
Appendix

A Proofs of Formal Claims

Notation. We will use random variables C,Y,M,X with images [K],Y = [L],M,X respectively
in our probabilistic causal models. For a function ⌧c ∶ X ×M → X , and measure P over sets in
X ×M, we denote by ⌧c,∗P (X,M) the pushforward measure [90, §1.4]. ⌧c(⋅) will be used to refer
to the c-th coordinate of the output of a function ⌧ ∶ X ×M→ XK . The notationH will be used for
hypothesis classes where h ∶ X → Y for any h ∈ H. The 0 − 1 loss `01 ∶ Y × Y → {0,1} is given by
`01(ŷ, y) = 1ŷ≠y . For a node V in a causal graph we will use pa(V ) for its causal parents.

For completeness we rewrite the definition of our data generating process from the main paper, this
time adding the auxiliary data M into our model.
Definition 1. Consider a probabilistic causal model with endogenous random variables
X,X∗, Y,C,M taking on values in X ,X ∗, [L], [K],M and exogenous independent random vari-
ables [83] NX ,NX∗,NY ,NC ,NM , where the induced graph is a DAG that satisfies the following,

• Y is d-separated from X by X∗, C,M and also by X∗, C.

• Y,X∗ are not descendants of C.

An anti-causal prediction problem with a spuriously-correlated attribute is a set of distributions P
obtained by all interventions on C that replaces the distribution of exogenous noise NC , mechanism
fC(pa(C),NC) with another mechanism (i.e. a measurable function f̃(pa(C),NC)), or sets a
fixed value (i.e. do(C = c)). Under the settings of this problem, a learner is provided with a set
{(xi, yi, ci)}

N
i=1 sampled i.i.d from Ptrain ∈ P .

We denote by P� ∈ P the distribution obtained by intervening on C and setting it to a uniform
distribution, i.e. P�(X,X∗, Y,C,M) = K−1∑c∈[K] P (Y,X,X∗,M � do(C = c)). Note that the
problem described by fig. 1 and definition 1 of the main paper is a special case of this setting where
M is discarded, and P� coincides with setting P̃ (C � Y ) to a uniform distribution.

Recall our assumption about perfect recovery of X∗.
Assumption 3. For an anti-causal prediction problem with a spuriously correlated attribute, we
assume that X∗ = e(X) a.e. for some e ∶ X → X ∗.

Under these conditions h(x) = argmaxy∈[L] P�(Y = y � X = x) is an optimal risk-invariant
predictor as described below.
Lemma 1. For the prediction problem in definition 1, the Bayes optimal classifier under the
unconfounded distribution P� ∈ P where C is uniformly distributed and independent of Y is
h∗(x) = argmaxy∈[K] P�(Y = y � X

∗
= e(x)). It is a minimizer of minh∶X→[L]maxP ∈P R

`01
P (h)

andR`01
P (h

∗
) =R

`01
P� (h

∗
) for all P ∈ P .

Proof. Assume Ptrain ∈ P is the distribution from which our training data is obtained. We will show
that any hypothesis satisfying h(X) = g ○ e(X) for some g ∶ X ∗ → Y (i.e. that only depends on
X∗) achieves the same risk over all P ∈ P . To this end note that for such a hypothesis we have,

R`01
Ptrain
(h) = � `01(h(X), Y )Ptrain(X � Y,C,X

∗,M)Ptrain(Y,C,X
∗,M)dX∗dXdY dCdM

= � `01(g ○ e(X), Y )Ptrain(X � C,X
∗,M)Ptrain(Y,C,X

∗,M)dX∗dXdY dCdM

= � `01(g(X
∗
), Y )Ptrain(X � C,X

∗,M)Ptrain(Y,C,X
∗,M)dX∗dXdY dCdM

= � `01(g(X
∗
), Y )Ptrain(X

∗, Y )dX∗dY

= � `01(g(X
∗
), Y )P (X∗, Y )dX∗dY .

The first line writes down the expected risk explicitly, the second removes conditioning on Y in the
distribution on X since we assumed Y is d-separated from X by C,X∗,M . In the third line we
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make it explicit that h depends on X∗ alone, then we integrate out X,C,M . On the last line we
remove the subscript train to denote that this distribution in fixed across P ∈ P as we assumed that
X∗, Y are non-descendants of C (and members of P are obtained by interventions on C). Now
for any P̃ ∈ P we may repeat this derivation for Rl01

P̃
(h) and we will obtain the same term (since

P (X∗, Y ) are fixed regardless of the intervention applied in P , as we just argued), and we may
conclude R`01

Ptrain
(h) = R`01

P̃
(h).

Next to show that the Bayes optimal classifier over P� is the min-max optimal classifier w.r.t P ,
consider the interventional distribution where C is set to some fixed value c ∈ [K], i.e. P (X,X∗, Y �
do(C = c)). Under the graph we obtain from this intervention, Y is d-separated from X given X∗.
Hence,

P (Y �X = x, do(C = c)) = �
X∗

P (Y �X∗,X = x, do(C = c))P (X∗ �X = x, do(C = c))dX∗

= P (Y �X∗ = e(x),X = x, do(C = c))

= P (Y �X∗ = e(x), do(C = c)),

where the first equality holds since X∗ = e(X) and the second from d-separation. Hence
the Bayes optimal classifier under P (Y,X � do(C = c)) is h∗(x) = g ○ e(x) =
argmaxy∈[L] P (Y = y � e(x), do(C = c)). As argued earlier, since Y,X∗ are non-descendants
of C, it holds that P (Y � e(X), do(C = c)) is fixed across all c ∈ [K]. Hence h∗(x) is
the Bayes optimal classifier for all such interventional distributions and also for P�(X,Y ) =
1
K ∑c∈[K] P (X,Y � do(C = c)), and from our earlier discussion it is risk-invariant, i.e. R`01

P� (h
∗
) =

R`01
P (h

∗
) for all P ∈ P , which also means maxp∈P R`01

P (h
∗
) = R`01

P� (h
∗
). It is the min-max optimal

classifier w.r.t P since any h ≠ h∗ will have maxp∈P R`01
P (h) ≥ R

`01
P� (h) ≥ R

`01
P� (h

∗
).

Next we turn to prove a bound on sample complexity of counterfactual data augmentations.
Lemma 2. Consider an anti-causal prediction problem with a spuriously-correlated attribute (def-
inition 1), a measurable function ⌧ ∶ X ×M → X

K , and let d1(P,Q) denote the total variation
distance between two distributions P,Q. Further let h∗ denote the optimal hypothesis w.r.t R`01

P�
and let �aug = �R

`01
aug(h

∗
) +R`01

P� (h
∗
)�. For any hypothesis h ∈ H, and any � ∈ (0.5,1) it holds that

with probability at least 1 − � over the draw of the training set,

R
`01
P� (h) ≤ R̂

`01
aug(h) +

�

log(1��)

N
+K−1 ⋅ �

c∈[K]

d1 (⌧c,∗ (Ptrain(X,M)) , P (X(c))) + �aug.

Proof. Our first step is to show that for any hypothesis h ∈ H, if our augmentation process is exact
in the sense that ⌧c(X,M) =X(c) a.e., then the expected risk (i.e. risk taken over an infinitely large
sample) on the augmented data coincides with that over the unconfounded distribution P�(X,Y ) =
Punif(C)P (X,Y � do(C)).

R
`01
aug(h) = EPtrain(C,Y,M,X)

�
�
�
�
�
�

K−1 �
c∈[K]

`01(h (⌧c(X,M)) , Y )
�
�
�
�
�
�

=K−1 �
c∈[K]

EPtrain(C,Y,M,X)[`01(h (X(c)) , Y )]

=K−1 �
c∈[K]

EPtrain(C,Y,X)[`01(h (X(c)) , Y (c))]

=K−1 �
c∈[K]

EP (Y,X �do(C=c))[`01(h (X) , Y )]

=R
`01
P� (h). (3)

To boundR`01
aug(h)−R̂

`01
aug(h) we note that {xi, yi,mi}

N
i=1 are i.i.d samples from a joint distribution,

where we may consider the loss on each example as K−1∑c∈[K] `01(h(⌧c(xi,mi), yi)), then by
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standard results using the Hoeffding inequality, e.g. Mohri et al. [91, Corollary 2.11], we get that
for � ∈ (0.5,1),

R
`01
aug(h) ≤ R̂

`01
aug(h) +

�

log(1��)

N
. (4)

Finally, to obtain our result consider any c ∈ [C]. Denote

R
`01
aug,c(h) ∶= EPtrain(Y,M,X)[`01(h(⌧c(X,M))Y )],

R
`01
P�,c(h) ∶= EP (Y,X �do(C=c))[`01(h(X), Y )],

and for h∗ denote R`01
aug,c(h,h

∗
) ∶= EPtrain(Y,M,X)[`01(h(⌧c(X,M)), h∗(⌧c(X,M)))] and respec-

tively forR`01
P� (h,h

∗
). The rest of our derivation is along the lines of Ben-David et al. [82, Theorem

2]. We use the distance

dH�H(⌧c,∗Ptrain(X,M), P (X(c))) = 2 sup
g∈H�H

�Ptrain(g(⌧c(X,M)) = 1) − P (g(X(c)) = 1)� ,

where H�H = {g(x) = 1h(x)≠h′(x) � h,h′ ∈ H} is a set of binary hypotheses, i.e. functions that
mark disagreements between hypotheses in H. It is easy to see that dH�H lower bounds d1 which
takes the supremum w.r.t all measurable subsets for the two measures, since the sets of inputs where
h(x) = 1 are contained in those subsets. Also from [82, Lemma 3] we have that for any hypotheses
h,h′ ∈H it holds that

�Rl01
aug,c(h,h

′
) −Rl01

P�,c(h,h
′
)� ≤

1

2
dH�H (⌧c,∗Ptrain(X,M), P (X(c)))

Then following the proof in Ben-David et al. [82, Theorem 2], where the first and third inequalities
will rely on the triangle inequality for classification errors [92], we may get:

R
`01
P�,c(h) ≤R

`01
P�,c(h

∗
) +R

`01
P�,c(h,h

∗
)

≤R
`01
P�,c(h

∗
) +R

`01
aug,c(h,h

∗
) + [R

`01
P�,c(h,h

∗
) −R

`01
aug,c(h,h

∗
)]

≤R
`01
P�,c(h

∗
) +R

`01
aug,c(h,h

∗
) +

1

2
dH�H (⌧c,∗Ptrain(X,M), P (X(c)))

≤R
`01
aug,c(h) +R

`01
P�,c(h

∗
) +R

`01
aug,c(h

∗
) +

1

2
dH�H (⌧c,∗Ptrain(X,M), P (X(c)))

=R
`01
aug,c(h) +R

`01
P�,c(h

∗
) +R

`01
aug,c(h

∗
) +

1

2
dH�H (⌧c,∗Ptrain(X,M), P (X(c)))

Finally, we note that R`01
P� (h) = K−1∑c∈[K]R

`01
P�,c(h) and similarly we have that R`01

aug(h) =

K−1∑c∈[K]R
`01
aug,c(h), hence applying the above inequality for all c ∈ [K] and averaging we get:

R
`01
P� (h) ≤R

`01
aug(h) +

1

2
K−1 �

c∈[K]

dH�H (⌧c,∗Ptrain(X,M), P (X(c))) + �aug

≤R
`01
aug(h) +K

−1
�

c∈[K]

d1 (⌧c,∗Ptrain(X,M), P (X(c))) + �aug.

Combining with eq. (4) we get the desired result.

A.1 Additional Causal Structures Where our Approach may be Used

The problem setting we analyze in this work (see definition 1) captures a few interesting problems,
mainly described as shortcut learning in the literature [25, 93, 94]. However counterfactual data
augmentation, and subsequently our approach of using auxiliary data to perform it, are applicable to
additional problem settings. Wang and Veitch [72] formalize domain-invariant learning under many
data generating processes they refer to as Causally Invariant with Spurious Associations (CISA),
where Z (in our setting the caregiver C) is called the spurious factor of variation. These settings
include a variety of causal and anti-causal prediction problems, and they assume that there exists
some part of the input X , referred to as X⊥Z , that holds all the information in X that is not caused
by Z. Whenever it holds that Y ⊥⊥X � X⊥Z , Z the association between Z and Y is called “purely
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Figure 5: Possible causal structures that involve the auxiliary data M , where unobserved M corre-
sponds to unobserved confounding between X and C.

spurious" and Thm. 9 in Wang and Veitch [72] states that for all such problems counterfactual data
augmentation learns the optimal invariant predictor over the training distribution. Hence in all such
settings, improving counterfactual data augmentation with CATO can be beneficial towards OOD
generalization. We refer the interested reader to [72] for further details on CISA problems and their
properties.

We further note that in our work we excluded the auxiliary data M from the causal model as we are
agnostic to its specific causal relation with other factors in the data, so long as it satisfies ?? 1 of
strong ignorability. fig. 5 depicts two potential structures that may adhere to this assumption.

B Experimental Details

We provide here further details about the experimental setup, the datasets we use, hyperparameters
chosen for training the models, and data splits. We also include additional experiments that were
omitted from the main paper for brevity, including experiments on identifying demographic traits in
clinical narratives.

B.1 Clinical Narratives

B.1.1 Data

We describe here the MIMIC-III i2b2-2006 and i2b2-2010 datasets.

MIMIC-III. The MIMIC-III (Medical Information Mart for Intensive Care III) dataset is a large,
publicly available database containing detailed and anonymized health-related data associated with
over 40,000 patients who stayed in critical care units at the Beth Israel Deaconess Medical Center
in Boston, Massachusetts between 2001 and 2012. MIMIC-III is a rich resource for researchers in
various fields, such as medicine, data science, artificial intelligence, and healthcare analytics. The
dataset contains a diverse range of data types, including demographics, vital signs, laboratory test
results, medications, and clinical notes. The dataset contains over 2 million clinical notes contributed
by over 3,500 distinct healthcare professionals, including doctors, nurses, and other clinicians, with
an average of 571 notes per author.

The notes in the MIMIC-III dataset come in various types, reflecting the diverse aspects of patient
care and documentation in the intensive care setting. Some of the most common note types include:

• Nursing/Progress notes: These are daily notes written by nurses or other care providers, docu-
menting the patient’s progress, condition, and care provided.

• Radiology reports: Reports written by radiologists after interpreting medical imaging studies
(e.g., X-rays, MRIs, CT scans).

• ECG reports: Reports documenting the interpretation of electrocardiogram results.
• Discharge summaries: Comprehensive summaries written by physicians when a patient is dis-

charged from the hospital, outlining the patient’s hospital course, treatments, and follow-up in-
structions.

• Physician consult notes: Notes written by specialists when consulted by the primary care team
to provide their expert opinion on specific medical issues.
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• Pharmacy notes: Notes documenting medication-related information, including dosing, admin-
istration, and potential drug interactions.

• Social work notes: Notes related to the patient’s psychosocial status, including social and family
support, living arrangements, and other relevant factors.

i2b2-2006. The i2b2 (Informatics for Integrating Biology and the Bedside) initiative is a collab-
orative effort that aims to develop new methods and tools for biomedical research. It focuses on
the development of a scalable computational infrastructure that can be used to accelerate the trans-
lation of basic research findings into clinical applications. As part of this effort, i2b2 has hosted
several shared tasks and challenges related to natural language processing and machine learning in
healthcare.

In 2006, the first i2b2 challenge, known as the i2b2-2006 challenge, was conducted, focusing on
the identification of obesity and its comorbidities in discharge summaries. The dataset provided for
the challenge contained 694 de-identified discharge summaries, which were randomly selected from
the Research Patient Data Registry (RPDR) at Partners HealthCare. The dataset was divided into a
training set of 514 discharge summaries and a test set of 180 discharge summaries. It is important to
mention that the i2b2-2006 dataset is relatively small compared to the MIMIC-III dataset and does
not provide detailed information about the number of distinct authors or the average number of notes
per author.

However, the discharge summaries typically include various sections such as patient demographics,
admission and discharge dates, admission diagnoses, hospital course, procedures, medications, and
follow-up plans. These summaries are generally written by physicians at the time of patient dis-
charge, providing an overview of the patient’s medical condition, treatment received, and overall
hospital stay.

i2b2-2010. The i2b2-2010 challenge, also known as the i2b2/VA challenge, was a shared task or-
ganized by the i2b2 (Informatics for Integrating Biology and the Bedside) initiative in collaboration
with the US Department of Veterans Affairs (VA). The challenge aimed to encourage the develop-
ment of natural language processing (NLP) and machine learning techniques for extracting medical
concepts from clinical narratives. Specifically, the i2b2-2010 challenge focused on the identification
of medical problems, tests, and treatments from free-text clinical records.

The dataset provided for the i2b2-2010 challenge contained 826 de-identified clinical records, which
were sourced from three different institutions: Partners HealthCare, the University of Pittsburgh
Medical Center (UPMC), and the VA. The dataset was divided into a training set of 349 records and
a test set of 477 records.

Similar to the i2b2-2006 challenge, the i2b2-2010 dataset is relatively small compared to the
MIMIC-III dataset and does not provide detailed information about the number of distinct authors or
the average number of notes per author. The clinical records in the dataset are composed of diverse
note types, such as discharge summaries, progress notes, radiology reports, and pathology reports,
contributed by physicians, nurses, and other healthcare professionals.

While the dataset does not provide specific information about the number of distinct authors, the
fact that the notes were contributed by different types of healthcare professionals across multiple
institutions increases the dataset’s diversity, making it more representative of real-world clinical
settings.

B.1.2 PubMED BERT

In our clinical narratives experiments, we use PubMED BERT [84], a variant of of the original
BERT model [95], as our vanilla model. That is, all of the baselines and CATO all use it either for
embedding clinical text or for predicting conditions, demographic traits and note segments.

PubMED BERT is a BERT-based (Bidirectional Encoder Representations from Transformers) model
that has been pre-trained specifically on biomedical and scientific text data [84]. The model lever-
ages the BERT architecture, which is a transformer-based deep learning model that has gained sig-
nificant attention in natural language processing (NLP) for its state-of-the-art performance across a
wide range of tasks.
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PubMED BERT is pre-trained on a large corpus of approximately 14 million biomedical abstracts
from the PubMed database, which is a comprehensive repository of biomedical literature. By pre-
training the model on domain-specific data, PubMED BERT is expected to have a better understand-
ing of biomedical concepts, terminology, and language patterns compared to general domain models
like BERT-base and BERT-large [95].

The main advantage of using PubMED BERT for biomedical text mining tasks is its domain-specific
knowledge, which can lead to improved performance and more accurate results when fine-tuned on
various downstream tasks, such as named entity recognition, relation extraction, document classifi-
cation, and question answering. Since PubMED BERT is pre-trained on a large corpus of biomedical
text, it is better suited to capturing the unique language patterns, complex terminology, and the rela-
tionships between entities in the biomedical domain.

Hyperparameters for Fine-Tuning PubMED BERT on MIMIC-III. In our study, we leveraged
a pre-trained PubMED BERT model and fine-tuned it on the MIMIC-III dataset. During pre-training,
the model employed masked language modeling and next sentence prediction objectives. The archi-
tecture consisted of 12 layers, 768 hidden units, and 12 attention heads. For task-specific optimiza-
tion, we used the following hyperparameters: a 3e− 5 learning rate with a linear warmup during the
initial 10% of training steps, a batch size of 32, a maximum sequence length of 512 tokens, and a
dropout rate of 0.1. The AdamW optimizer was applied with a 0.01 weight decay and a 1.0 gradient
clipping threshold. To prevent overfitting, early stopping was based on validation loss and used a
3-epoch patience. The fine-tuning process ran for up to 20 epochs, unless early stopping criteria
were met sooner.

The fine-tuning process was executed on a high-performance computing cluster with multiple
NVIDIA Tesla V100 GPUs, each equipped with 32 GB of memory, using the PyTorch deep learning
framework [96]. The dataset was preprocessed and tokenized using the HuggingFace Transformers
library [97].

B.1.3 Demographic Traits Detection

Demographic Traits detection is the task of identifying residual private information in the clinical
note, after removing the known identifier types (names, ages, dates, addresses, ID’s, etc.) [71]. We
train all models on a subset of MIMIC-III and test on i2b2-2006. Table 3 presents our results. While
performance gains from the Causal Augmentation approach are not as large as in the other clinical
NLP tasks, its is still the best method in terms of F1 score on out-of-distribution examples.

ID (MIMIC-III) OOD (i2b2-2006)
P R F1 P R F1

PubMED BERT 80.61 78.12 79.34 53.32 90.1 66.92
+ Re-Weighting 81.31 78.57 79.92 56.75 91.38 70.02
++ MMD 80.68 78.84 79.75 56.19 91.49 69.62
Bio BERT 79.5 77.63 78.55 53.32 89.84 66.71
Sentence BERT 79.29 76.18 76.53 52.22 89.82 65.04
GPT3 78.31 76.01 77.18 52.73 88.52 63.98
Naive Aug. 81.45 79.35 80.39 52.9 89.58 66.52
Causal Aug. 80.65 78.84 79.73 59.76 90.16 71.88

Table 3: Results (averaged across 5 runs) for predicting demographic traits from the text narratives
on in-distribution and out-of-distribution data.

B.2 Restaurant Reviews

Data. We use the CEBaB dataset [49], which consists of short restaurant reviews and ratings from
OpenTable, including evaluations for food, service, noise, ambiance, and an overall rating. For our
experiments, we used the train-exclusive split of the dataset, which contains 1,755 examples.

To analyze the data, we transformed the overall rating into a binary outcome. The original rating
scale ranges from 1 to 5, and we classified a rating of 3 or higher as 1, and anything below as 0. We
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utilized a bag-of-words model with CountVectorizer and fitted logistic regression models from the
sklearn library [98].

To investigate these questions, we construct two experimental settings: the original CeBAB dataset,
and a modified version, denoted as CeBAB-Spurious, where there’s a spurious correlation between
training and deployment.

The data is randomly split into a training set with 1,000 examples and a test set with 755 examples.
We explore two data augmentation schemes:

1. Naive data augmentation: This approach involves randomly selecting two reviews from the
dataset and prompting GPT-4 [99] to rewrite one restaurant review in the style of the other. By
applying the naive augmentation, we obtain an additional 1,000 training examples.

2. Conditional data augmentation : We match the ratings and sub-ratings in the reviews to create
pairs. We then prompt GPT-4 to rewrite one review to match the style of the other. Because
not all pairs have matches in this case, the conditional data augmentation generates 926 aug-
mentations. See Appendix B for details of the prompt.

Generating reviews with counterfactual food mentions. Following the counterfactual genera-
tion procedure in Algorithm 1, we generate counterfactual restaurant reviews conditional on food
rating and overall rating. For each review, we first find a set of matched examples. We then select the
subset that has different food-mention attribute and prompt GPT-4 to rewrite. This results in 2,537
augmentations. The counterfactual augmentation should capture what the reviews should look like
had a reviewer been more/less concise. Following Algorithm 1, we generate counterfactual restau-
rant reviews conditional on food and overall ratings. We find matched examples for each review,
select those with different food-mentions, and prompt a GPT-4 to rewrite them, reflecting how the
reviews would appear if the reviewer was more/less concise.

Prompt Example.

helper_prompt = """

you are a very helpful, diligent, and intelligent language model assistant,

your task to generate counterfactual restaurant reviews,

that is what the restaurant review would be if it is given a different rating.

You will be given an original restaurant review and a comparator review

Your task is to rewrite the original review, such that it will have the same

review score as the comparator review.

The rating is with respect to ambiance, food, noise, and service.

---- EXAMPLE INPUT - START -----

original_review: [],

original_ratings: [

rating_ambiance: score,

rating_food: score,

rating_noise: score,

rating_service: score

]

compare_reviews:[]

compare_ratings:[

rating_ambiance: score,

rating_food: score,

rating_noise: score,

rating_service: score

]

---- EXAMPLE INPUT - END -----

ANSWER FORMAT:

{
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original_review: [],

original_score: [],

rewrite_review: [],

}

"""

B.3 Synthetic Data

As described in the main paper we study a binary classification problem where K = 8 (cardinality
of C), and sample P̃ (C � Y ) to simulate varying degrees of the spurious correlation (specifically,
we draw ). Then we draw x = [x∗,xspu] from a Gaussian distribution,

xi = �
x∗i

xspu,i
� ∼N ��

µyi

µci
� , �

�2Id∗ 0
0 �2

spuIdc

�� .

In our simulations, we set d∗ = 10, dspu = 300 and �2
spu = 0.05,� = 0.01d∗ to make the max-

margin classifiers depend on the spurious features. The parameters µyi , µci are drawn uniformly
from a sphere of norm 1�3 and 60, respectively. For the corruptions of augmentations where we
add ⇠i(µc − µci), the ⇠i variables are drawn from a truncated Gaussian centered at � with standard
deviation 0.1.
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Figure 6: OOD accuracy (1−Rl01
P� (h)) for growing size of i.i.d training set N . We run 15 repetitions

where P̃ (C � Y ) are drawn randomly with correlation strength I(Y ;C) = 0.743±0.019. With large
amounts of data, the reweighting method approaches optimal performance and may outperform
solutions based on corrupted data augmentation (e.g. it surpasses the more heavily corrupted data
augmentation with � = 0.2).

For the results in fig. 4 of the main paper we set the number of training examples N at 600 and
the distributions P̃ (C � Y ) are sampled such that for each interval of size 0.05 between 0 and 0.9
for the values of I(Y ;C), we draw 30 instances within that interval. In fig. 6 we give results for
another experiment where we plot curves for reweighting, ERM and corrupted augmentation under
several values of N under a strong spurious correlation. We draw values for P̃ (C � Y ) such that that
I(Y ;C) is in [0.7,0.8] (mean 0.743 and standard deviation 0.019 with 15 repetitions). Considering
the bounds in eq. (2) and the one in lemma 2, we expect that as N grows the reweighting method
will approach optimal accuracy, while the augmentation methods will incur some bias due to the
imperfect approximation of counterfactuals. In fig. 6 we see that the augmentation based methods
begin to plateau, while the reweighting method gains larger improvement from the growing N ,
and outperforms the more heavily corrupted augmentation method (� = 0.2) with a large enough
training set. The best possible mean accuracy in this simulation is 0.934 (as we gather from training
a classifier from x∗ alone), the best accuracy obtained by the methods in the figure is 0.849 (Aug.
� = 0.3 with N = 1999).

24



C Synthetic Note Examples

While it is not possible to share real notes from the MIMIC-III or any of the i2b2 datasets, we
can share how a typical note might look like by generating synthetic notes with LLMs. Here, we
generate a synthetic note using GPT-4, and then generate a counterfactual note using our prompt:

Discharge Summary Note
Dr. Jane Doe
March 29, 2023
Patient Name: John Doe
Admission Date: March 25, 2023
Discharge Date: March 29, 2023
Diagnosis: Pneumonia
History of Present Illness: Mr. Doe is a 58-year-old male with a past medical history of hy-
pertension who presented to the emergency department with a 3-day history of fever, cough, and
shortness of breath. Chest X-ray showed bilateral infiltrates, and he was admitted for treatment of
community-acquired pneumonia.
Hospital Course: The patient was started on intravenous antibiotics and supplemental oxygen.
Over the course of his hospitalization, his oxygen requirements decreased, and his fever and cough
resolved. He was able to tolerate a regular diet and was mobilized with physical therapy.
Consultations: Infectious disease was consulted, and the patient’s antibiotics were adjusted based
on culture results.
Discharge Medications:

1. Levofloxacin 750mg daily for 10 days
2. Acetaminophen 650mg every 6 hours as needed for fever or pain
3. Albuterol inhaler 2 puffs every 4 hours as needed for shortness of breath

Follow-up: The patient was instructed to follow up with his primary care physician in 1 week for a
repeat chest X-ray and evaluation of his symptoms.
Discharge Instructions:

1. Finish the entire course of antibiotics as prescribed.
2. Use the albuterol inhaler as needed for shortness of breath.
3. Rest and avoid strenuous activity until cleared by your doctor.
4. Follow up with your primary care physician in 1 week.

Discharge Condition: The patient was discharged in stable condition with improved symptoms.
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Here’s a counterfactual discharge summary note written by a doctor with a different writing style:

Patient Name: John Doe
Admission Date: March 25, 2023
Discharge Date: March 29, 2023
Diagnosis: Pneumonia
HPI: John is a middle-aged man who came in with a fever and cough that he’s had for three days.
He was diagnosed with pneumonia and admitted.
Hospital Course: John was given antibiotics and oxygen. He slowly got better and was able to eat
normally and move around more. He saw an infectious disease specialist who adjusted his treatment.
Consultations: Infectious disease saw John and changed his medicine.
Discharge Medications:

1. Levofloxacin 750mg once a day for 10 days
2. Acetaminophen 650mg every 6 hours as needed for fever or pain
3. Albuterol inhaler 2 puffs every 4 hours as needed for shortness of breath

Follow-up: Follow up with PCP in 1 week.
Discharge Instructions:

1. Finish your antibiotics.
2. Use the inhaler if you need it.
3. Rest and avoid heavy activity until you feel better.
4. Follow up with your doctor next week.

Discharge Condition: Stable, going home.

As can be seen from these examples, the counterfactual note is much more concise and to-the-point
than the original example. The language used is more direct and less descriptive, and there is less
detail provided about the patient’s course of treatment.

D Possible Limitations of LLMs in Generating Augmented Datasets

As mentioned in our discussion, there are several possible limitations that should be carefully con-
sidered before applying our approach in practice, especially in high-stakes applications such has
medical notes classification. We list some of the main possible limitations and points to consider,
along with a short discussion on each.

• LLM generation quality: LLMs vary in their ability to generate realistic text. It is possible that
LLMs introduce biases into our problem, inherited from their own training data. This requires
further study, however from our manual examination we found their quality satisfactory (see
appendix C for generation examples) and that OOD generalization also improved for models
trained on the augmented data they generate. We also include experiments with several types
of LLMs in appendix B to verify that our findings are consistent across the types of LLMs we
considered.

• Counterfactual approximation: Other than generation quality, the additional challenge in using
LLMs for counterfactual data augmentation is our ability to elicit a good approximation to the
counterfactual text. Our methods rely on principles from causal inference to advance disciplined
approaches for this task. While further studies are required (e.g. systematically comparing small
sets of manual re-writes of texts to the elicited LLM output), we view our work as a promising
first step in this direction, which we expect to be significantly extended and improved in future
work.

• Effect of biases on OOD generalization: Since we focus on OOD generalization, the limitations
and possible biases mentioned above must be weighed within this context. Namely, we should
bear in mind that even though generation may be biased, this bias is only harmful when it affects
the generalization of a downstream classifier, and this is what we evaluate. Further, in OOD
generalization we consider cases where the training data is biased in the first place, and training
a standard predictive model also results in a biased solution. Hence we must weigh risks and
limitations of alternative solutions vs. those of LLMs.
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