
Operator Learning with Neural Fields: Tackling PDEs
on General Geometries
Supplemental Material

Anonymous Author(s)
Affiliation
Address
email

A Dataset Details517

A.1 Initial Value Problem518

We use the datasets from Pfaff et al. (2021), and take the first and last frames of each trajectory as the519

input and output data for the initial value problem.520

Cylinder The dataset includes computational fluid dynamics (CFD) simulations of the flow around521

a cylinder, governed by the incompressible Navier-Stokes equation. These simulations were generated522

using COMSOL software, employing an irregular 2D-triangular mesh. The trajectory consists of 600523

timestamps, with a time interval of �t = 0.01s between each timestamp.524

Airfoil The dataset contains CFD simulations of the flow around an airfoil, following the com-525

pressible Navier-Stokes equation. These simulations were conducted using SU2 software, using an526

irregular 2D-triangular mesh. The trajectory encompasses 600 timestamps, with a time interval of527

�t = 0.008s between each timestamp.528

A.2 Dynamics Modeling529

2D-Navier-Stokes (Navier-Stokes) We consider the 2D Navier-Stokes equation as presented in Li530

et al. (2021); Yin et al. (2022). This equation models the dynamics of an incompressible fluid on a531

rectangular domain ⌦ = [�1, 1]2. The PDE writes as :532

@w(x, t)

@t
= �u(x, t)rw(x, t) + ⌫�w(x, t) + f, x 2 [�1, 1]2, t 2 [0, T] (6)

w(x, t) = r⇥ u(x, t), x 2 [�1, 1]2, t 2 [0, T] (7)

ru(x, t) = 0, x 2 [�1, 1]2, t 2 [0, T] (8)

where u is the velocity, w the vorticity. ⌫ is the fluid viscosity, and f is the forcing term, given by:533

f(x1, x2) = 0.1 (sin(2⇡(x1 + x2)) + cos(2⇡(x1 + x2))) , 8x 2 ⌦ (9)

For this problem, we consider periodic boundary conditions.534

By sampling initial conditions as in Li et al. (2021), we generated different trajectories on a 256⇥256535

regular spatial grid and with a time resolution �t = 1. We retain the trajectory starting from the 20th536

timestep so that the dynamics is sufficiently expressed. The final trajectories contains 40 snapshots at537

time t = 20, 21, · · · , 59. As explained in section 4, we divide these long trajectories into 2 parts : the538

20 first frames are used during the training phase and are denoted as In-t throughout this paper. The539

20 last timesteps are reserved for evaluating the extrapolation capabilities of the models and are the540

Out-t part of the trajectories. In total, we collected 256 trajectories for training, and 16 for evaluation.541

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

3D-Spherical Shallow-Water (Shallow-Water). We consider the shallow-water equation on a542

sphere describing the movements of the Earth’s atmosphere:543

du

dt
= �f · k ⇥ u� grh+ ⌫�u (10)

dh

dt
= �hr · u+ ⌫�h (11)

where d
dt is the material derivative, k is the unit vector orthogonal to the spherical surface, u is544

the velocity field tangent to the surface of the sphere, which can be transformed into the vorticity545

w = r⇥ u, h is the height of the sphere. We generate the data with the Dedalus software (Burns546

et al., 2020), following the setting described in Yin et al. (2022), where a symmetric phenomena547

can be seen for both northern and southern hemisphere. The initial zonal velocity u0 contains two548

non-null symmetric bands in the both hemispheres, which are parallel to the circles of latitude. At549

each latitude and longitude �, ✓ 2 [�⇡2 ,
⇡
2]⇥ [�⇡,⇡]:550

u0(�, ✓) =

8
>><

>>:

⇣
umax
en

exp
⇣

1
(���0)(���1)

⌘
, 0
⌘

if � 2 (�0,�1),⇣
umax
en

exp
⇣

1
(�+�0)(�+�1)

⌘
, 0
⌘

if � 2 (��1,��0),
(0, 0) otherwise.

(12)

where umax is the maximum velocity, �0 = ⇡
7 ,�1 = ⇡

2 � �0, and en = exp(� 4
(�1��0)2

). The water551

height h0 is initialized by solving a boundary value conditioned problem as in Galewsky et al. (2004)552

which is perturbed by adding h
0
0 to h0:553

h
0
0(�, ✓) = ĥ cos(�) exp

�
✓
✓

↵

◆2
!"

exp

�
✓
�2 � �
�

◆2
!

+ exp

�
✓
�2 + �

�

◆2
!#

. (13)

where �2 = ⇡
4 , ĥ = 120m,↵ = 1

3 and � = 1
15 are constants defined in Galewsky et al. (2004).554

We simulated the phenomenon using Dedalus Burns et al. (2020) on a latitude-longitude grid (lat-555

lon). The original grid size was 128 (lat) ⇥ 256 (lon), which we downsampled to obtain grids of556

size 64 ⇥ 128. To generate trajectories, we sampled umax from a uniform distribution U(60, 80).557

Snapshots were captured every hour over a duration of 320 hours, resulting in trajectories with 320558

timestamps. We created 16 trajectories for the training set and 2 trajectories for the test set. However,559

since the dynamical phenomena in the initial timestamps were less significant, we only considered560

the last 160 snapshots. Each long trajectory is then sliced into sub-trajectories of 40 timestamps each.561

As a result, the training set contains 64 trajectories, while the test set contains 8 trajectories. It is562

worth noting that the data was also scaled to a reasonable range: the height h was scaled by a factor563

of 3⇥ 103, and the vorticity w was scaled by a factor of 2.564

A.3 Geometric Design565

We use the datasets provided by Li et al. (2022a) and adopt the original authors’ train/test split for566

our experiments.567

Euler’s Equation (Naca-Euler). We consider the transonic flow over an airfoil, where the governing568

equation is Euler equation, as follows:569

@⇢f

@t
+r · (⇢fu) = 0,

@⇢fu

@t
+r · (⇢fu⌦ u+ pI) = 0,

@E

@t
+r · ((E + p)u) = 0, (14)

where ⇢f is the fluid density, u is the velocity vector, p is the pressure, and E is the total energy.570

The viscous effect is ignored. The far-field boundary condition is ⇢1 = 1, p1 = 1.0, M1 = 0.8,571

AoA = 0, where M1 is the Mach number and AoA is the angle of attack. At the airfoil, a no-572

penetration condition is imposed. The shape parameterization of the airfoil follows the design element573

approach. The initial NACA-0012 shape is mapped onto a “cubic” design element with 8 control574

nodes, and the initial shape is morphed to a different one following the displacement field of the575

control nodes of the design element. The displacements of control nodes are restricted to the vertical576

direction only, with prior d ⇠ U [�0.05, 0.05].577

We have access to 1000 training data and 200 test data, generated with a second-order implicit finite578

volume solver. The C-grid mesh with about (200⇥ 50) quadrilateral elements is used, and the mesh579

is adapted near the airfoil but not the shock. The mesh point locations and Mach number on these580

mesh points are used as input and output data.581

2

Hyper-elastic material (Elasticity). The governing equation of a solid body can be written as582

⇢s
@
2
u

@t2
+r · � = 0

where ⇢s is the mass density, u is the displacement vector, and � is the stress tensor. Constitutive583

models, which relate the strain tensor " to the stress tensor, are required to close the system. We584

consider the unit cell problem ⌦ = [0, 1]⇥ [0, 1] with an arbitrary shape void at the center, which is585

depicted in Figure 2(a). The prior of the void radius is r = 0.2+0.2 with r̃ ⇠ N (0, 42(�r+32)�1),586

1+exp(r̃), which embeds the constraint 0.2 r 0.4. The unit cell is clamped on the bottom edges587

and tension traction t = [0, 100] is applied on the top edge. The material is the incompressible Rivlin-588

Saunders material with energy density function parameters C1 = 1.863⇥ 105 and C1 = 9.79⇥ 103.589

The data was generated with a finite element solver with about 100 quadratic quadrilateral elements.590

The inputs a are given as point clouds with a size around 1000. The target output is stress.591

Navier-Stokes Equation (Pipe). We consider the incompressible flow in a pipe, where the govern-592

ing equation is the incompressible Navier-Stokes equation, as following,593

@v

@t
+ (v ·r)v = �rp+ µr2

v, r · v = 0

where v is the velocity vector, p is the pressure, and µ = 0.005 is the viscosity. The parabolic594

velocity profile with maximum velocity v = [1, 0] is imposed at the inlet. A free boundary condition595

is imposed at the outlet, and a no-slip boundary condition is imposed at the pipe surface. The pipe596

has a length of 10 and width of 1. The centerline of the pipe is parameterized by 4 piecewise cubic597

polynomials, which are determined by the vertical positions and slopes on 5 spatially uniform control598

nodes. The vertical position at these control nodes obeys d ⇠ U [�2, 2], and the slope at these control599

nodes obeys d ⇠ U [�1, 1].600

We have access to 1000 training data and 200 test data, generated with an implicit finite element601

solver using about 4000 Taylor-Hood Q2-Q1 mixed elements. The mesh point locations (129⇥ 129)602

and horizontal velocity on these mesh points are used as input and output data.603

B Implementation Details604

We implemented all experiments with PyTorch (Paszke et al., 2019). The code is available at605

https://anonymous.4open.science/r/coral-0348/. We estimate the computation606

time needed for development and the different experiments to approximately 400 days.607

B.1 CORAL608

B.1.1 Architecture Details609

SIREN initialization. We use for SIREN the same initialization scheme as in Sitzmann et al.610

(2020b), i.e., sampling the weights of the first layer according to a uniform distribution U(�1/d, 1/d)611

and the next layers according to U(� 1
w0

q
6

din
,

1
w0

q
6

din
). We use the default PyTorch initialization612

for the hypernetwork.613

Decode with shift-modulated SIREN. Initially, we attempted to modulate both the scale and shift614

of the activation, following the approach described in Perez et al. (2018). However, we did not observe615

any performance improvement by employing both modulations simultaneously. Consequently, we616

decided to focus solely on shift modulations, as it led to a more stable training process and reduced the617

size of the modulation space by half. We provide an overview of the decoder with the shift-modulated618

SIREN in Figure 3.619

Encode with auto-decoder. We provide a schematic view of the input encoder in Figure 4. The620

auto-decoding process starts from a code za = 0 and performs K steps of gradient descent over this621

latent code to minimize the reconstruction loss.622

3

https://anonymous.4open.science/r/coral-0348/

Modulation

SIREN

input
function

obs.
space

hypernetwork

input

(a) The hypernetwork ha maps the input code za
to the modulations �a. The modulations shift the
activations at each layer of the SIREN.

output
function

output
space

hypernetwork

Modulation

SIREN

input

(b) The hypernetwork hu maps the input code zu
to the modulations �u. The modulations shift the
activations at each layer of the SIREN.

Figure 3: Architecture of the input and output decoders ⇠a, ⇠u. They can be queried on any coordinate
x 2 ⌦. We use the same notation for both, even though the parameters are different.

Process with MLP. We use an MLP with skip connections and Swish activation functions. Its623

forward function writes g (z) = Blockk � ... � Block1(z), where Block is a two-layer MLP with624

skip connections:625

Block(z) = z + �(W2 · �(W1 · z + b1) + b2) (15)

In Equation (15), � denotes the feature-wise Swish activation. We use the version with learnable626

parameter �; �(z) = z · sigmoid(�z).627

B.1.2 Training Details628

The training is done in two steps. First, we train the modulated INRs to represent the data. We show629

the details with the pseudo-code in Algorithms 1 and 2. ↵ is the inner-loop learning rate while � is630

the outer loop learning rate, which adjusts the weights of the INR and hypernetwork. Then, once the631

INRs have been fitted, we obtain the latent representations of the training data, and use these latent632

codes to train the forecast model g (See Algorithm 3). We note � the learning rate of g .633

Z-score normalization. As the data is encoded using only a few steps of gradients, the resulting634

standard deviation of the codes is very small, falling within the range of [1e-3, 5e-2]. However, these635

“raw” latent representations are not suitable as-is for further processing. To address this, we normalize636

the codes by subtracting the mean and dividing by the standard deviation, yielding the normalized637

code: znorm = z�mean
std . Depending on the task, we employ slightly different types of normalization:638

1. Initial value problem: • Cylinder: We normalize the inputs and outputs code with the same639

mean and standard deviation. We compute the statistics feature-wise, across the inputs and640

outputs. • Airfoil: We normalize the inputs and outputs code with their respective mean and641

standard deviation. The statistics are real values.642

2. Dynamics modeling: We normalize the codes with the same mean and standard deviation.643

The statistics are computed feature-wise, over all training trajectories and all available644

timestamps (i.e. over In-t).645

3. Geometric design: We normalize the input codes only, with feature-wise statistics.646

4

 steps

encoding as
auto-decodinginput input

output

Figure 4: Starting from a code z
(0)
a = 0, the input encoder ea performs K inner steps of gradient

descent over za to minimize the reconstruction loss LX (ã, a) and outputs the resulting code z
(K)
a

of this optimization process. During training, we accumulate the gradients of this encoding phase
and back-propagate through the K inner-steps to update the parameters ✓a and wa. At inference,
we encode new inputs with the same number of steps K and the same learning rate ↵, unless stated
otherwise. The output encoder works in the same way during training, and is not used at inference.

Train processor
to forecast

output code

Step 1

Step 2

Input INR
training

Output INR
training

Figure 5: Proposed training for CORAL. (1) We first learn to represent the data with the input and
output INRs. (2) Once the INRs are trained, we obtain the latent represenations and fix the pairs of
input and output codes (zai , zui). We then train the processor to minimize the distance between the
processed code g (zai) and the output code zui .

B.1.3 Inference Details647

We present the inference procedure in Algorithm 4. It is important to note that the input and output648

INRs, f✓a and f✓u , respectively, accept the “raw” codes as inputs, whereas the processor expects a649

normalized latent code. Therefore, after the encoding steps, we normalize the input code. Additionally,650

we may need to denormalize the code immediately after the processing stage. It is worth mentioning651

that we maintain the same number of inner steps as used during training, which is 3 for all tasks.652

5

Algorithm 1: Training of the input INR
while no convergence do

Sample batch B of data (ai)i2B;
Set codes to zero zai 0, 8i 2 B ;
for i 2 B and step 2 {1, ...,Ka} do

zai
zai � ↵arzai

LXi(f✓a,ha(zai)
, ai) ;

// input encoding inner
step

end
/* outer loop update */
✓a ✓a �
�

1
|B|
P

i2Br✓aLXi(f✓a,ha(zai)
, ai);

wa wa �
�

1
|B|
P

i2BrwaLXi(f✓a,ha(zai)
, ai)

end

Algorithm 2: Training of the output INR
while no convergence do

Sample batch B of data (ai, ui)i2B;
Set codes to zero zui 0, 8i 2 B ;
for i 2 B and step 2 {1, ...,Ku} do

zui
zui � ↵urzui

LXi(f✓u,hu(zui)
, ui)

; // output encoding inner
step

end
/* outer loop update */
✓u ✓u �
�

1
|B|
P

i2Br✓uLXi(f✓u,hu(zui)
, ui);

wu wu �
�

1
|B|
P

i2BrwuLXi(f✓u,hu(zui)
, ui)

end

653

Algorithm 3: Training of the processor
while no convergence do

Sample batch B of codes (zai , zui)i2B;
/* processor update */
 � � 1

|B|
P

i2Br L(g (zai), zui) ;
end

Algorithm 4: CORAL Inference, given a function a

Set code to zero za 0 ;
for step 2 {1, ...,Ka} do

za za � ↵arzaLX (f✓a,ha(za), a) ; // input encoding inner step
end
ẑu = g (za) ; // process latent code
û = f✓u,hu(z̃u) ; // decode output function

B.1.4 Choice of Hyperparameters654

We recall that dz denotes the size of the code, w0 is a hyperparameter that controls the frequency655

bandwith of the SIREN network, � is the outer-loop learning rate (on f✓,� and hw), ↵ is the inner-loop656

learning rate, K is the number of inner steps used during training and encoding steps at test time, � 657

is the learning rate of the MLP or NODE. In some experiments we learn the inner-loop learning rate658

↵, as in Li et al. (2017). In such case, the meta-↵ learning rate is an additional parameter that controls659

how fast we move ↵ from its initial value during training. When not mentioned we simply report ↵ in660

the tables below, and otherwise we report the initial learning rate and this meta-learning-rate.661

We use the Adam optimizer during both steps of the training. For the training of the Inference /662

Dynamics model, we use a learning rate scheduler which reduces the learning rate when the loss has663

stopped improving. The threshold is set to 0.01 in the default relative threshold model in PyTorch,664

with a patience of 250 epochs w.r.t. the train loss. The minimum learning rate is 1e-5.665

Initial Value Problem We provide the list of hyperparameters used for the experiments on Cylinder666

and Airfoil in Table 4.667

Dynamics Modeling Table 5 summarizes the hyperparameters used in our experiments for dynam-668

ics modeling on datasets Navier-Stokes and Shallow-Water (Table 2).669

Furthermore, to facilitate the training of the dynamics within the NODE, we employ Scheduled670

Sampling, following the approach described in Bengio et al. (2015). At each timestep, there is a671

6

Table 4: CORAL hyper-parameters for IVP/ Geometric design
Hyper-parameter Cylinder Airfoil NACA-Euler Elasticity Pipe

f✓a,�a / f✓u,�u

dz 128 128 128 128 128
depth 4 5 4 4 5
width 256 256 256 256 128
!0 30 30 / 50 5 / 15 10 / 15 5 / 10

SIREN Optimization

batch size 32 16 32 64 16
epochs 2000 1500 5000 5000 5000
� 5e-6 5e-6 1e-4 1e-4 5e-5
↵ 1e-2 1e-2 1e-2 1e-2 1e-2

meta-↵ learning rate 0 5e-6 1e-4 1e-4 5e-5
Ka / Ku 3 3 3 3 3

g

depth 3 3 3 3 3
width 64 64 64 64 128

activation Swish Swish Swish Swish Swish

Inference Optimization

batch size 32 16 64 64 64
epochs 2000 100 10000 10000 10000
� 1e-3 1e-3 1e-3 1e-3 1e-3

Scheduler decay 0 0 0.9 0.9 0.9

Table 5: CORAL hyper-parameters for dynamics modeling
Hyper-parameter Navier-Stokes Shallow-Water

INR

dz 128 256
depth 4 6
width 128 256
!0 10 10

INR Optimization

batch size 64 16
epochs 10, 000 10, 000
� 5e-6 5e-6
↵ 1e-2 1e-2
K 3 3

NODE

depth 3 3
width 512 512

activation Swish Swish
solver RK4 RK4

Dynamics Optimization

batch size 32 16
epochs 10, 000 10, 000
� 1e-3 1e-3

Scheduler decay 0.75 0.75

7

probability of ✏% for the integration of the dynamics through the ODE solver to be restarted using672

the training snapshots. This probability gradually decreases during the training process. Initially, we673

set ✏init = 0.99, and every 10 epochs, we multiply it by 0.99. Consequently, by the end of the training674

procedure, the entire trajectory is computed with the initial condition.675

Geometric Design We provide the list of hyperparameters used for the experiments on NACA-Euler,676

Elasticity, and Pipe in Table 4.677

B.2 Baseline Implementation678

We detail in this section the architecture and hyperparameters used for the training of the baselines679

presented in Section 4.680

Initial Value Problem We use the following baselines for the Initial Value Problem task.681

• NodeMLP. We use a ReLU-MLP with 3 layers and 512 neurons. We train it for 10000682

epochs. We use a learning rate of 1e-3 and a batch size of 64.683

• GraphSAGE. We use the implementation from torch-geometric (Fey & Lenssen, 2019),684

with 6 layers of 64 neurons. We use ReLU activation. We train the model for 400 epochs for685

Airfoil and 4,000 epochs for Cylinder. We build the graph using the 16 closest nodes. We686

use a learning rate of 1e-3 and a batch size of 64.687

• MP-PDE: We implement MP-PDE as a 1-step solver, where the time-bundling and pushfor-688

ward trick do not apply. We use 6 message-passing blocks and 64 hidden features. We build689

the graph with the 16 closest nodes. We use a learning rate of 1e-3 and a batch size of 16.690

We train for 500 epochs on Airfoil and 1000 epochs on Cylinder.691

Dynamics Modeling All our baselines are implemented in an auto-regressive (AR) manner to692

perform forecasting.693

• DeepONet: We use a DeepONet in which both Branch Net and Trunk Net are 4-layers694

MLP with 100 neurons. The model is trained for 10, 000 epochs with a learning rate of695

1e-5. To complete the upsampling studies, we used a modified DeepONet forward which696

computes as follows: (1) Firstly, we compute an AR pass on the training grid to obtain a697

prediction of the complete trajectory with the model on the training grid. (2) We use these698

prediction as input of the branch net for a second pass on the up-sampling grid to obtain the699

final prediction on the new grid.700

• FNO: FNO is trained for 2000 epochs with a learning rate of 1e-3. We used 12 modes and701

a width of 32 and 4 Fourier layers. We also use a step scheduler every 100 epochs with a702

decay of 0.5.703

• MP-PDE: We implement MP-PDE with a time window of 1 so that is becomes AR. The704

MP-PDE solver is composed of a 6 message-passing blocks with 128 hidden features. To705

build the graphs, we limit the number of neighbors to 8. The optimization was performed706

on 10000 epochs with a learning rate of 1e-3 and a step scheduler every 2000 epochs until707

10000. We decay the learning rate of 0.4 with weight decay 1e-8.708

• DINo: DINo uses MFN model with respectively width and depth of 64 and 3 for Navier-709

Stokes (NS), and 256 and 6 for Shallow-Water (SW). The encoder proceeds to 300 (NS)710

or 500 (SW) steps to optimize the codes whose size is set to 100 (NS) or 200 (SW). The711

dynamic is solved with a NODE that uses 4-layers MLP and a hidden dimension of 512712

(NS) or 800 (SW). This model is trained for 10000 epochs with a learning rate of 5e-3. We713

use the same scheduled sampling as for the CORAL training (see appendix B.1.4).714

Geometric Design Except for FactorizedFNO on Pipe, the numbers for GeoFNO, FNO, UNet715

are taken from Li et al. (2022a) and the numbers for FactorizedFNO are taken from Tran et al. (2023).716

In the latter we take the 12-layer version which has a comparable model size. We train the 12-layer717

Factorized FNO on Pipe with AdamW for 200 epochs with modes (32, 16), a width of 64, a learning718

rate of 1e-3 and a weight decay of 1e-4.719

8

C Supplementary Results for Dynamics Modeling720

C.1 Robustness to Resolution Changes721

We present in Tables 6 and 7 the up-sampling capabilities of CORAL and relevant baselines both In-t722

and Out-t, respectively for Navier-Stokes and Shallow-Water.723

Table 6: Up-sampling capabilities - Test results on Navier-Stokes dataset. Metrics in MSE.

Xtr #
dataset! Navier-Stokes
Xtr ! 64⇥ 64
Xte ! Xtr 64⇥ 64 128⇥ 128 256⇥ 256

In-t Out-t In-t Out-t In-t Out-t In-t Out-t

DeepONet 1.47e-2 7.90e-2 1.47e-2 7.90e-2 1.82e-1 7.90e-2 1.82e-2 7.90e-2
⇡tr = 100% FNO 7.97e-3 1.77e-2 7.97e-3 1.77e-2 8.04e-3 1.80e-2 1.81e-2 7.90e-2
regular grid MP-PDE 5.98e-4 2.80e-3 5.98e-4 2.80e-3 2.36e-2 4.61e-2 4.26e-2 9.77e-2

DINo 1.25e-3 1.13e-2 1.25e-3 1.13e-2 1.25e-3 1.13e-2 1.26e-3 1.13e-2
CORAL 2.02e-4 1.07e-3 2.02e-4 1.07e-3 2.08e-4 1.06e-3 2.19e-4 1.07e-3

DeepONet 8.35e-1 7.74e-1 8.28e-1 7.74e-1 8.32e-1 7.74e-1 8.28e-1 7.73e-1
⇡tr = 20% MP-PDE 2.36e-2 1.11e-1 7.42e-2 2.13e-1 1.18e-1 2.95e-1 1.37e-1 3.39e-1

irregular grid DINo 1.30e-3 9.58e-3 1.30e-3 9.59e-3 1.31e-3 9.63e-3 1.32-3 9.65e-3
CORAL 1.73e-3 5.61e-3 1.55e-3 4.34e-3 1.61e-3 4.38e-3 1.65e-3 4.41e-3

DeepONet 7.12e-1 7.16e-1 7.22e-1 7.26e-1 7.24e-1 7.28e-1 7.26e-1 7.30e-1
⇡tr = 5% MP-PDE 1.25e-1 2.92e-1 4.83e-1 1.08 6.11e-1 1.07 6.49e-1 1.08

irregular grid DINo 8.21e-2 1.03e-1 7.73e-2 7.49e-2 7.87e-2 7.63e-2 7.96e-2 7.73e-2
CORAL 1.56e-2 3.65e-2 4.19e-3 1.12e-2 4.30e-3 1.14e-2 4.37e-3 1.14e-2

Table 7: Up-sampling capabilities - Test results on Shallow-water dataset. Metrics in MSE.

Xtr #
dataset! Shallow-water
Xtr ! 64⇥ 128
Xte ! Xtr 32⇥ 64 64⇥ 128 128⇥ 256

In-t Out-t In-t Out-t In-t Out-t In-t Out-t

DeepONet 7.07e-3 9.02e-3 1.18e-2 1.66e-2 7.07e-3 9.02e-3 1.18e-2 1.66e-2
⇡tr = 100% FNO 6.75e-5 1.49e-4 7.54e-5 1.78e-4 6.75e-5 1.49e-4 6.91e-5 1.52e-4
regular grid MP-PDE 2.66e-5 4.35e-4 4.80e-2 1.42e-2 2.66e-5 4.35e-4 4.73e-3 1.73e-3

DINo 4.12e-5 2.91e-3 5.77e-5 2.55e-3 4.12e-5 2.91e-3 6.04e-5 2.58e-3
CORAL 3.52e-6 4.99e-4 1.86e-5 5.32e-4 3.52e-6 4.99e-4 4.96e-6 4.99e-4

DeepONet 1.08e-2 1.10e-2 2.49e-2 3.25e-2 2.49e-2 3.25e-2 2.49e-2 3.22e-2
irregular grid MP-PDE 4.54e-3 1.48e-2 4.08e-3 1.30e-2 5.46e-3 1.74e-2 4.98e-3 1.43e-2
⇡tr = 20% DINo 2.32e-3 5.18e-3 2.22e-3 4.80e-3 2.16e-3 4.64e-3 2.16e-3 4.64e-3

CORAL 1.36e-3 2.17e-3 1.24e-3 1.95e-3 1.21e-3 1.95e-3 1.21e-3 1.95e-3
DeepONet 1.02e-2 1.01e-2 1.57e-2 1.93e-2 1.57e-2 1.93e-2 1.57e-2 1.93e-2

irregular grid MP-PDE 5.36e-3 1.81e-2 5.53e-3 1.80e-2 4.33e-3 1.32e-2 5.48e-3 1.74e-2
⇡tr = 5% DINo 1.25e-2 1.51e-2 1.39e-2 1.54e-2 1.39e-2 1.54e-2 1.39e-2 1.54e-2

CORAL 8.40e-3 1.25e-2 9.27e-3 1.15e-2 9.26e-3 1.16e-2 9.26e-3 1.16e-2

These tables show that CORAL remains competitive and robust on up-sampled inputs. Other baselines724

can also predict on denser grids, except for MP-PDE, which over-fitted the training grid.725

C.2 Learning a Dynamics on Different Grids726

To extend our work, we propose to study how robust is CORAL to changes in grids. In our classical727

setting, we keep the same grid for all trajectories in the training set and evaluate it on a new grid728

for the test set. Instead, here, both in train and test sets, each trajectory i has its own grid Xi. Thus,729

we evaluate CORAL’s capability to generalize to grids. We present the results in Table 8. Overall,730

coordinate-based methods generalize better over grids compared to operator based and discrete731

methods like DeepONet and MP-PDE which show better or equivalent performance when trained732

only on one grid. CORAL’s performance is increased when trained on different grids; one possible733

reason is that CORAL overfits the training grid used for all trajectories in our classical setting.734

9

Table 8: Learning dynamics on different grids - Test results in the extrapolation setting. Metrics in
MSE.

Xtr # Xte
dataset! Navier-Stokes Shallow-Water

In-t Out-t In-t Out-t

DeepONet 5.22E−1 5.00E−1 1.11E−2 1.12E−2
⇡ = 20% MP-PDE 6.11E−1 6.10E−1 6.80E−3 1.87E−2

irregular grid DINo 1.30E−3 1.01E−2 4.12E−4 3.05E−3
CORAL 3.21E−4 3.03E−3 1.15E−4 7.75E−4

DeepONet 4.11E−1 4.38E−1 1.11E−2 1.12E−2
⇡ = 5% MP-PDE 8.15E−1 1.10 1.22E−2 4.29E−2

irregular grid DINo 1.26E−3 1.04E−2 3.89E−3 7.41E−3
CORAL 9.82E−4 9.71E−3 2.22e-3 4.89e-3

C.3 Inference Time735

In this section, we evaluate the inference time of CORAL and other baselines w.r.t. the input grid size.736

We study the impact of the training grid size (different models trained with 5%, 20% and 100% of the737

grid) (Figure 6a) and the time needed for a model trained (5%) on a given grid to make computation738

on finer grid size resolution (evaluation grid size) (Figure 6b).739

(a) Inference time w.r.t. training grid size
(different models).

(b) Inference time w.r.t. evaluation grid size (same
models).

Figure 6

On the graphs presented in Figure 6, we observe that except for the operator baselines, CORAL is also740

competitive in terms of inference time. MP-PDE inference time increases strongly when inference741

grid gets denser. The DINo model, which is the only to propose the same properties as CORAL, is742

much slower when both inference and training grid size evolve. This difference is mainly explained743

by the number of steps needed to optimize DINo codes. Indeed, DINo requires 100 times more steps744

than CORAL to compute its code at inference time. Moreover INR-based model’s inference time are745

scaling very well when the input grid increases.746

C.4 Propagation of Errors Through Time747

In Figures 7a to 7c, we show the evolution of errors as the extrapolation horizon evolves. First, we748

observe that all baselines propagate error through time, since the trajectories are computed using an749

auto-regressive approach. Except for the 100%, DeepONet had difficulties to handle the dynamic.750

It has on all settings the highest error. Then, we observe that for MP-PDE and FNO, the error751

increases quickly at the beginning of the trajectories. This means that these two models are rapidly752

propagating error. Finally, both DINo and CORAL have slower increase of the error during In-t and753

Out-t periods. However, we clearly see on the graphs that DINo has more difficulties than CORAL to754

10

(a) Evolution of errors over time and across test samples for a model trained on 100% of the grid.

(b) Evolution of errors over time and across test samples for a model trained on 20% of the grid.

(c) Evolution of errors over time and across test samples for a model trained on 5% of the grid.

Figure 7: Errors along a given trajectory.

11

make predictions out-range. Indeed, while CORAL’s error augmentation remains constant as long as755

the time evolves, DINo has a clear increase.756

C.5 Benchmarking INRs for CORAL757

We provide some additional experiments for dynamics modeling with CORAL, but with diffrents758

INRs: MFN (Fathony et al., 2021), BACON (Lindell et al., 2022) and FourierFeatures (Tancik et al.,759

2020). Experiments have been done on Navier-Stokes on irregular grids sampled from grids of size760

128 ⇥ 128. All training trajectories share the same grid and are evaluated on a new grid for test761

trajectories. Results are reported in Table 9. Note that we used the same learning hyper-parameters762

for the baselines than those used for SIREN in CORAL. SIREN seems to produce the best codes for763

dynamics modeling, both for in-range and out-range prediction.

Table 9: CORAL results with different INRs. - Test results in the extrapolation setting on Navier-

Stokes dataset. Metrics in MSE.
Xtr # Xte INR In-t Out-t

SIREN 5.76e-4 2.57e-3
⇡ = 20% MFN 2.21e-3 5.17e-3

irregular grid BACON 2.90e-2 3.32e-2
FourierFeatures 1.70e-3 5.67e-3

SIREN 1.81e-3 4.15e-3
⇡ = 5% MFN 9.97e-1 9.58e-1

irregular grid BACON 1.06 8.06e-1
FourierFeatures 3.60e-1 3.62e-1

764

D Supplementary Results for Geometric Design765

D.1 Inverse Design for NACA-airfoil766

Once trained on NACA-Euler, CORAL can be used for the inverse design of a NACA airfoil. We767

consider an airfoil’s shape parameterized by seven spline nodes and wish to minimize drag and768

maximize lift. We optimize the design parameters in an end-to-end manner. The spline nodes create769

the input mesh, which CORAL maps to the output velocity field. This velocity field is integrated to770

compute the drag and the lift, and the loss objective is the squared drag over lift ratio. As can be seen771

in Figure 8, iterative optimization results in an asymmetric airfoil shape, enhancing progressively772

the lift coefficient in line with physical expectations. At the end of the optimization we reach a drag773

value of 0.042 and lift value of 0.322.774

E Qualitative results775

In this section, we show different visualization of the predictions made by CORAL on the three776

considered tasks in this paper.777

E.1 Initial Value Problem778

We provide in Figure 9 and Figure 10 visualizations of the inferred values of CORAL on Cylinder779

and Airfoil.780

12

(a) Step = 0 (b) Step = 1000

(c) Step = 3000 (d) Step = 5000

Figure 8: Design optimization of a NACA-Airfoil.

Figure 9: CORAL prediction on Cylinder

13

Figure 10: CORAL prediction on Airfoil

E.2 Dynamics modeling781

We provide in Figure 12 and Figure 11 visualization of the predicted trajectories of CORAL on782

Navier-Stokes and Shallow-Water.783

Figure 11: Prediction MSE per frame for CORAL on Navier-Stokes with its corresponding training
grid X . Each row corresponds to a different sampling rate and the last row is the ground truth. The
predicted trajectory is predicted from t = 0 to t = T

0. In our setting, T = 19 and T
0 = 39.

14

Figure 12: Prediction MSE per frame for CORAL on Shallow-Water with its corresponding training
grid X . Each row corresponds to a different sampling rate and the last row is the ground truth. The
predicted trajectory is predicted from t = 0 to t = T

0. In our setting, T = 19 and T
0 = 39.

E.3 Geometric design784

We provide in Figure 13, Figure 14, Figure 15 visualization of the predicted values of CORAL on785

NACA-Euler, Pipe and Elasticity.786

Figure 13: CORAL predictions on NACA-Euler

15

Figure 14: CORAL predictions on Pipe

Figure 15: CORAL predictions on Elasticity

16

	Introduction
	Related Work
	The CORAL Framework
	Problem Description
	Model
	Practical implementation: decoding by INR Modulation
	Training

	Experiments
	Initial Value Problem
	Dynamics Modeling
	Implementation with Neural ODE
	Experiment details
	Results

	Geometric Design

	Discussion and limitations
	Conclusion
	Dataset Details
	Initial Value Problem
	Dynamics Modeling
	Geometric Design

	Implementation Details
	CORAL
	Architecture Details
	Training Details
	Inference Details
	Choice of Hyperparameters

	Baseline Implementation

	Supplementary Results for Dynamics Modeling
	Robustness to Resolution Changes
	Learning a Dynamics on Different Grids
	Inference Time
	Propagation of Errors Through Time
	Benchmarking INRs for CORAL

	Supplementary Results for Geometric Design
	Inverse Design for NACA-airfoil

	Qualitative results
	Initial Value Problem
	Dynamics modeling
	Geometric design

