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Abstract

The reliance of text classifiers on spurious correlations can lead to poor general-
ization at deployment, raising concerns about their use in safety-critical domains
such as healthcare. In this work, we propose to use counterfactual data augmenta-
tion, guided by knowledge of the causal structure of the data, to simulate interven-
tions on spurious features and to learn more robust text classifiers. We show that
this strategy is appropriate in prediction problems where the label is spuriously
correlated with an attribute. Under the assumptions of such problems, we discuss
the favorable sample complexity of counterfactual data augmentation, compared
to importance re-weighting. Pragmatically, we match examples using auxiliary
data, based on diff-in-diff methodology, and use a large language model (LLM)
to represent a conditional probability of text. Through extensive experimentation
on learning caregiver-invariant predictors of clinical diagnoses from medical nar-
ratives and on semi-synthetic data, we demonstrate that our method for simulating
interventions improves out-of-distribution (OOD) accuracy compared to baseline
invariant learning algorithms.

1 Introduction

The reliance on spurious correlations is a significant challenge for Machine Learning (ML) safety as
it can lead to performance degradation of deployed models. Spurious correlations are prevalent in
various applications such as medical imaging [1, 2], text classification [3], and risk prediction sys-
tems [4]. Failures due to spurious correlations occur under distribution shift [5—7], which may result
from differences in data recording protocols, shifts in the underlying population being monitored, or
the way the ML tool is being used. In this paper, we focus on text classification and explore how us-
ing language models in a domain-informed way can help us avoid reliance on spurious correlations.

Consider a scenario where we want to make robust predictions about patients’ conditions, proba-
bility of readmission, etc., using clinical narratives written in hospitals [8—10]. In this setting, a
common issue arises due to clinical practice, where patients with certain conditions are directed to
specific caregivers in the hospital. When we train a predictor from a single dataset that exhibits some
correlation between caregiver-specific style and clinical outcomes, the predictor may unintention-
ally rely on the style to make predictions. This leads to poor generalization on unseen hospitals, i.e.
failure to generalize out of distribution(OOD), due to changes in clinical practice [7]. However, col-
lecting a dataset that is large enough to avoid such spurious associations is infeasible due to various
reasons such as rare conditions, privacy concerns, etc. To tackle this problem, we propose leverag-
ing available auxiliary data (e.g., time, document type, demographics) and incorporating knowledge
about the causal structure of the problem to build a more robust classifier. For example, in the note
classification task, we can use our knowledge that some auxiliary data, such as the patient’s current
state, can affect doctor assignment, to improve the classifier’s robustness.
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Causal inference often makes use of such auxiliary data and has now been used in a variety of
ways to improve OOD generalization [6, 11-14]. Data augmentation methods have demonstrated
impressive performance in these tasks as well [15—17], and with recent improvements in generative
models, forming additional principles to incorporate domain knowledge into data augmentations
seems like a promising path forward.

In this work we pursue this and develop causally-driven data augmentation methods, that leverage
auxiliary data and domain knowledge. Intuitively, generating versions of clinical narratives as if they
had been written by different caregivers, de-correlates the writing style from the patient condition we
wish to predict. However, such data generation can be difficult to achieve in practice and problem-
specific traits must be taken into account [18]. Observing that data augmentation can be treated as
counterfactual outcome estimation under a causal formalism, motivates the use of causal inference
methods that are commonly used for such tasks across the sciences. While our approach can be
applied to many modalities of data, in this work we focus on text classification and harness the
recent advances in LLMs towards counterfactual estimation. Our contributions are:

1. Through extensive experiments, we show how the use of language models in a manner that is
informed by causal knowledge improves model robustness in challenging safety-critical tasks
in healthcare. Furthermore, our findings are reinforced by experiments that incorporate semi-
synthetic scenarios, and simulations where there are ground-truth counterfactuals.

2. We formalize counterfactual data augmentation in a prediction setting as a method to decon-
found the target and a spuriously correlated attribute. We show how deconfounding improves
OOD generalization. In a setting where sample complexities for alternative methods (re-
weighting and invariance penalties) can be derived, we show favorable generalization bounds
for accurately performed data-augmentation.

3. Our data-augmentation methods rely on common assumptions in the causal inference literature
such as no unmeasured confounding and parallel trends in diff-in-diff [19], applied with LLMs.
We believe that leveraging auxiliary data and assumptions about causal structure, along with
the use of LLMs and other generative models, can be a fruitful framework for addressing many
out-of-distribution generalization problems.

Next, we provide a brief survey of relevant work (§2). We then present a formal setting motivating
counterfactual augmentation for OOD generalization (§3), our methods for counterfactual estimation
and reason formally about the preferable sample complexity of our approach (§4). Finally, we
present our main experimental results (§5) and discuss limitations and future directions (§6).

2 Related Work

Invariant and Shift-stable Learning. This paper contributes to the growing literature on invariant
and shift-stable learning, which tackles the problem of learning models that generalizes across dif-
ferent distributions or settings. Invariant learning through feature pruning was pioneered by Peters
et al. [11], and has since been developed for variable selection [12, 20] and representation learn-
ing [13, 21-26]. These methods have been applied in a range of domains, including natural science
[11,12,20], causal estimation [27, 28], computer vision [13, 23], and NLP [29-32]. However, recent
studies have highlighted limitations in many invariant learning approaches, particularly in achieving
conditional independence [33-36]. Others have investigated learning of stable models by leveraging
causal methods through techniques like graph-surgery [6, 14], that come with generalization guar-
antees. Yet others have explored the advantages of data augmentation [37, 38]. In this work, we
combine the latter two approaches to improve OOD generalization for text based classification.

Counterfactually Augmented Data. To learn invariant predictors, a popular and straightforward
approach is data augmentation. When data augmentation involves actions that go beyond simple
manipulations (e.g. image rotations, crops etc.), it is often referred to as counterfactual data aug-
mentation [37]. Constructing counterfactual instances that involve perturbations to confounding
factors [39], or to the label [37, 38, 40], and incorporating them into the training data, breaks up
correlations that we do not wish our model to exploit towards prediction. Most work on counterfac-
tual data augmentation in text involve manual editing by humans, heuristic keyword replacement,
or automated text rewriting [37, 39, 41-50]. Manual editing is accurate and effective [38, 51] but
expensive, hence our goal is to make counterfactual data augmentation scalable, demanding smaller



human effort. Keyword-based methods can be limited in coverage and difficult to generalize across
languages [52]. Generative approaches offer a balance of fluency and coverage [53], but generat-
ing meaningful counterfactuals is challenging [54]. Our work departs from previous techniques by
using causal auxiliary data structure and LLMs to alleviate this challenge and generate plausible
counterfactual data augmentations.

Clinical Notes. Clinical notes are the backbone of electronic health records, often containing vital
information not observed in other structured data Kreimeyer et al. [55]. Clinical NLP involves iden-
tifying this information, and standardized datasets and competitions exist for this purpose [56—60].
Best performing approaches have leveraged transformer architectures both for token-level classi-
fication tasks [61-64], and for using complete clinical records [65, 66]. Recently, large language
models (LLMs), similar to those we use to generate counterfactual notes, were shown to have clear
potential for improving clinical NLP systems [67, 68]. In our experiments, we follow recent papers
in clinical NLP addressing challenges of degraded performance across different hospitals [69-71].

3 Problem Setting

To formally analyze how counterfactual data augmentation helps OOD generalization, we con-
sider a setting where the label is spuriously correlated with a known attribute. This set-
ting has been used previously to study learning with “shortcuts” [25] and spurious correla-
tions [29]. We note that our approach is applicable and valid under additional settings and
causal graphs (e.g. “purely spurious” problems defined in Wang and Veitch [72]) and we elab-
orate on this at ??. The data generating process used here motivates counterfactual data aug-
mentation in a principled manner, as it describes the main problem we study and it is pos-
sible to analytically compare sample complexity with an alternative solution (see section 4.3).

D

Consider a classification problem with L classes, where the label Y is corre-

lated with a certain attribute C' in the training data and this correlation may

change arbitrarily at test time (denoted by a red edge C<>Y in fig. 1). In our

medical notes example, C' is the caregiver writing the note and Y is the un-

derlying condition we wish to diagnose. We denote the number of caregivers

in our training data by [K]. For a given loss function ¢ : RL x [L] - R and

distribution P, we denote the expected loss of a hypothesis h : X — R by

R%(h) and its expected accuracy by th‘,” (h). The data-generating process is

depicted by the causal model in fig. 1, for our motivating example of clinical

notes classification X is a vector representation of the clinical note and X * Figure 1: Predic-
is an unobserved sufficient statistic, representing all the relevant information  tion problem with
about Y in the note that is unaffected by the writing style of the caregiver. Let 3 spuriously corre-
us formally define this setting. lated attribute.

Definition 1. We denote the set of distributions induced by interventions on a
causal model with the structure in fig. 1 by

P={P(X|X*,C)P(X* |Y)P(Y)P(C|Y) : P(C|Y =y) e AN vye[L]},

where all distributions other than 15(0 | Y) are fixed. In a prediction problem with a spuriously
correlated attribute, the learner is provided with a set {(x;,y;, ci)}gl sampled i.i.d from P, € P.
We assume that X* = e(X) almost surely for some e : R* - R%"

In this problem, once X* is recovered no additional information from X is needed to predict
Y. We can also see from the graph that interventions on P(C' | Y) do not change the con-
ditional distribution P(Y | X*). Therefore an optimal solution that does not rely on C' is
h*(x) = argmaxyer, P(Y =y | e(x)). In clinical note classification, X * represents all the informa-
tion in the note about the patient conditions, unsullied by the writing style of caretaker C. To obtain
h*(x) we will rely on risk minimization w.r.t a distribution where ¥ and C are uncorrelated.



3.1 Learning Robust Classifiers when Counterfactuals are Available

Consider the unconfounded distribution P, € P that is given by intervening on C), setting it inde-
pendent of Y and uniformly distributed, P(C' | Y') = Punie(C). An optimal classifier under P, has
the following min-max optimality guarantee. >

Lemma 1. For the prediction problem in definition 1, the Bayes optimal classifier under the
unconfounded distribution P, € P where C is uniformly distributed and independent of Y is
h*(x) = argmaxy g PL(Y =y | X* = e(x)). It is a minimizer of miny.x_[,] MaXpep Rfﬁ” (h)
and R (h*) = R (h*) for all P ¢ P.

Hence we would like to minimize risk w.r.t P, and we cannot do that directly by via ERM since our
training data is sampled from Py, # P,. Instead we consider risk minimization over an augmented
dataset that contains counterfactual instantiations of our training data under different values of C'.

Minimizing R p, via Counterfactual Data Augmentation. Returning to our motivating example,
assume that we could generate clinical notes for all alternative scenarios. That is, obtain the clinical
notes that would have been written if each patient had been seen by all possible caregivers c € [ K]
and each caregiver had written their own version of the note x;(c). Given these counterfactual
clinical notes, we seek a hypothesis that minimizes the average loss over all such possible scenarios,

denoted by RY,, (h).

aug

Definition 2. Consider a prediction problem with a spuriously-correlated attribute (see Defini-
tion 1). For a given example x;, we denote its counterfactual with attribute value ¢ € [K] as
derived from the corresponding causal model, by x;(c). For estimates of the counterfactuals
{x;(c)} ie[N,ce[ ] @nd a hypothesis h € H, the counterfactually augmented empirical risk is

1

7léf;ug(h) = NK

> L(h(xi(0), ). (1)

1€[N],ce[ K]

We use approximate counterfactuals X;(¢) in our definition to highlight that in practice we cannot
obtain a precise estimate of x;(c¢). In the ideal case where %;(x) = x;(c¢), the expected loss Rﬁug(h)

where N — oo, satisfies Rfug(h) = ’R%L (h). This follows by a simple derivation and it is part of a
claim we give later in Lemma 2. Hence obtaining this dataset is useful for our goal of minimizing
risk under P,. Our main challenge is then to derive effective approximations for counterfactuals
such as clinical notes under alternative writing styles.

4 Assumptions and Algorithms for Estimating Counterfactuals

Perfectly capturing writing style is a strong assumption. Even if we could perfectly model writing
styles, we only observe a limited set of variables - the actual notes x, outcomes ¥, and assigned
caregivers c. We do not observe all factors that could influence what each caregiver would write. To
alleviate this problem, we make use of auxiliary data M that is available during training, but might
not be available in deployment.

As an example, consider two caregivers c and ¢, where a note x; was written by ¢; = ¢. We want
to estimate what x;(c), the note caregiver ¢ would have written, might look like. To this end we
will build a model 7.(-) that takes data and generates a note in caregiver ¢’s style. Now suppose
caregiver c usually sees patients with high blood pressure and always includes blood pressure values
in notes, while ¢ rarely does. A naive model estimating X;(¢) = 7.(x;) based only on ¢’s notes
may fill in false blood pressure information, conflating that with ¢’s style. Including vitals data
like blood pressure, typically recorded in a patient’s health record, can provide additional context
for our model. This extra information can assist the model in reasoning about external/background
variables, leading to more accurate estimates.

This claim is shown in Makar et al. [25], appendix A includes a proof for completeness. We set the
distribution over C' in P, as uniform for simplicity, the derivation for non-uniform distributions is analogous.



4.1 Identification of the Counterfactual Distributions

To make effective use of this data, we suggest that the input to the model 7, : X x M — X will
include a baseline text to be edited and auxiliary data m. Intuitively, accounting for confounding
between the identity of the caregiver C' and the text X, with auxiliary data M should result in
improved augmentation.

We formalize this intuition using an assumption from causal inference. To identify the counterfactual
text distributions using the observed distribution, we assume strong ignorability [73-75]

Assumption 1 (Strong ignorability). For all P € P it holds that X (c) 1L C' | M, and for all values
ofmeM, P(m)>0.

Under this assumption, we can rewrite the counterfactual distribution with the observed distribution,

P(X(c)) = f P(X(¢)| M =m)P(M = m)dm = / P(X | C = e, M =m)P(M = m)dm.

However, in practice, we do not observe many samples from P(X | C' = ¢, M = m), making it a
poor approximation for the counterfactual distribution. We address this by using counterfactual data
augmentation [37]. Formally, we assume that for all possible counterfactual distributions ¢ € [ K],
there exist a function 7. that maps from the observed distribution P(X | M = m) to the target
counterfactual distribution P(X (c) | M = m).

We approximate the loss under the counterfactual distributions through the empirical loss produced
by data augmentation. That is, for a hypothesis h € H

1
Epcxenllh(x), )]~ 5 25 7e(ximy).
i€[N]
Note that whenever the text in the training set is already written by caregiver c, i.e. ¢; = ¢, we will
simply keep the original text x;

Evaluation of Augmented Distribution. The right hand-side of the above equation is a
Monte-Carlo estimator of the distribution of augmented notes, which averages the distributions
Tac(Prain (X, M)) over all caregivers ¢ € [K]. The distribution 7, .( Pyain (X, M)) is aimed to
follow the style of caregiver c. While the observed samples from one counterfactual distribution
may not be sufficient to approximate the whole distribution, they can be used to assess the quality
of the counterfactual augmentation algorithm 7.

High-quality counterfactual estimation, as measured by small distributional divergence between our
estimator and the target distribution, will help in lowering the upper bound on the risk ’R% (h) (see
lemma 2 in section 4.3). Then to estimate divergences between these two distributions, we may
use validation sets from our training data. A sample from 7. .( Piain (X, M)) is obtained simply by
running training data through 7., while a sample from P(X (¢)) can be obtained either by adjusting
for M, or we can obtain a sample from P(X | C' = ¢, M = m) for each value of m and compare that
to a sample obtained by augmenting validation data where M = m. In both cases two-sample tests
can be applied and obtain estimates of divergences between the two distributions. That is of course
as long as positivity holds, i.e. the second part of the assumption, as otherwise we will not be able
to obtain samples of P(X | C = ¢, M = m) for certain values of m and c.

We now describe the estimation methods that obtain 7.. The methods are based on classical causal
inference methods, applied to our high-dimensional setting, and relying on the auxiliary data M.

4.2 Methods for Estimation of Counterfactuals

Counterfactual estimation is an established problem in causal effect estimation [74, 76, 77]. Here we
adapt identification strategies and estimation procedures in the causal literature to estimate x;(c).
Our framework for estimating counterfactuals CATO (Causal-structure Driven Augmentations for
Text OOD Generalization) involves the use of an LLM to model the conditional probability distri-
bution of text. Counterfactuals are formed by matching similar auxiliary data examples or manipu-
lating texts’ vector representations, as described below.

Prompting with matched examples. Our first estimation method in Algorithm 1(B) draws insights
from matching [76]. We construct a prompt for an LLM, that given an original text x and a set of



Algorithm 1 CATO Pre-process CATO (A)

Input: Training set {(x;,y;,c;, m;)} Y, Assume: m includes the label y and pre-
Hypothesis class H treatment attribute cpre, among other aux-
Version € {(A), (B)} N iliary data. We are given {ijre};-\il.
Optional pre-treatment data {(Xpre,i) }iz1 1 Set p(c;,m;) = X;j — X; pre for j € [N].

Output: A hypothesis /g (x) 2: return 7.(x, m) := Xy + p(c, m)

. . I P )
1: if Version = (A) then
2: Get 7:C(rn7 x) with preprocess (A) Pre-process CATO (B)
3: Get X;(c) = Te(X; pre, m;) Vi€ [N] -
4: else Assume: m includes the label y among other
5: Get 7.(m, x) with preprocess (B) auxiliary data.
6: Get x;(c) = Te(x;,m;) Vie [N] 1: return prompt 7.(x, m) that rewrites x in
7. end if _ the style of matching examples with at-
8: return hq,, € A that minimizes R, tribute ¢, i.e. {x;: (mj,c;) = (m,c)}.

context notes, asks the LLM to rewrite x in their style. Now given text x with auxiliary data m that
we wish to estimate with counterfactual value ¢ (i.e. writing style), 7.(x, m) runs this prompt with
context notes whose auxiliary data is similar to m and their attribute value equals the desired c.

Diff-in-diff estimation. The procedure we use for medical note generation relies on additional
structure involving panel data (i.e. data collected over time intervals across several individuals).
In our case of clinical narratives, a narrative is usually consisted of several notes taken over the
course of a patient’s visit and each may be written by a different caregiver. Prediction is made using
the release note from the hospital whose embedding consists our features x. For simplicity let us
consider a single note X, taken prior to x. Difference-in-difference [19, 78, 79] estimation of causal
effect is based on the parallel-trends, or constant effect assumption that two units ¢, 7 with similar
pre-treatment conditions would have seen the same effect had they been given the same treatment.
In our case, the treatment is an assignment to a certain caregiver. Hence we assume our auxiliary
data m includes ¢y, the caregiver assigned pre-treatment.

Assumption 2 (constant effect). Let x; .. be the pre-treatment features for unit i, and assume m;
includes the pre-treatment attribute c; p. There exists a function p : [K] x M — X such that

x;(¢) =X pre + p(c, m;).

Under this assumption, to calculate x;(c) we can use any Time| T — 1 (Progress) | T (Discharge)
unit j for which m; = m; and has ¢; = c to estimate
p(c,m;) = Xj—Xpre ;- The resulting estimation procedure ~ Fatent
is given in algorithm 1(B) and illustrated in section 4.2.

Caretaker| Note Caretaker| Note

Before empirically evaluating our methods, we discuss
alternatives for learning robust classifiers in our setting,
and how their properties fair compared to counterfactual
augmentation. . m =

4.3 Why Panel A: Matching patients using auxiliary data
Bother with Counterfactual Data Augmentation? '
Reasoning about counterfactuals with problem-specific | *4% = Yn +( | == | e )
domain knowledge is a considerable challenge, and it
is interesting to see whether this has any advantage in
learning robust classifiers compared to methods that rely
on less stringent assumptions. A simple alternative to
approximating counterfactuals involves re-weighting the = Panel B: Generating counterfactual discharge summaries
loss function (see e.g. Makar et al. [25], Shimodaira [80]).

Figure 2: Generating counterfactual
Reweighting baseline. Intuitively, re-weighting sam- clinical notes for patients using auxil-
ples from the uncorrelated distribution P(Y,C) = iary data with Algorithm 1(A).
P(Y)P(C) by setting for each example i a weight w; =

Rrain(Y = yi)Ptrain(C = Ci)/Ptrain(Y =y;,C = Ci) and



minimizing the weighted empirical risk:

Ry = = 5 wil (hxi), ).

i€[m]

It can be proved that at the limit of infinite data the method learns a min-max optimal hypothesis, as
it also effectively minimizes ’RlpL (see [25]). While augmentations may not seem advantageous for
identifying the correct hypothesis, reweighting can demand a larger sample to identify the correct
hypothesis, particularly when Y and C' are highly correlated.?

Comparing sample complexities. To make this statement precise, we can apply the bounds from
Cortes et al. [81] and compare them with an upper bound that we will derive for our method in
Lemma 2. To this end, let us consider the exponent of the Rényi divergence as a measure of
dependence between Y and C' in the training data. The divergence is given by d yrain (Y, C) =
[Zye[L],ce[K] Pe.(Y =y,C= c)/Ptf;i‘nl(Y = y)Ptf;i‘nl(C = c)]ﬁ, and we may derive the follow-
ing bound for a hypothesis i € H and any ¢ € [0, 1]:

Rﬁi(h) <R (h) + \/2d2,train (Y,f[) -log(1/0) N doo train (Y, ?\7) -log(l/é). o

A complementary lower bound on ﬁiﬂ (h) can also be derived based on results in Cortes et al. [81].
To compare this with counterfactual augmentations, denote our augmentation model by 7 : X x
M = XX which is some measurable function whose output’s c-th coordinate is the counterfactual
estimate w.r.t. caregiver ¢, i.e. X(c¢) = 7.(x,m). The following statement quantifies the relation
between the accuracy of 7(-) in approximating counterfactuals and the classification accuracy of a

model learned from the augmented data, via minimization of ﬁﬁug(h) ineq. (1).

Lemma 2. Consider a prediction problem with a spuriously-correlated attribute (definition 1), a
measurable function T : X x M — XX, and let d, (P, Q) denote the total variation distance be-

tween two distributions P,(Q). Further let h*, b}, denote the optimal hypotheses w.r.t Rf—,‘,’f , Rlo

Y taug aug
respectively and let Xy, = [Rf;?ll (Pug) = ng’f (h*)]. For any hypothesis h € H, and any 0 € (0,1)

it holds that with probability at least 1 — § over the draw of the training set,

’R’ggj (h) < ﬁﬁgé(h) + V w + K71 : Z dl (Tc,* (R‘min (X,M)) ;P(X(C))) + Azmg~

ce[ K]

The divergence di (7, + (Prain(X, M)), P(X(c))) is a distance between the true distribution over
counterfactual instances P(X (c)) and our augmented data 7, . ( Pyain (X, M)).* Divergences other
than total-variation can be used, resulting in tighter bounds, e.g. see Ben-David et al. [82]. As
we generate better counterfactuals this divergence decreases, and it can also be shown that A* and

hy,e coincide. Hence A vanishes and the bound scales with N “3, resulting in a gain of factor

da.1rain(Y, C') over the upper bound on R (k) in Equation (2). We discuss the details in the ap-
pendix, and in Section 5 we show this empirically through simulations.

Takeaways and additional baselines. We emphasize that that the counterfactual datapoints should
not be interpreted as “more data” in the sense of i.i.d training examples, they rather embody knowl-
edge about how the causal mechanism that generates features X acts under interventions on the
attribute C' (as formalized in e.g. [74, 83]). This translates into an improved sample complexity
towards risk minimization on P,. Counterfactuals are not the only type of causal knowledge that
may be leveraged for learning more stable models. Many data dependent penalty terms have been
proposed to impose conditional independence constraints drawn from the causal structure of the
problem. Theory on these methods usually shows improved OOD performance under infinite data
[13,22,24,29]. Our baselines include a method based on the Maximum-Mean Discrepency (MMD)
from Makar et al. [25] who show improved sample complexity under a linear hypothesis class.

3We remark that other works discuss the potential benefits of data augmentation for identification in other
problem settings, e.g. [72, Thm. 9] and [17].

*The notation 7. . (-) denotes the pushforward measure. We note that in our implementation 7. is data
dependent and we ignore this dependence to enable a simple analysis.



5 Experiments

We empirically study the following questions: (1) Can CATO enhance OOD performance of down-
stream classifiers? (2) Does it surpass the combination of reweighting and invariance penalties? (3)
Is it more effective than alternative augmentation techniques, thus demonstrating the usefulness of
the causal graph? (4) How sensitive is CATO to quality of counterfactuals?

These questions seek to establish causally-motivated augmentations as a practical approach for im-
proving OOD performance. We address Q#1,#2 and #3 through our theoretical foundation and
across all empirical studies, while Q#4 is explored in the synthetic experiments. Further details
about the experimental setup, including data statistics, model hyperparameters, and data splits, can
be found in Appendix B. Table 1 provides an overview of the tasks we experiment with.

Input (z) \ Label (y) ID Data OOD Data Spurious Feature (¢)  auxiliary data (m)
Condition Prediction i2b2-2010 Medications,
Clinical Narratives | Note Segmentation MIMIC-III  partner data ~ Caregiver ID Lab Results,
Demographic Traits i2b2-2006 Vitals
Restaurant Reviews | Restaurant Rating CEBaB CeBAB- Food-mention Service,  Noise,
Spurious Ambiance, Food
Synthetic Data | {0,1} Gaussians {0,--,7} -

Table 1: Description of all our tasks and their corresponding experimental setup.

Baselines. We compare CATO to several baselines:

* Observational - Baseline model trained on the original data. PubMED BERT [84] for clinical
narratives, logistic regression for the restaurant reviews and synthetic experiments. >

* Reweighting - Baseline model with sample reweighting as in Makar et al. [25].

* MMD - Baseline model with an MMD penalty as in Makar et al. [25], Veitch et al. [29].

* IRM - Baseline model with the IRMv1 penalty as in Arjovsky et al. [13].

* GroupDRO - Baseline model trained with the GroupDRO objective as in Sagawa et al. [85].

* Naive Augmentations - Baseline model on a dataset that also includes augmentations, generated
by prompting an LLM to create more examples (without matching or diff-in-diff).

* Conditional Augmentations - Augmentations are generated by matching on auxiliary data and
prompting an LLM to create one example in the the style of the other.

The reweighting and MMD approaches are discussed and contrasted to counterfactual augmentation
in Section 4. IRM and GroupDRO are the most well-known principled methods for OOD generaliza-
tion that are used in the literature. The augmentation approaches are compared here to demonstrate
the importance of using the causal structure of the data.

5.1 Clinical Narratives

Data. We consider three representative clinical NLP tasks, clinical condition prediction, note seg-
mentation and demographic traits identification®, for which we have both ID and OOD data. We
utilize several electronic health records (EHR) datasets. We train on MIMIC-III [86], a widely-used
medical dataset containing over 2 million notes from 38, 597 adult patients, 49, 785 hospital admis-
sions, and 3, 500 healthcare professionals between 2001 and 2012. MIMIC-III is commonly used
in NLP research for clinically-related tasks and for pre-training language models for the medical
domain [87]. When available, we use i2b2 2006 and 2010 competitions as our held-out hospital
dataset. In the note segmentation task, we use private held-out data.

Generating notes from counterfactual caregivers. To generate augmentations, we select care-
givers with multiple patients and notes for more than one patient. For each caregiver-patient pair
where both their last progress note and discharge summary were written by that caregiver’, we match
them to similar patients having the same initial caregiver but a different one for their discharge sum-
mary. In matching, we select patients with similar medications and lab results (denoted as patient’s

> Appendix B includes results where the Baseline model is also BioBERT, SentenceBERT or GPT3.
%See Appendix B for results on the demographic traits identification task.

"During a patient’s stay, progress notes capture its current state. When leaving the hospital, a discharge
summary is written.



auxiliary data m in Table 1). We then generate counterfactual discharge summaries for matched pa-
tients using Algorithm 1(A) and train the model using original data and generated counterfactuals.

Figure 3 presents results for CATO (A) using language model representations generated using these
matched examples. See Appendix B for training details and results for CATO (A) with LLM
prompts, and Appendix C for synthetic note examples and the prompts used.
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Figure 3: Results (F'1 averaged across 5 runs) for predicting clinical conditions (A) and for clinical
note segmentation (B) from the text narratives. CATO (A) outperforms all baselines on OOD data.

Clinical Condition Prediction. Clinical condition prediction is a concept extraction task focused
on medical concepts in patient reports [88]. Here we trained PubMED BERT models on a subset
of MIMIC-III, labelled using the same annotation guidelines as in i2b2-2010, the OOD dataset the
models are tested on. As can be seen in the Figure 3(A), in the ID setting only the naive augmen-
tations improve performance slightly. In the OOD setting, all OOD methods help (reweighting,
MMD, IRM, GroupDRO, CATO (A)), but our causally-motivated augmentation approach is substan-
tially better than the alternatives. On average (across 5 runs), CATO (A) improves precision above
the baseline by more than 7% (absolute), and recall by more than 8%. The naive augmentation ap-
proach improves over the vanilla PubMED BERT model, but is outperformed by all OOD methods.

Note Segmentation. In this task, models need to recognize sections in free-form clinical notes [89].
Given that section headers vary between hospitals, the models must discern sections based solely
on the note content, excluding headers. As can be seen in Figure 3(B), similarly to clinical condi-
tion prediction, the diff-in-diff approach to augmentations (CATO (A)) substantially improved OOD
performance, and as expected does not help ID. The naive augmentations are the best performing
method ID, but is again outperformed by all other methods OOD.

5.2 Restaurant Reviews

Data. We use the CEBaB dataset [49], which
consists of short restaurant reviews and ratings  Method | CeBAB  CeBAB-Spur.
from OpenTable, including evaluations for food, ;

service, noise, ambiance, and an overall rating. Obseryaﬂpnal 0.85 0.64

We used the train-exclusive split of the dataset, Rewelghtlng 0.84 0.68
which contains 1,755 examples. We construct Naive Aug. 0.80 0.62
two experimental settings: the original CeBAB ~ Conditional Aug. | 0.84 0.70
dataset, and a modified version, denoted as Ce- CATO (B) 0.84 0.75
BAB-Spurious, where there’s a spurious correla-
tion between training and deployment.

Table 2: Accuracy on CeBAB and CeBAB-
Spurious. CATO (B) outperforms all baselines
To construct CeBAB-Spurious, we leverage the when we introduce a spurious correlation.
availability of both the original and perceived rat-

ings for each review in CeBAB. The original rating represents the reviewer’s initial thoughts when
writing the review, while the perceived rating indicates whether the review contains information


https://www.opentable.com/

about various restaurant attributes (e.g., food, service, noise, ambiance) and their associated senti-
ment. We utilize this unique data structure to capture reviewers’ writing styles. Some reviewers are
concise and provide limited descriptions, while others are more descriptive and include more infor-
mation. To incorporate this variability, we introduce a new attribute called food-mention to signify
the presence of food-related information in a review. If the perceived food rating is either negative or
positive, we assign a value of 1 to the food-mention attribute; otherwise, it is set to 0. We subsample
the data such that there is a correlation of 0.72 between food-mention and the outcome.

Generating reviews with counterfactual food mentions. Following Algorithm 1, we generate
counterfactual restaurant reviews conditional on food and overall ratings. We find matched examples
for each review, select those with different food-mentions, and prompt an LLM to rewrite them,
reflecting how the reviews would appear if the reviewer was more/less concise.

Results. As shown in Table 2, adding counterfactual augmentations leads to better OOD general-
ization, while naive data augmentation hurts model performance In line with the sample complexity
argument in Section 4, conditional augmentation effectively doesn’t add new data and therefore
doesn’t improve model performance.

5.3 Synthetic Data

To test sensitivity of CATO to quality of counterfactuals (Q#4), we generate synthetic data for a
binary classification problem where K = 8 (cardinality of C). We sample P(C' | Y') to simulate
varying degrees of spurious correlations. Then we draw x = [X*, X, | from a Gaussian distribution,

* 2
| % o Hy; e P8 0
= I:XSPUJ] N([HCI] ’ [ 0 Us2puIdc:|) -

In this case X;(c) is obtained by adding fi. — i,
t0 Xgpu;. 1O corrupt our augmentation, we in-

stead add &; (pe — pe; ) where &; is drawn from 0.9 L | "]
a truncated Gaussian centered at A € (0,1). \
We train models with a fixed sample size (in = 08l A
the appendix we also examine varying sample g .

. .. 7 SH ERM
sizes and additional types of corruption) and © Reweiah
evaluate the trained models’ accuracy on P, to r 0.7 Azwe'; :;gz !
examine the interplay between spurious corre- ‘_‘ N :g,oﬁ ‘
lation strength (measured by mutual informa- 0.6 | == x=04
tion I(Y;C)), and counterfactual augmenta- i \ \ \
tion quality. As can be seen in Figure 4, corrup- 0 0.2 0.4 0.6 0.8
tions degrade performance under stronger spu- I(y;C)

rious correlations, though a strong corruption is
required for reweighting to become preferable.  Figure 4: OOD accuracy (1 — Rllgl (h))and Y, C

correlation strength (I(Y';C')). Lower values of
6 Discussion A correspond to stronger corruptions of the aug-
mentations. Even with substantial corruption (A =
0.2) and strong correlation, augmentations outper-

In this work, we have presented a data augmen- .
form baselines.

tation approach based on the causal structure of
auxiliary data for improving OOD generaliza-
tion, specifically focusing on text classification
tasks. However, our approach is not without
limitations. The validity of our assumptions, the specification of the causal graph and the qual-
ity of the counterfactual approximation all present challenges to address in future work. Further, our
results suggest that performing data augmentation in an unprincipled manner can also hurt model
performance. Utilizing additional techniques for OOD generalization, learning the causal structure
directly from the data, and improving quality and reliability of the counterfactual approximation
process can help mitigate these concerns. Overall, we believe that causally-motivated data aug-
mentation methods like ours can help address challenges in developing robust and reliable machine
learning systems, particularly in safety-critical applications.
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