L2) 283 ± 73 -0.29 ± 0.33 0.32 ± 0.32
IS 405 ± 48 -0.55 ± 0.26 0.32 ± 0.32
Doubly Rubost 307 ± 73 -0.31 ± 0.34 0.38 ± 0.28
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H.7 Detailed Results in the BAT Task

The core challenge of the environment model learning in BAT tasks is similar to the challenge in
Fig. 1. Specifically, the behavior policy in BAT tasks is a human-expert policy, which will tend to
increase the budget of allowance in the time periods with a lower supply of delivery clerks, otherwise
will decrease the budget (Fig. 12 gives an instance of this phenomenon in the real data).

Since there is no oracle environment model for querying, we have to describe the results with other
metrics.
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Figure 18: Illustration of the response curves in the 6 cities. Although the ground-truth curves
are unknown, through human expert knowledge, we know that it is expected to be monotonically
increasing.
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Figure 19: Illustration of the AUCC re-
sult for BAT. The model with larger ar-
eas above the “random” line makes bet-
ter predictions in randomized-controlled-
trials data [61].

First, we review whether the tendency of the response
curve is consistent. In this application, with a larger bud-
get of allowance, the supply will not be decreased. As can
be seen in Fig. 18, the tendency of GALILEO’s response
is valid in 6 cities but almost all of the models of SL give
opposite directions to the response. If we learn a policy
through the model of SL, the optimal solution is cancel-
ing all of the allowances, which is obviously incorrect in
practice.

Second, we conduct randomized controlled trials (RCT)
in one of the testing cities. Using the RCT samples, we
can evaluate the correctness of the sort order of the model
predictions via Area Under the Uplift Curve (AUUC) [6].
To plot AUUC, we first sort the RCT samples based on the
predicted treatment effects. Then the cumulative treatment
effects are computed by scanning the sorted sample list. If
the sort order of the model predictions is better, the sample
with larger treatment effects will be computed early. Then
the area of AUUC will be larger than the one via a random sorting strategy. The result of AUUC
show GALILEO gives a reasonable sorting to the RCT samples (see Fig. 19).

Finally, we search for the optimal policy via the cross-entropy method planner [21] based on the
learned model. We test the online supply improvement in 6 cities. The algorithm compared is a
human-expert policy, which is also the behavior policy of the offline datasets. We conduct online
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A/B tests for each of the cities. For each test, we randomly split a city into two partitions, one is
for deploying the optimal policy learned from the GALILEO model, and the other is as a control
group, which keeps the human-expert policy as before. Before the intervention, we collect 10 days’
observation data and compute the averaged five-minute order-taken rates as the baselines of the
treatment and control group, named bt and bc respectively. Then we start intervention and observe the
five-minute order-taken rate in the following 14 days for the two groups. The results of the treatment
and control groups are yti and yci respectively, where i denotes the i-th day of the deployment. The
percentage points of the supply improvement are computed via difference-in-difference (DID):∑T

i (y
t
i − bt)− (yci − bc)

T
× 100,

where T is the total days of the intervention and T = 14 in our experiments.

Table 9: Results on BAT. We use City-X to denote the experiments on different cities. “pp” is an
abbreviation of percentage points on the supply improvement.

target city City-A City-B City-C

supply improvement +1.63pp +0.79pp +0.27pp

target city City-D City-E City-F

supply improvement +0.2pp +0.14pp +0.41pp

The results are summarized in Tab. 9. The online experiment is conducted in 14 days and the results
show that the policy learned with GALILEO can make better (the supply improvements are from 0.14
to 1.63 percentage points) budget allocation than the behavior policies in all the testing cities. We
give detailed results which record the supply difference between the treatment group and the control
group in Fig. 20.
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Figure 20: Illustration of the daily responses in the A/B test in the 6 cities.
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Table 10: The root mean square errors on MuJoCo tasks. We bold the lowest error for each task.
“medium” dataset is used for training, while “expert” and “medium-replay” datasets are just used
for testing. ± follows the standard deviation of three seeds.

TASK HalfCheetah

DATASET medium (train) expert (test) medium-replay (test)

GALILEO 0.378 ± 0.003 2.287± 0.005 1.411 ± 0.037
OFF-SL 0.404 ± 0.001 3.311 ± 0.055 2.246 ± 0.016
IPW 0.513 ± 0.033 2.892 ± 0.050 2.058 ± 0.021
SCIGAN 0.309 ± 0.002 3.813 ± 0.133 2.484 ± 0.040

TASK Walker2d

DATASET medium (train) expert (test) medium-replay (test)

GALILEO 0.49 ± 0.001 1.514 ± 0.002 0.968 ± 0.004
OFF-SL 0.467 ± 0.004 1.825 ± 0.061 1.239 ± 0.004
IPW 0.564 ± 0.001 1.826 ± 0.025 1.282 ± 0.007
SCIGAN 0.438 ± 0.001 1.825 ± 0.031 1.196 ± 0.005

TASK Hopper

DATASET medium (train) expert (test) medium-replay (test)

GALILEO 0.037 ± 0.002 0.322 ± 0.036 0.408 ± 0.003
OFF-SL 0.034 ± 0.001 0.464 ± 0.021 0.574 ± 0.008
IPW 0.039 ± 0.001 0.533 ± 0.00 0.671 ± 0.001
SCIGAN 0.039 ± 0.002 0.628 ± 0.050 0.742 ± 0.019

Table 11:
√
MISE results on GNFC. We bold the lowest error for each task. ± is the standard

deviation of three random seeds.
e1_p1 e0.2_p1 e0.05_p1

GALILEO 5.17 ± 0.06 4.73 ± 0.13 4.70 ± 0.02
SL 5.15 ± 0.23 4.73 ± 0.31 23.64 ± 4.86
IPW 5.22 ± 0.09 5.50 ± 0.01 5.02 ± 0.07
SCIGAN 7.05 ± 0.52 6.58 ± 0.58 18.55 ± 3.50

e1_p0.2 e0.2_p0.2 e0.05_p0.2

GALILEO 5.03 ± 0.09 4.72 ± 0.05 4.87 ± 0.15
SL 5.21 ± 0.63 6.74 ± 0.15 33.52 ± 1.32
IPW 5.27 ± 0.05 5.69 ± 0.00 20.23 ± 0.45
SCIGAN 16.07 ± 0.27 12.07 ± 1.93 19.27 ± 10.72

e1_p0.05 e0.2_p0.05 e0.05_p0.05

GALILEO 5.23 ± 0.41 5.01 ± 0.08 6.17 ± 0.33
SL 5.89 ± 0.88 14.25 ± 3.48 37.50 ± 2.29
IPW 5.21 ± 0.01 5.52 ± 0.44 31.95 ± 0.05
SCIGAN 11.50 ± 7.76 13.05 ± 4.19 25.74 ± 8.30
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Table 12:
√
MISE results on TCGA. We bold the lowest error for each task. ± is the standard

deviation of three random seeds.
t0_bias_2.0 t0_bias_20.0 t0_bias_50.0

GALILEO 0.34 ± 0.05 0.67 ± 0.13 2.04 ± 0.12
SL 0.38 ± 0.13 1.50 ± 0.31 3.06 ± 0.65
IPW 6.57 ± 1.16 6.88 ± 0.30 5.84 ± 0.71
SCIGAN 0.74 ± 0.05 2.74 ± 0.35 3.19 ± 0.09

t1_bias_2.0 t1_bias_6.0 t1_bias_8.0

GALILEO 0.43 ± 0.05 0.25 ± 0.02 0.21 ± 0.04
SL 0.47 ± 0.05 1.33 ± 0.97 1.18 ± 0.73
IPW 3.67 ± 2.37 0.54 ± 0.13 2.69 ± 1.17
SCIGAN 0.45 ± 0.25 1.08 ± 1.04 1.01 ± 0.77

t2_bias_2.0 t2_bias_6.0 t2_bias_8.0

GALILEO 1.46 ± 0.09 0.85 ± 0.04 0.46 ± 0.01
SL 0.81 ± 0.14 3.74 ± 2.04 3.59 ± 0.14
IPW 2.94 ± 1.59 1.24 ± 0.01 0.99 ± 0.06
SCIGAN 0.73 ± 0.15 1.20 ± 0.53 2.13 ± 1.75

Table 13:
√
MMSE results on GNFC. We bold the lowest error for each task. ± is the standard

deviation of three random seeds.
e1_p1 e0.2_p1 e0.05_p1

GALILEO 3.86 ± 0.03 3.99 ± 0.01 4.07 ± 0.03
SL 5.73 ± 0.33 5.80 ± 0.28 18.78 ± 3.13
IPW 4.02 ± 0.05 4.15 ± 0.12 22.66 ± 0.33
SCIGAN 8.84 ± 0.54 12.62 ± 2.17 24.21 ± 5.20

e1_p0.2 e0.2_p0.2 e0.05_p0.2

GALILEO 4.13 ± 0.10 4.11 ± 0.15 4.21 ± 0.15
SL 5.87 ± 0.43 7.44 ± 1.13 29.13 ± 3.44
IPW 4.12 ± 0.02 6.12 ± 0.48 30.96 ± 0.17
SCIGAN 12.87 ± 3.02 14.59 ± 2.13 24.57 ± 3.00

e1_p0.05 e0.2_p0.05 e0.05_p0.05

GALILEO 4.39 ± 0.20 4.34 ± 0.20 5.26 ± 0.29
SL 6.12 ± 0.43 14.88 ± 4.41 30.81 ± 1.69
IPW 13.60 ± 7.83 26.27 ± 2.67 32.55 ± 0.12
SCIGAN 9.19 ± 1.04 15.08 ± 1.26 17.52 ± 0.02
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Table 14:
√
MMSE results on TCGA. We bold the lowest error for each task. ± is the standard

deviation of three random seeds.
t0_bias_2.0 t0_bias_20.0 t0_bias_50.0

GALILEO 1.56 ± 0.04 1.96 ± 0.53 3.16 ± 0.13
SL 1.92 ± 0.67 2.31 ± 0.19 5.11 ± 0.66
IPW 7.42 ± 0.46 5.36 ± 0.96 5.38 ± 1.24
SCIGAN 2.11 ± 0.47 5.23 ± 0.27 5.59 ± 1.02

t1_bias_2.0 t1_bias_6.0 t1_bias_8.0

GALILEO 1.43 ± 0.06 1.09 ± 0.05 1.36 ± 0.36
SL 1.12 ± 0.15 3.65 ± 1.91 3.96 ± 1.81
IPW 1.14 ± 0.11 0.90 ± 0.09 2.04 ± 0.99
SCIGAN 3.32 ± 0.88 4.74 ± 2.12 5.17 ± 2.42

t2_bias_2.0 t2_bias_6.0 t2_bias_8.0

GALILEO 3.77 ± 0.35 3.99 ± 0.40 2.08 ± 0.60
SL 2.70 ± 0.67 8.33 ± 5.05 9.70 ± 3.12
IPW 2.92 ± 0.15 3.90 ± 0.17 4.47 ± 2.16
SCIGAN 3.82 ± 2.12 1.83 ± 1.49 3.62 ± 4.9
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Figure 21: Illustration of the averaged response curves of Supervised Learning (SL) in TCGA.
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Figure 22: Illustration of the averaged response curves of Supervised Learning (SL) in GNFC.
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Figure 23: Illustration of the averaged response curves of Inverse Propensity Weighting (IPW) in
TCGA.
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Figure 24: Illustration of the averaged response curves of Inverse Propensity Weighting (IPW) in
GNFC.

49



0.0 0.2 0.4 0.6 0.8 1.0
action

8
9

10
11
12
13
14
15

av
er

ag
ed

 re
sp

on
se

pred
real

(a) t0_bias2

0.2 0.4 0.6 0.8 1.0
action

8
9

10
11
12
13
14
15

av
er

ag
ed

 re
sp

on
se

pred
real

(b) t0_bias20

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
action

8
9

10
11
12
13
14
15

av
er

ag
ed

 re
sp

on
se

pred
real

(c) t0_bias50

0.0 0.2 0.4 0.6 0.8 1.0
action

6

8

10

12

14

16

18

av
er

ag
ed

 re
sp

on
se

pred
real

(d) t1_bias2

0.2 0.4 0.6 0.8
action

10
11
12
13
14
15
16
17

av
er

ag
ed

 re
sp

on
se

pred
real

(e) t1_bias6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
action

12

13

14

15

16

17

av
er

ag
ed

 re
sp

on
se

pred
real

(f) t1_bias8

0.0 0.2 0.4 0.6 0.8 1.0
action

10

15

20

25

30

av
er

ag
ed

 re
sp

on
se

pred
real

(g) t2_bias2

0.2 0.4 0.6 0.8
action

12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0

av
er

ag
ed

 re
sp

on
se

pred
real

(h) t2_bias6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
action

18

20

22

24

26

28

30

av
er

ag
ed

 re
sp

on
se

pred
real

(i) t2_bias8

Figure 25: Illustration of the averaged response curves of SCIGAN in TCGA.
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Figure 26: Illustration of the averaged response curves of SCIGAN in GNFC.
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(a) t0_bias2 (b) t0_bias20 (c) t0_bias50

(d) t1_bias2 (e) t1_bias6 (f) t1_bias8

(g) t2_bias2 (h) t2_bias6 (i) t2_bias8

Figure 27: Illustration of the averaged response curves of GALILEO in TCGA.
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(a) e1_p1 (b) e0.2_p1 (c) e0.05_p1

(d) e1_p0.2 (e) e0.2_p0.2 (f) e0.05_p0.2

(g) e1_p0.05 (h) e0.2_p0.05 (i) e0.05_p0.05

Figure 28: Illustration of the averaged response curves of GALILEO in GNFC.
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