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Abstract

Machine learning approaches for solving partial differential equations require
learning mappings between function spaces. While convolutional or graph neu-
ral networks are constrained to discretized functions, neural operators present a
promising milestone toward mapping functions directly. Despite impressive results
they still face challenges with respect to the domain geometry and typically rely
on some form of discretization. In order to alleviate such limitations, we present
CORAL, a new method that leverages coordinate-based networks for solving PDEs
on general geometries. CORAL is designed to remove constraints on the input
mesh, making it applicable to any spatial sampling and geometry. Its ability extends
to diverse problem domains, including PDE solving, spatio-temporal forecasting,
and geometry-aware inference. CORAL demonstrates robust performance across
multiple resolutions and performs well in both convex and non-convex domains,
surpassing or performing on par with state-of-the-art models.

1 Introduction

Modeling physics dynamics entails learning mappings between function spaces, a crucial step in
formulating and solving partial differential equations (PDEs). In the classical approach, PDEs are
derived from first principles, and differential operators are utilized to map vector fields across the
variables involved in the problem. To solve these equations, numerical methods like finite elements,
finite volumes, or spectral techniques are employed, requiring the discretization of spatial and
temporal components of the differential operators (Morton & Mayers, 2005; Olver, 2014).

Building on successes in computer vision and natural language processing (Krizhevsky et al., 2017; He
et al., 2016; Dosovitskiy et al., 2021; Vaswani et al., 2017), deep learning models have recently gained
attention in physical modeling. They have been applied to various scenarios, such as solving PDEs
(Cai et al., 2021), forecasting spatio-temporal dynamics (de Bézenac et al., 2019), and addressing
inverse problems (Allen et al., 2022). Initially, neural network architectures with spatial inductive
biases like ConvNets (Long et al., 2018; Ibrahim et al., 2022) for regular grids or GNNs (Pfaff et al.,
2021; Brandstetter et al., 2022b) for irregular meshes were explored. However, these models are
limited to specific mesh points and face challenges in generalizing to new topologies. The recent
trend of neural operators addresses these limitations by modeling mappings between functions, which
can be seen as infinite-dimensional vectors. Popular models like DeepONet (Lu et al., 2022) and
Fourier Neural Operators (FNO) (Li et al., 2022b) have been applied in various domains. However,
they still have design rigidity, relying on fixed grids during training and inference, which limits their
use in real-world applications involving irregular sampling grids or new geometries. A variant of
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FNO tailored for more general geometries is presented in (Li et al., 2022a), but it focuses on design
tasks.

To overcome these limitations, there is a need for flexible approaches that can handle diverse
geometries, metric spaces, irregular sampling grids, and sparse measurements. We introduce CORAL,
a COordinate-based model for opeRAtor Learning that addresses these challenges by leveraging
implicit neural representations (INR). CORAL encodes functions into compact, low-dimensional
latent spaces and infers mappings between function representations in the latent space. Unlike
competing models that are often task-specific, CORAL is highly flexible and applicable to various
problem domains. We showcase its versatility in PDE solving, spatio-temporal dynamics forecasting,
and design problems.

Our contributions are summarized as follows:

• CORAL can learn mappings between functions sampled on an irregular mesh and maintains
consistent performance when applied to new grids not seen during training. This characteristic
makes it well-suited for solving problems in domains characterized by complex geometries or
non-uniform grids.

• We highlight the versatility of CORAL by applying it to a range of representative physical
modeling tasks, such as initial value problems (IVP), geometry-aware inference, dynamics
modeling, and forecasting. Through extensive experiments on diverse datasets, we consistently
demonstrate its state-of-the-art performance across various geometries, including convex and
non-convex domains, as well as planar and spherical surfaces. This distinguishes CORAL from
alternative models that are often confined to specific tasks.

• CORAL is fast. Functions are represented using a compact latent code in CORAL, capturing
the essential information necessary for different inference tasks in a condensed format. This
enables fast inference within the compact representation space, whereas alternative methods
often operate directly within a higher-dimensional representation of the function space.

2 Related Work

Mesh-based networks for physics. The initial attempts to learn physical dynamics primarily
centered around convolutional neural networks (CNNs) and graph neural networks (GNNs). Both
leverage discrete convolutions to extract relevant information from a given node’s neighborhood
Hamilton (2020). CNNs expect inputs and outputs to be on regular grid. Their adaptation to irregular
data through interpolation (Chae et al., 2021) is limited to simple meshes. GNNs work on irregular
meshes (Hamilton et al., 2017; Veličković et al., 2018; Pfaff et al., 2021) and have been used e.g. for
dynamics modeling (Brandstetter et al., 2022b) or design optimization (Allen et al., 2022). They
typically select nearest neighbors within a small radius, which can introduce biases towards the type
of meshes seen during training. In Section 4.2, we show that this bias can hinder their ability to
generalize to meshes with different node locations or levels of sparsity. Additionally, they require
significantly more memory resources than plain CNNs to store nodes’ neighborhoods, which limits
their deployment for complex meshes.

Operator learning. Operator learning is a burgeoning field in deep learning for physics that
focuses on learning mappings between infinite-dimensional functions. Two prominent approaches are
DeepONet (Lu et al., 2021) and Fourier Neural Operator (FNO; Li et al., 2021). DeepONet can query
any coordinate in the domain for a value of the output function. However, the input function must be
observed on a set of predefined locations, requiring the same observation grid for all observations,
for training and testing. FNO is an instance of neural operators (Kovachki et al., 2021), a family
of approaches that integrate kernels over the spatial domain. Since this operation can be expensive,
FNO addresses the problem by employing the fast Fourier transform (FFT) to transform the inputs
into the spectral domain. As a consequence it cannot be used with irregular grids. Li et al. (2022a)
introduce an FNO extension to handle more flexible geometries, but it is tailored for design problems.
To summarize, despite promising for several applications, current operator approaches still face
limitations to extrapolate to new geometries; they do not adapt to changing observation grids or
are limited to fixed observation locations. Recently, Li et al. (2023); Hao et al. (2023) explored
transformer-based architectures as an alternative approach.
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Initial Value Problem

(a) Cylinder

Dynamics modeling

(b) Navier-Stokes (c) Shallow-Water

Geometry-aware inference

(d) Elasticity (e) NACA-Euler

Figure 1: Illustration of the problem classes addressed in this work: Initial Value Problem (IVP) (a),
dynamic forecasting (b and c) and geometry-aware inference (d and e).

Spatial INRs. Spatial INRs are a class of coordinate-based neural networks that model data as
the realization of an implicit function of a spatial location x ∈ Ω 7→ fθ(x) (Tancik et al., 2020;
Sitzmann et al., 2020b; Fathony et al., 2021; Lindell et al., 2022). An INR can be queried at any
location, but encodes only one data sample or function. Previous works use meta-learning (Tancik
et al., 2021; Sitzmann et al., 2020a), auto-encoders (Chen & Zhang, 2019; Mescheder et al., 2019), or
modulation (Park et al., 2019; Dupont et al., 2022) to address this limitation by enabling an INR to
decode various functions using per-sample parameters. INRs have started to gain traction in physics,
where they have been successfully applied to spatio-temporal forecasting (Yin et al., 2022) and
reduced-order modeling (Chen et al., 2022). The former work is probably the closest to ours but it is
designed for forecasting and cannot handle the range of tasks that CORAL can address. Moreover, its
computational cost is significantly higher than CORAL’s, which limits its application in real-world
problems. The work by Chen et al. (2022) aims to inform the INR with known PDEs, similar to
PINNs, whereas our approach is entirely data-driven and without physical prior.

3 The CORAL Framework

In this section, we present the CORAL framework, a novel approach that employs an encode-process-
decode structure to achieve the mapping between continuous functions. We first introduce the model
and then the training procedure.

3.1 Problem Description

Let Ω ⊂ Rd be a bounded open set of spatial coordinates. We assume the existence of a mapping
G∗ from one infinite-dimensional space A ⊂ L2(Ω,Rda) to another one U ⊂ L2(Ω,Rdu), such
that for any observed pairs (ai, ui) ∈ A × U , ui = G∗(ai). We have ai ∼ νa, ui ∼ νu where νa
is a probability measure supported on A and νu the pushforward measure of νa by G∗. We seek to
approximate this operator by an i.i.d. collection of point-wise evaluations of input-output functions
through a highly flexible formulation that can be adapted to multiple tasks. In this work, we target
three different tasks as examples: • solving an initial value problem, i.e. mapping the initial condition
u0

.
= x 7→ u(x, t = 0) to the solution at a predefined time uT

.
= x 7→ u(x, t = T ), • modeling

the dynamics of a physical system over time (ut → ut+δt) over a given forecasting horizon • or

3



prediction based on geometric configuration. At training time, we have access to ntr pairs of input and
output functions (ai, ui)ntr

i=1 evaluated over a free-form spatial grid Xi. We denote a|Xi = (a(x))x∈Xi

and u|Xi = (u(x))x∈Xi the vectors of the function values over the sample grid. In the context of
the initial value and geometry-aware problems, every sample is observed on a specific grid Xi. For
dynamics modeling, we use a unique grid Xtr for all the examples to train the model and another
grid Xte for testing.

obs.
space

input
function

output
function

output
space

predicted output
values on query

grid 

encode
inputs

forecasted
code

Figure 2: Inference for CORAL. First, the model embeds the input function a without constraints on
the locations of the observed sensors into an input latent code za, then infers the output latent code
ẑu and finally predicts the output value û(x) for any query coordinate x ∈ Ω. For the grid X , we use
the vector notation a|X = (a(x))x∈X , û|X = (û(x))x∈X .

3.2 Model

CORAL makes use of two modulated INRs, fθa,ϕa and fθu,ϕu , for respectively representing the
input and output functions of an operator. While θa and θu denote shared INR parameters that
contribute in representing all functions ai and ui, the modulation parameters ϕai and ϕui are specific
to each function ai and ui. Given input/output INR functions representation, CORAL then learns
a mapping between latent representations inferred from the two INRs’ modulation spaces. The
latent representations zai , zui

are low dimensional embeddings, capturing within a compact code
information from the INRs’ parameters. They are used as inputs to hypernetworks ha and hu to
compute the modulation parameters ϕai = ha(zai) and ϕui

= hu(zui
). The weights of the input and

output hypernetworks are respectively denoted wa and wu.

CORAL proceeds in three steps: encode, to project the input data into the latent space; process,
to perform transformations in the latent space; and decode, to project the code back to the output
function space. First, the input function a is encoded into the small input latent code za using a spatial
encoder ea : A 7→ Rdz . Next, a parameterized model gψ : Rdz 7→ Rdz is used to infer an output
latent code. Depending on the target task, gψ can be as simple as a plain MLP or more complex as
for example a neural ODE solver (as detailed later). Finally, the processed latent code is decoded
into a spatial function using a decoder ξu : Rdz 7→ U . The resulting CORAL operator then writes as
G = ξu ◦ gψ ◦ ea, as shown in Figure 2. The three steps are detailed below.

Encode Given an input function ai and a learned shared parameter θa, the encoding process
provides a code zai = ea(ai). This code is computed by solving an inverse problem through a
procedure known as auto-decoding, which proceeds as follows. We want to compress into a compact
code zai the information required for reconstructing the original field ai through the input INR, i.e.:
∀x ∈ Xi, fθa,ϕai

(x) = ãi(x) ≈ ai(x) with ϕai = ha(zai). See Figure 3a in Appendix B for details.

The approximate solution to this inverse problem is computed as the solution ea(ai) = z
(K)
ai of a

gradient descent optimization:

z(0)ai = 0 ; z(k+1)
ai = z(k)ai − α∇z(k)

ai

Lµi(fθa,ϕ(k)
ai

, a); with ϕ(k)ai = ha(z
(k)
ai ) for 0 ≤ k ≤ K − 1 (1)

where α is the inner loop learning rate,K the number of inner steps, and Lµi(v, w) = Ex∼µi [(v(x)−
w(x))2] for a measure µi over Ω. Note that in practice, µi is defined through the observation grid
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Xi, µi(·) =
∑
x∈Xi

δx(·) where δx(·) is the Dirac measure. Since we can query the INRs anywhere
within the domain, we can hence freely encode functions without mesh constraints. This is the
essential part of the architecture that enables us to feed data defined on different grids to the model.
We show the encoding flow in Appendix B, Figure 4.

Process Once we obtain zai , we can infer the latent output code ẑui
= gψ(zai). For simplification,

we consider first that gψ is implemented through an MLP with parameters ψ. For dynamics modeling,
in Section 4.2, we will detail why and how to make use of a Neural ODE solver for gψ .

Decode We decode ẑui
with the output hypernetwork hu and modulated INR and denote ξu the

mapping that associates to code ẑui the function fθu,ϕ̂ui
, where ϕ̂ui

= hu(ẑui
). Since fθu,ϕ̂ui

is an
INR, i.e. a function of spatial coordinates, it can be freely queried at any point within the domain. We
thus have ∀x ∈ Ω, ûi(x) = ξu(ẑui

)(x) = fθu,ϕ̂ui
(x). See Figure 3b in Appendix B for details.

During training, we will need to learn to reconstruct the input and output functions ai and ui.
This requires training a mapping associating an input code to the corresponding input function
ξa : Rdz 7→ A and a mapping associating a function to its code in the output space eu : U 7→ Rdz ,
even though they are not used during inference.

3.3 Practical implementation: decoding by INR Modulation

We choose SIREN (Sitzmann et al., 2020b) – a state-of-the-art coordinate-based network – as the
INR backbone of our framework. SIREN is a neural network that uses sine activations with a specific
initialization scheme (Appendix B).

fθ(x) = WL

(
σL−1 ◦ σL−2 ◦ · · · ◦ σ0(x)

)
+ bL,with σi(ηi) = sin

(
ω0(Wiηi + bi)

)
(2)

where η0 = x and (ηi)i≥1 are the hidden activations throughout the network. ω0 ∈ R∗
+ is a

hyperparameter that controls the frequency bandwidth of the network, W and b are the network
weights and biases. We implement shift modulations (Perez et al., 2018) to have a small modulation
space and reduce the computational cost of the overall architecture. This yields the modulated SIREN:

fθ,ϕ(x) = WL

(
σL−1 ◦ σL−2 ◦ · · · ◦ σ0(x)

)
+ bL,with σi(ηi) = sin

(
ω0(Wiηi + bi + ϕi)

)
(3)

with shared parameters θ = (Wi, bi)
L
i=0 and example associated modulations ϕ = (ϕi)

L−1
i=0 . We

compute the modulations ϕ from z with a linear hypernetwork , i.e. for 0 ≤ i ≤ L − 1 ,ϕi =
Viz + ci. The weights Vi and ci constitute the parameters of the hypernetwork w = (Vi, ci)

L−1
i=0 .

This implementation is similar to that of Dupont et al. (2022), which use a modulated SIREN for
representing their modalities.

3.4 Training

We implement a two-step training procedure that first learns the modulated INR parameters, before
training the forecast model gψ. It is very stable and much faster than end-to-end training while
providing similar performance: once the input and output INRs have been fitted, the training of gψ
is performed in the small dimensional modulated INR z-code space. Formally, the optimization
problem is defined as:

argmin
ψ

Ea,u∼νa,νu∥gψ(ẽa(a))− ẽu(u)∥2

s.t. ẽa = argmin
ξa,ea

Ea∼νaL(ξa ◦ ea(a), a)

and ẽu = argmin
ξu,eu

Eu∼νuL(ξu ◦ eu(u), u)

(4)

Note that functions (eu, ξu) and (ea, ξa) are parameterized respectively by the weights (θu, wu) and
(θa, wa), of the INRs and of the hypernetworks. In Equation (4), we used the (eu, ξu) & (ea, ξa)
description for clarity, but as they are functions of (θu, wu) & (θa, wa), optimization is tackled on
the latter parameters. We outline the training pipeline in Appendix B, Figure 5. During training, we
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constrain eu, ea to take only a few steps of gradient descent to facilitate the processor task. This
regularization prevents the architecture from memorizing the training set into the individual codes
and facilitates the auto-decoding optimization process for new inputs. In order to obtain a network
that is capable of quickly encoding new physical inputs, we employ a second-order meta-learning
training algorithm based on CAVIA (Zintgraf et al., 2019). Compared to a first-order scheme such
as Reptile (Nichol et al., 2018), the outer loop back-propagates the gradient through the K inner
steps, consuming more memory as we need to compute gradients of gradients but yielding higher
reconstruction results with the modulated SIREN. We experimentally found that using 3 inner-steps
for training, or testing, was sufficient to obtain very low reconstruction errors for most applications.

4 Experiments

To demonstrate the versatility of our model, we conducted experiments on three distinct tasks
(Figure 1): (i) solving an initial value problem (Section 4.1), (ii) modeling the dynamics of a physical
system (Section 4.2), and (iii) learning to infer the steady state of a system based on the domain
geometry (Section 4.3) plus an associated design problem in Appendix D. Since each task corresponds
to a different scenario, we utilized task-specific datasets and employed different baselines for each
task. This approach was necessary because existing baselines typically focus on specific tasks and do
not cover the full range of problems addressed in our study, unlike CORAL. We provide below an
introduction to the datasets, evaluation protocols, and baselines for each task setting. All experiments
were conducted on a single GPU: NVIDIA RTX A5000 with 25 Go. Code will be made available.

4.1 Initial Value Problem

An IVP is specified by an initial condition (here the input function providing the state variables at
t = 0) and a target function figuring the state variables value at a given time T . Solving an IVP is a
direct application of the CORAL framework introduced in Section 3.2.

Datasets We benchmark our model on two problems with non-convex domains proposed in Pfaff
et al. (2021). In both cases, the fluid evolves in a domain – which includes an obstacle – that is
more densely discretized near the boundary conditions (BC). The boundary conditions are provided
by the mesh definition, and the models are trained on multiple obstacles and evaluated at test time
on similar but different obstacles. • Cylinder simulates the flow of water around a cylinder on a
fixed 2D Eulerian mesh, and is characteristic of incompressible fluids. For each node j we have
access to the node position x(j), the momentum w(x(j)) and the pressure p(x(j)). We seek to learn
the mapping (x,w0(x), p0(x))x∈X → (wT (x), pT (x))x∈X . • Airfoil simulates the aerodynamics
around the cross-section of an airfoil wing, and is an important use-case for compressible fluids.
In this dataset, we have in addition for each node j the fluid density ρ(x(j)), and we seek to learn
the mapping (x,w0(x), p0(x), ρ0(x))x∈X → (wT (x), pT (x), ρT (x))x∈X . For both datasets, each
example is associated to a mesh and the meshes are different for each example. For Airfoil the average
number of nodes per mesh is 5233 and for Cylinder 1885.

Evaluation protocols Training is performed using all the mesh points associated to an example. For
testing we evaluate the following two settings. • Full, we validate that the trained model generalizes
well to new examples using all the mesh location points of these examples. • Sparse We assess the
capability of our model to generalize on sparse meshes: the original input mesh is down-sampled by
randomly selecting 20% of its nodes. We use a train, validation, test split of 1000 / 100 / 100 samples
for all the evaluations.

Baselines We compare our model to • NodeMLP, a FeedForward Neural Network that ignores the
node neighbors and only learns a local mapping • GraphSAGE (Hamilton et al., 2017), a popular
GNN architecture that uses SAGE convolutions • MP-PDE (Brandstetter et al., 2022b), a message
passing GNN that builds on (Pfaff et al., 2021) for solving PDEs.

Results. We show in Table 1 the performance on the test sets for the two datasets and for both
evaluation settings. Overall, CORAL is on par with the best models for this task. For the Full setting,
it is best on Cylinder and second on Airfoil behind MP-PDE. However, for the sparse protocol, it can
infer the values on the full mesh with the lowest error compared to all other models. Note that this
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second setting is more challenging for Cylinder than for Airfoil given their respective average mesh
size. This suggests that the interpolation of the model outputs is more robust on the Airfoil dataset,
and explains why the performance of NodeMLP remains stable between the two settings. While
MP-PDE is close to CORAL in the sparse setting, GraphSAGE fails to generalize, obtaining worse
predictions than the local model. This is because the model aggregates neighborhood information
regardless of the distance between nodes, while MP-PDE does consider node distance and difference
between features.

Table 1: Initial Value Problem - Test results. MSE on normalized data.
Model Cylinder Airfoil

Full Sparse Full Sparse

NodeMLP 1.48e-1 ± 2.00e-3 2.29e-1 ± 3.06e-3 2.88e-1 ± 1.08e-2 2.83e-1 ± 2.12e-3
GraphSAGE 7.40e-2 ± 2.22e-3 2.66e-1 ± 5.03e-3 2.47e-1 ± 7.23e-3 5.55e-1 ± 5.54e-2

MP-PDE 8,72e-2 ± 4.65e-3 1.84e-1 ± 4.58e-3 1.97e-1 ± 1.34e-2 3.07e-1 ± 2.56e-2
CORAL 7.03e-2 ± 5.96e-3 1.70e-1 ± 2.53e-2 2.40e-1 ± 4.36e-3 2.43e-1 ± 4.14e-3

4.2 Dynamics Modeling

For the IVP problem, in section 4.1, the objective was to infer directly the state of the system at a
given time T given an initial condition (IC). We can extend this idea to model the dynamics of a
physical system over time, so as to forecast state values over a given horizon. We have developed
an autoregressive approach operating on the latent code space for this problem. Let us denote
(u0, uδt, ..., uLδt) a target sequence of observed functions of size L + 1. Our objective will be to
predict the functions ukδt, k = 1, ..., L, starting from an initial condition u0. For that we will encode
z0 = e(u0), then predict sequentially the latent codes zkδt, k = 1, ..., L using the processor in an
auto regressive manner, and decode the successive values to get the predicted ûkδt, k = 1, ..., L at
the successive time steps.

4.2.1 Implementation with Neural ODE

The autoregressive processor is implemented by a Neural ODE solver operating in the latent z-code
space. Compared to the plain MLP implementation used for the IVP task, this provides both a natural
autoregressive formulation, and overall, an increased flexibility by allowing to forecast at any time
in a sequence, including different time steps or irregular time steps. Starting from any latent state
zt, a neural solver predicts state zt+τ as zt+τ = zt +

∫ t+τ
t

ζψ(zs)ds with ζψ a neural network with
parameters to be learned, for any time step τ . The autoregressive setting directly follows from this
formulation. Starting from z0, and specifying a series of forecast time steps kδt for k = 1, ..., L,
the solver call NODESolve(ζψ, z0, {kδt}k=1,...,L) will compute predictions zkδt, k = 1, ..., L
autoregressively, i.e. using zkδt as a starting point for computing z(k+1)δt. In our experiments we
have used a fourth-order Runge-Kutta scheme (RK4) for solving the integral term. Using notations
from Section 3.2, the predicted field at time step k can be obtained as ûkδt = ξ ◦ gkψ(e(u0))) with gkψ
indicating k successive applications of processor gψ . Note that when solving the IVP problem from
Section 4.1, two INRs are used, one for encoding the input function and one for the output function;
here a single modulated INR fθ,ϕ is used to represent a physical quantity throughout the sequence at
any time. θ is then shared by all the elements of a sequence and ϕ is computed by a hypernetwork to
produce a function specific code.

We use the two-step training procedure from Section 3.4, i.e. first the INR is trained to auto-decode
the states of each training trajectory, and then the processor operating over the codes is learned
through a Neural ODE solver according to Equation (5). The two training steps are separated and the
codes are kept fixed during the second step. This allows for a fast training as the Neural ODE solver
operates on the low dimensional code embedding space.

argmin
ψ

Eu∼νu,t∼U(0,T ]∥gψ(ẽu(u0), t)− ẽu(ut)∥2 (5)
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4.2.2 Experiment details

Datasets We consider two fluid dynamics equations for generating the datasets and refer the reader
to Appendix A for additional details. • 2D-Navier-Stokes equation (Navier-Stokes) for a viscous,
incompressible fluid in vorticity form on the unit torus: ∂w

∂t + u · ∇w = ν∆w + f , ∇u = 0 for
x ∈ Ω, t > 0, where ν = 10−3 is the viscosity coefficient. The train and test sets are composed of
256 and 16 trajectories respectively where we observe the vorticity field for 40 timestamps. The
original spatial resolution is 256× 256 and we sub-sample the data to obtain frames of size 64× 64.
• 3D-Spherical Shallow-Water equation (Shallow-Water) can be used as an approximation to a flow
on the earth’s surface. The data consists of the vorticity w, and height h of the fluid. The train and
test sets are composed respectively of 16 and 2 long trajectories, where we observe the vorticity and
height fields for 160 timestamps. The original spatial resolution is 128 (lat)× 256 (long), which we
sub-sample to obtain frames of shape 64 × 128. We model the dynamics with the complete state
(h,w). Each trajectory, for both both datasets and for train and test is generated from a different
initial condition (IC).

Setting We evaluate the ability of the model to generalize in space and time. • Temporal extrapo-
lation: For both datasets, we consider sub-trajectories of 40 timestamps that we split in two equal
parts of size 20, with the first half denoted In-t and the second one Out-t. The training-In-t set is used
to train the models at forecasting the horizon t = 1 to t = 19. At test time, we unroll the dynamics
from a new IC until t = 39. Evaluation in the horizon In-t assesses CORAL’s capacity to forecast
within the training horizon. Out-t allows evaluation beyond In-t, from t = 20 to t = 39. • Varying
sub-sampling: We randomly sub-sample π percent of a regular mesh to obtain the train grid Xtr,
and a second test grid Xte, that are shared across trajectories. The train and test grids are different,
but have the same level of sparsity. • Up-sampling: We also evaluate the up-sampling capabilities of
CORAL in Appendix C. In these experiments, we trained the model on a sparse, low-resolution grid
and evaluate its performance on high resolution-grids.

Baselines To assess the performance of CORAL, we implement several baselines: two operator
learning models, one mesh-based network and one coordinate-based method. • DeepONet (Lu et al.,
2021): we train DeepONet in an auto-regressive manner with time removed from the trunk net’s input.
• FNO (Li et al., 2021): we use an auto-regressive version of the Fourier Neural Operator. • MP-PDE
(Brandstetter et al., 2022b) : we use MP-PDE as the irregular mesh-based baseline. We fix MP-PDE’s
temporal bundling to 1, and train the model with the push-forward trick. • DINo (Yin et al., 2022) :
We finally compare CORAL with DINo, an INR-based model designed for dynamics modeling.

4.2.3 Results

Table 2: Temporal Extrapolation - Test results. Metrics in MSE.

Xtr ↓ Xte
dataset → Navier-Stokes Shallow-Water

In-t Out-t In-t Out-t

DeepONet 4.72e-2 ± 2.84e-2 9.58e-2 ± 1.83e-2 6.54e-3 ± 4.94e-4 8.93e-3 ± 9.42e-5
π = 100% FNO 5.68e-4 ± 7.62e-5 8.95e-3 ± 1.50e-3 3.20e-5 ± 2.51e-5 1.17e-4 ± 3.01e-5
regular grid MP-PDE 4.39e-4 ± 8.78e-5 4.46e-3 ± 1.28e-3 9.37e-5 ± 5.56e-6 1.53e-3 ± 2.62e-4

DINo 1.27e-3 ± 2.22e-5 1.11e-2 ± 2.28e-3 4.48e-5 ± 2.74e-6 2.63e-3 ± 1.36e-4
CORAL 1.86e-4 ± 1.44e-5 1.02e-3 ± 8.62e-5 3.44e-6 ± 4.01e-7 4.82e-4 ± 5.16e-5

DeepONet 8.37e-1 ± 2.07e-2 7.80e-1 ± 2.36e-2 1.05e-2 ± 5.01e-4 1.09e-2 ± 6.16e-4
π = 20% FNO + lin. int. 3.97e-3 ± 8.03e-4 9.92e-3 ± 2.36e-3 n.a. n.a.

irregular grid MP-PDE 3,98e-2 ± 1,69e-2 1,31e-1 ± 5,34e-2 5.28e-3 ± 5.25e-4 2.56e-2 ± 8.23e-3
DINo 9.99e-4 ± 6.71e-3 8.27e-3 ± 5.61e-3 2.20e-3 ± 1.06e-4 4.94e-3 ± 1.92e-4

CORAL 2.18e-3 ± 6.88e-4 6.67e-3 ± 2.01e-3 1.41e-3 ± 1.39e-4 2.11e-3 ± 5.58e-5

DeepONet 7.86e-1 ± 5.48e-2 7.48e-1 ± 2.76e-2 1.11e-2 ± 6.94e-4 1.12e-2 ± 7.79e-4
π = 5% FNO + lin. int. 3.87e-2 ± 1.44e-2 5.19e-2 ± 1.10e-2 n.a. n.a.

irregular grid MP-PDE 1.92e-1 ± 9.27e-2 4.73e-1 ± 2.17e-1 1.10e-2 ± 4.23e-3 4.94e-2 ± 2.36e-2
DINo 8.65e-2 ± 1.16e-2 9.36e-2 ± 9.34e-3 1.22e-3 ± 2.05e-4 1.52e-2 ± 3.74e-4

CORAL 2.44e-2 ± 1.96e-2 4.57e-2 ± 1.78e-2 8.77e-3 ± 7.20e-4 1.29e-2 ± 1.92e-3
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Table 2 details the performance of the different models in a combined temporal and spatial evaluation
setting. • General remarks: CORAL demonstrates strong performance across all scenarios for
both datasets. Only DINo exhibits similar properties, i.e., stability across spatial subsamplings and
extrapolation horizon. We observe that all models performance degrade with lower sampling ratio.
Also, as the models have been trained only on In-t horizon, error accumulates over time and thus
leads to lower performance for Out-t evaluation. • Analysis per model: Although achieving strong
performance on some specific scenarios, DeepONet, FNO and MP-PDE results are dependent of the
training grid, geometries or number of points. FNO, can only be trained and evaluated on regular
grids while DeepONet is not designed to be evaluated on a different grid in the branch net. MP-PDE
achieves strong performance with enough sample positions, e.g. full grids here, but struggles to
compete on irregular grids scenarios in Navier-Stokes. • Inference Time: We report in Appendix C,
the inference time of the baselines considered. Despite operator methods have better inference
time, CORAL is faster than mesh-free methods like DINo and MP-PDE. • Generalization across
samplings: Coordinate-based methods demonstrate robustness when it comes to changes in spatial
resolution. In contrast, MP-PDE model exhibits strong overfitting to the training grid, resulting in a
decline in performance. Although MP-PDE and DINo may outperform CORAL in some settings,
when changing the grid, CORAL remains stable and outperforms the other models. See Appendix C
for details.

4.3 Geometry-aware inference

In this section, we wish to infer the steady state of a system from its domain geometry, all other
parameters being equal. The domain geometry is partially observed from the data in the form of
point clouds or of a structured mesh Xi ⊂ Ωi. The position of the nodes depends on the particular
object shape. Each mesh Xi is obtained by deforming a reference grid X to adjust to the shape of
the sample object. This grid deformation is the input function of the operator learning setting, while
the output function is the physical quantity ui over the domain Ωi. The task objective is to train a
model so as to generalize to new geometries, e.g. a new airfoil shape. Once a surrogate model has
been trained to learn the influence of the domain geometry on the steady state solution, it can be used
to quickly evaluate a new design and to solve inverse design problems (details in Appendix D).

Datasets. We used datasets generated from three different equations by Li et al. (2022a) and provide
more details in Appendix A. • Euler equation (NACA-Euler) for a transonic flow over a NACA-airfoil.
The measured quantity at each node is the Mach number. • Navier-Stokes Equation (Pipe) for an
incompressible flow in a pipe, expressed in velocity form. The measured quantity at each node is the
horizontal velocity. • Hyper-elastic material (Elasticity). Each sample represents a solid body with
a void in the center of arbitrary shape, on which a tension is applied at the top. The material is the
incompressible Rivlin-Saunders material and the measured quantity is the stress value. We use 1000
samples for training and 200 for test with all datasets.

Baselines We use • Geo-FNO (Li et al., 2022a) and • Factorized-FNO (Tran et al., 2023) two SOTA
models as the main baselines. We also compare our model to regular-grid methods such as • FNO (Li
et al., 2021) and • UNet (Ronneberger et al., 2015), for which we first interpolate the input.

Table 3: Geometric aware inference - Test results. Relative L2 error.
Model NACA-Euler Elasticity Pipe

FNO 3.85e-2 ± 3.15e-3 4.95e-2 ± 1.21e-3 1.53e-2 ± 8.19e-3
UNet 5.05e-2 ± 1.25e-3 5.34e-2 ± 2.89e-4 2.98e-2 ± 1.08e-2

Geo-FNO 1.58e-2 ± 1.77e-3 3.41e-2 ± 1.93e-2 6.59e-3 ± 4.67e-4
Factorized-FNO 6.20e-3 ± 3.00e-4 1.96e-2 ± 2.00e-2 7.33e-3 ± 4.66e-4

CORAL 5.90e-3 ± 1.00e-4 1.67e-2 ± 4.18e-4 1,20e-2 ± 8.74e-4

Results In Table 3 we can see that CORAL achieves state-of-the-art results on Airfoil and Elasticity,
with the lowest relative error among all models. It is slightly below Factorized-FNO and Geo-FNO on
Pipe. One possible cause is that this dataset exhibits high frequency only along the vertical dimension,
while SIREN might be better suited for isotropic frequencies. Through additional experiments,
we demonstrate in Appendix D, how CORAL can also be used for solving an inverse problem
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corresponding to a design task: optimize the airfoil geometry to minimize the drag over lift ratio.
This additional task further highlights the versatility of this model.

5 Discussion and limitations

Although a versatile model, CORAL inherits the limitations of INRs concerning the training time
and representation power. It is then faster to train than GNNs, but slower than operators such as FNO,
DeepONet and of course CNNs which might limit large scale deployments. Also some physical
phenomena might not be represented via INRs. Although this is beyond the scope of this paper, it
remains to evaluate the methods on large size practical problems. An interesting direction for future
work would be to derive an efficient spatial latent representation for INRs, taking inspiration from
grid-based representation for INRs (Takikawa et al. (2022), Müller et al. (2022), Saragadam et al.
(2022)). Another avenue would be to leverage clifford layers (Brandstetter et al., 2022a) to model
interactions between physical fields.

6 Conclusion

We have presented CORAL, a novel approach for Operator Learning that removes constraints on the
input-output mesh. CORAL offers the flexibility to handle spatial sampling or geometry variations,
making it applicable to a wide range of scenarios. Through comprehensive evaluations on diverse
tasks, we have demonstrated that it consistently achieves state-of-the-art or competitive results
compared to baseline methods. By leveraging compact latent codes to represent functions, it enables
efficient and fast inference within a condensed representation space.
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A Dataset Details

A.1 Initial Value Problem

We use the datasets from Pfaff et al. (2021), and take the first and last frames of each trajectory as the
input and output data for the initial value problem.

Cylinder The dataset includes computational fluid dynamics (CFD) simulations of the flow around
a cylinder, governed by the incompressible Navier-Stokes equation. These simulations were generated
using COMSOL software, employing an irregular 2D-triangular mesh. The trajectory consists of 600
timestamps, with a time interval of ∆t = 0.01s between each timestamp.

Airfoil The dataset contains CFD simulations of the flow around an airfoil, following the com-
pressible Navier-Stokes equation. These simulations were conducted using SU2 software, using an
irregular 2D-triangular mesh. The trajectory encompasses 600 timestamps, with a time interval of
∆t = 0.008s between each timestamp.

A.2 Dynamics Modeling

2D-Navier-Stokes (Navier-Stokes) We consider the 2D Navier-Stokes equation as presented in Li
et al. (2021); Yin et al. (2022). This equation models the dynamics of an incompressible fluid on a
rectangular domain Ω = [−1, 1]2. The PDE writes as :

∂w(x, t)

∂t
= −u(x, t)∇w(x, t) + ν∆w(x, t) + f, x ∈ [−1, 1]2, t ∈ [0, T ] (6)

w(x, t) = ∇× u(x, t), x ∈ [−1, 1]2, t ∈ [0, T ] (7)

∇u(x, t) = 0, x ∈ [−1, 1]2, t ∈ [0, T ] (8)

where u is the velocity, w the vorticity. ν is the fluid viscosity, and f is the forcing term, given by:

f(x1, x2) = 0.1 (sin(2π(x1 + x2)) + cos(2π(x1 + x2))) ,∀x ∈ Ω (9)

For this problem, we consider periodic boundary conditions.

By sampling initial conditions as in Li et al. (2021), we generated different trajectories on a 256×256
regular spatial grid and with a time resolution δt = 1. We retain the trajectory starting from the 20th
timestep so that the dynamics is sufficiently expressed. The final trajectories contains 40 snapshots at
time t = 20, 21, · · · , 59. As explained in section 4, we divide these long trajectories into 2 parts : the
20 first frames are used during the training phase and are denoted as In-t throughout this paper. The
20 last timesteps are reserved for evaluating the extrapolation capabilities of the models and are the
Out-t part of the trajectories. In total, we collected 256 trajectories for training, and 16 for evaluation.

3D-Spherical Shallow-Water (Shallow-Water). We consider the shallow-water equation on a
sphere describing the movements of the Earth’s atmosphere:

du

dt
= −f · k × u− g∇h+ ν∆u (10)

dh

dt
= −h∇ · u+ ν∆h (11)

where d
dt is the material derivative, k is the unit vector orthogonal to the spherical surface, u is

the velocity field tangent to the surface of the sphere, which can be transformed into the vorticity
w = ∇× u, h is the height of the sphere. We generate the data with the Dedalus software (Burns
et al., 2020), following the setting described in Yin et al. (2022), where a symmetric phenomena
can be seen for both northern and southern hemisphere. The initial zonal velocity u0 contains two
non-null symmetric bands in the both hemispheres, which are parallel to the circles of latitude. At
each latitude and longitude ϕ, θ ∈ [−π2 ,

π
2 ]× [−π, π]:

u0(ϕ, θ) =


(
umax

en
exp

(
1

(ϕ−ϕ0)(ϕ−ϕ1)

)
, 0
)

if ϕ ∈ (ϕ0, ϕ1),(
umax

en
exp

(
1

(ϕ+ϕ0)(ϕ+ϕ1)

)
, 0
)

if ϕ ∈ (−ϕ1,−ϕ0),
(0, 0) otherwise.

(12)
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where umax is the maximum velocity, ϕ0 = π
7 , ϕ1 = π

2 − ϕ0, and en = exp(− 4
(ϕ1−ϕ0)2

). The water
height h0 is initialized by solving a boundary value conditioned problem as in Galewsky et al. (2004)
which is perturbed by adding h′0 to h0:

h′0(ϕ, θ) = ĥ cos(ϕ) exp

(
−
(
θ

α

)2
)[

exp

(
−
(
ϕ2 − ϕ
β

)2
)

+ exp

(
−
(
ϕ2 + ϕ

β

)2
)]

. (13)

where ϕ2 = π
4 , ĥ = 120m, α = 1

3 and β = 1
15 are constants defined in Galewsky et al. (2004).

We simulated the phenomenon using Dedalus Burns et al. (2020) on a latitude-longitude grid (lat-
lon). The original grid size was 128 (lat) × 256 (lon), which we downsampled to obtain grids of
size 64 × 128. To generate trajectories, we sampled umax from a uniform distribution U(60, 80).
Snapshots were captured every hour over a duration of 320 hours, resulting in trajectories with 320
timestamps. We created 16 trajectories for the training set and 2 trajectories for the test set. However,
since the dynamical phenomena in the initial timestamps were less significant, we only considered
the last 160 snapshots. Each long trajectory is then sliced into sub-trajectories of 40 timestamps each.
As a result, the training set contains 64 trajectories, while the test set contains 8 trajectories. It is
worth noting that the data was also scaled to a reasonable range: the height h was scaled by a factor
of 3× 103, and the vorticity w was scaled by a factor of 2.

A.3 Geometric aware inference

We use the datasets provided by Li et al. (2022a) and adopt the original authors’ train/test split for
our experiments.

Euler’s Equation (Naca-Euler). We consider the transonic flow over an airfoil, where the governing
equation is Euler equation, as follows:

∂ρf
∂t

+∇ · (ρfu) = 0,
∂ρfu

∂t
+∇ · (ρfu⊗ u+ pI) = 0,

∂E

∂t
+∇ · ((E + p)u) = 0, (14)

where ρf is the fluid density, u is the velocity vector, p is the pressure, and E is the total energy.
The viscous effect is ignored. The far-field boundary condition is ρ∞ = 1, p∞ = 1.0, M∞ = 0.8,
AoA = 0, where M∞ is the Mach number and AoA is the angle of attack. At the airfoil, a no-
penetration condition is imposed. The shape parameterization of the airfoil follows the design element
approach. The initial NACA-0012 shape is mapped onto a “cubic” design element with 8 control
nodes, and the initial shape is morphed to a different one following the displacement field of the
control nodes of the design element. The displacements of control nodes are restricted to the vertical
direction only, with prior d ∼ U [−0.05, 0.05].
We have access to 1000 training data and 200 test data, generated with a second-order implicit finite
volume solver. The C-grid mesh with about (200× 50) quadrilateral elements is used, and the mesh
is adapted near the airfoil but not the shock. The mesh point locations and Mach number on these
mesh points are used as input and output data.

Hyper-elastic material (Elasticity). The governing equation of a solid body can be written as

ρs
∂2u

∂t2
+∇ · σ = 0

where ρs is the mass density, u is the displacement vector, and σ is the stress tensor. Constitutive
models, which relate the strain tensor ε to the stress tensor, are required to close the system. We
consider the unit cell problem Ω = [0, 1]× [0, 1] with an arbitrary shape void at the center, which is
depicted in Figure 2(a). The prior of the void radius is r = 0.2+0.2 with r̃ ∼ N (0, 42(−∇+32)−1),
1+exp(r̃), which embeds the constraint 0.2 ≤ r ≤ 0.4. The unit cell is clamped on the bottom edges
and tension traction t = [0, 100] is applied on the top edge. The material is the incompressible Rivlin-
Saunders material with energy density function parameters C1 = 1.863× 105 and C1 = 9.79× 103.
The data was generated with a finite element solver with about 100 quadratic quadrilateral elements.
The inputs a are given as point clouds with a size around 1000. The target output is stress.

Navier-Stokes Equation (Pipe). We consider the incompressible flow in a pipe, where the govern-
ing equation is the incompressible Navier-Stokes equation, as following,

∂v

∂t
+ (v · ∇)v = −∇p+ µ∇2v, ∇ · v = 0
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where v is the velocity vector, p is the pressure, and µ = 0.005 is the viscosity. The parabolic
velocity profile with maximum velocity v = [1, 0] is imposed at the inlet. A free boundary condition
is imposed at the outlet, and a no-slip boundary condition is imposed at the pipe surface. The pipe
has a length of 10 and width of 1. The centerline of the pipe is parameterized by 4 piecewise cubic
polynomials, which are determined by the vertical positions and slopes on 5 spatially uniform control
nodes. The vertical position at these control nodes obeys d ∼ U [−2, 2], and the slope at these control
nodes obeys d ∼ U [−1, 1].
We have access to 1000 training data and 200 test data, generated with an implicit finite element
solver using about 4000 Taylor-Hood Q2-Q1 mixed elements. The mesh point locations (129× 129)
and horizontal velocity on these mesh points are used as input and output data.

B Implementation Details

We implemented all experiments with PyTorch (Paszke et al., 2019). The code is available at
https://anonymous.4open.science/r/coral-0348/. We estimate the computation
time needed for development and the different experiments to approximately 400 days.

B.1 CORAL

B.1.1 Architecture Details

SIREN initialization. We use for SIREN the same initialization scheme as in Sitzmann et al.
(2020b), i.e., sampling the weights of the first layer according to a uniform distribution U(−1/d, 1/d)
and the next layers according to U(− 1

w0

√
6
din
, 1
w0

√
6
din

). We use the default PyTorch initialization
for the hypernetwork.

Decode with shift-modulated SIREN. Initially, we attempted to modulate both the scale and shift
of the activation, following the approach described in Perez et al. (2018). However, we did not observe
any performance improvement by employing both modulations simultaneously. Consequently, we
decided to focus solely on shift modulations, as it led to a more stable training process and reduced the
size of the modulation space by half. We provide an overview of the decoder with the shift-modulated
SIREN in Figure 3.

Encode with auto-decoder. We provide a schematic view of the input encoder in Figure 4. The
auto-decoding process starts from a code za = 0 and performs K steps of gradient descent over this
latent code to minimize the reconstruction loss.

Process with MLP. We use an MLP with skip connections and Swish activation functions. Its
forward function writes gψ(z) = Blockk ◦ ... ◦ Block1(z), where Block is a two-layer MLP with
skip connections:

Block(z) = z + σ(W2 · σ(W1 · z + b1) + b2) (15)

In Equation (15), σ denotes the feature-wise Swish activation. We use the version with learnable
parameter β; σ(z) = z · sigmoid(βz).

B.1.2 Training Details

The training is done in two steps. First, we train the modulated INRs to represent the data. We show
the details with the pseudo-code in Algorithms 1 and 2. α is the inner-loop learning rate while λ is
the outer loop learning rate, which adjusts the weights of the INR and hypernetwork. Then, once the
INRs have been fitted, we obtain the latent representations of the training data, and use these latent
codes to train the forecast model gψ (See Algorithm 3). We note λψ the learning rate of gψ .

Z-score normalization. As the data is encoded using only a few steps of gradients, the resulting
standard deviation of the codes is very small, falling within the range of [1e-3, 5e-2]. However, these
“raw” latent representations are not suitable as-is for further processing. To address this, we normalize
the codes by subtracting the mean and dividing by the standard deviation, yielding the normalized
code: znorm = z−mean

std . Depending on the task, we employ slightly different types of normalization:

16

https://anonymous.4open.science/r/coral-0348/


Modulation 

SIREN

input
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space
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input

(a) The hypernetwork ha maps the input code za
to the modulations ϕa. The modulations shift the
activations at each layer of the SIREN.

output
function

output
space

hypernetwork

  

Modulation 

SIREN

input

(b) The hypernetwork hu maps the input code zu
to the modulations ϕu. The modulations shift the
activations at each layer of the SIREN.

Figure 3: Architecture of the input and output decoders ξa, ξu. They can be queried on any coordinate
x ∈ Ω. We use the same notation for both, even though the parameters are different.

1. Initial value problem: • Cylinder: We normalize the inputs and outputs code with the same
mean and standard deviation. We compute the statistics feature-wise, across the inputs and
outputs. • Airfoil: We normalize the inputs and outputs code with their respective mean and
standard deviation. The statistics are real values.

2. Dynamics modeling: We normalize the codes with the same mean and standard deviation.
The statistics are computed feature-wise, over all training trajectories and all available
timestamps (i.e. over In-t).

3. Geometry-aware inference: We normalize the input codes only, with feature-wise statistics.
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 steps

encoding as
auto-decodinginput input

output

Figure 4: Starting from a code z(0)a = 0, the input encoder ea performs K inner steps of gradient
descent over za to minimize the reconstruction loss LX (ã, a) and outputs the resulting code z(K)

a

of this optimization process. During training, we accumulate the gradients of this encoding phase
and back-propagate through the K inner-steps to update the parameters θa and wa. At inference,
we encode new inputs with the same number of steps K and the same learning rate α, unless stated
otherwise. The output encoder works in the same way during training, and is not used at inference.

Train processor
to forecast

output code

Step 1

Step 2

Input INR
training

Output INR
training

Figure 5: Proposed training for CORAL. (1) We first learn to represent the data with the input and
output INRs. (2) Once the INRs are trained, we obtain the latent represenations and fix the pairs of
input and output codes (zai , zui). We then train the processor to minimize the distance between the
processed code gψ(zai) and the output code zui .

B.1.3 Inference Details

We present the inference procedure in Algorithm 4. It is important to note that the input and output
INRs, fθa and fθu , respectively, accept the “raw” codes as inputs, whereas the processor expects a
normalized latent code. Therefore, after the encoding steps, we normalize the input code. Additionally,
we may need to denormalize the code immediately after the processing stage. It is worth mentioning
that we maintain the same number of inner steps as used during training, which is 3 for all tasks.
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Algorithm 1: Training of the input INR
while no convergence do

Sample batch B of data (ai)i∈B;
Set codes to zero zai ← 0,∀i ∈ B ;
for i ∈ B and step ∈ {1, ...,Ka} do

zai ←
zai − αa∇zai

LXi
(fθa,ha(zai

), ai) ;
// input encoding inner
step

end
/* outer loop update */
θa ← θa −
λ 1

|B|
∑
i∈B∇θaLXi

(fθa,ha(zai
), ai);

wa ← wa −
λ 1

|B|
∑
i∈B∇wa

LXi
(fθa,ha(zai

), ai)

end

Algorithm 2: Training of the output INR
while no convergence do

Sample batch B of data (ai, ui)i∈B;
Set codes to zero zui

← 0,∀i ∈ B ;
for i ∈ B and step ∈ {1, ...,Ku} do

zui
←

zui
− αu∇zui

LXi
(fθu,hu(zui

), ui)
; // output encoding inner
step

end
/* outer loop update */
θu ← θu −
λ 1

|B|
∑
i∈B∇θuLXi

(fθu,hu(zui
), ui);

wu ← wu −
λ 1

|B|
∑
i∈B∇wu

LXi
(fθu,hu(zui

), ui)

end

Algorithm 3: Training of the processor
while no convergence do

Sample batch B of codes (zai , zui)i∈B;
/* processor update */

ψ ← ψ − λψ 1
|B|
∑
i∈B∇ψL(gψ(zai), zui

) ;
end

Algorithm 4: CORAL Inference, given a function a
Set code to zero za ← 0 ;
for step ∈ {1, ...,Ka} do

za ← za − αa∇zaLX (fθa,ha(za), a) ; // input encoding inner step

end
ẑu = gψ(za) ; // process latent code
û = fθu,hu(z̃u) ; // decode output function

B.1.4 Choice of Hyperparameters

We recall that dz denotes the size of the code, w0 is a hyperparameter that controls the frequency
bandwith of the SIREN network, λ is the outer-loop learning rate (on fθ,ϕ and hw), α is the inner-loop
learning rate, K is the number of inner steps used during training and encoding steps at test time, λψ
is the learning rate of the MLP or NODE. In some experiments we learn the inner-loop learning rate
α, as in Li et al. (2017). In such case, the meta-α learning rate is an additional parameter that controls
how fast we move α from its initial value during training. When not mentioned we simply report α in
the tables below, and otherwise we report the initial learning rate and this meta-learning-rate.

We use the Adam optimizer during both steps of the training. For the training of the Inference /
Dynamics model, we use a learning rate scheduler which reduces the learning rate when the loss has
stopped improving. The threshold is set to 0.01 in the default relative threshold model in PyTorch,
with a patience of 250 epochs w.r.t. the train loss. The minimum learning rate is 1e-5.

Initial Value Problem We provide the list of hyperparameters used for the experiments on Cylinder
and Airfoil in Table 4.

Dynamics Modeling Table 5 summarizes the hyperparameters used in our experiments for dynam-
ics modeling on datasets Navier-Stokes and Shallow-Water (Table 2).

Furthermore, to facilitate the training of the dynamics within the NODE, we employ Scheduled
Sampling, following the approach described in Bengio et al. (2015). At each timestep, there is a
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Table 4: CORAL hyper-parameters for IVP/ Geometry-aware inference
Hyper-parameter Cylinder Airfoil NACA-Euler Elasticity Pipe

fθa,ϕa
/ fθu,ϕu

dz 128 128 128 128 128
depth 4 5 4 4 5
width 256 256 256 256 128
ω0 30 30 / 50 5 / 15 10 / 15 5 / 10

SIREN Optimization

batch size 32 16 32 64 16
epochs 2000 1500 5000 5000 5000
λ 5e-6 5e-6 1e-4 1e-4 5e-5
α 1e-2 1e-2 1e-2 1e-2 1e-2

meta-α learning rate 0 5e-6 1e-4 1e-4 5e-5
Ka / Ku 3 3 3 3 3

gψ
depth 3 3 3 3 3
width 64 64 64 64 128

activation Swish Swish Swish Swish Swish

Inference Optimization

batch size 32 16 64 64 64
epochs 100 100 10000 10000 10000
λψ 1e-3 1e-3 1e-3 1e-3 1e-3

Scheduler decay 0 0 0.9 0.9 0.9

Table 5: CORAL hyper-parameters for dynamics modeling
Hyper-parameter Navier-Stokes Shallow-Water

INR

dz 128 256
depth 4 6
width 128 256
ω0 10 10

INR Optimization

batch size 64 16
epochs 10, 000 10, 000
λ 5e-6 5e-6
α 1e-2 1e-2
K 3 3

NODE

depth 3 3
width 512 512

activation Swish Swish
solver RK4 RK4

Dynamics Optimization

batch size 32 16
epochs 10, 000 10, 000
λψ 1e-3 1e-3

Scheduler decay 0.75 0.75
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probability of ϵ% for the integration of the dynamics through the ODE solver to be restarted using
the training snapshots. This probability gradually decreases during the training process. Initially, we
set ϵinit = 0.99, and every 10 epochs, we multiply it by 0.99. Consequently, by the end of the training
procedure, the entire trajectory is computed with the initial condition.

Geometry-aware inference We provide the list of hyperparameters used for the experiments on
NACA-Euler, Elasticity, and Pipe in Table 4.

B.2 Baseline Implementation

We detail in this section the architecture and hyperparameters used for the training of the baselines
presented in Section 4.

Initial Value Problem We use the following baselines for the Initial Value Problem task.

• NodeMLP. We use a ReLU-MLP with 3 layers and 512 neurons. We train it for 10000
epochs. We use a learning rate of 1e-3 and a batch size of 64.

• GraphSAGE. We use the implementation from torch-geometric (Fey & Lenssen, 2019),
with 6 layers of 64 neurons. We use ReLU activation. We train the model for 400 epochs for
Airfoil and 4,000 epochs for Cylinder. We build the graph using the 16 closest nodes. We
use a learning rate of 1e-3 and a batch size of 64.

• MP-PDE: We implement MP-PDE as a 1-step solver, where the time-bundling and pushfor-
ward trick do not apply. We use 6 message-passing blocks and 64 hidden features. We build
the graph with the 16 closest nodes. We use a learning rate of 1e-3 and a batch size of 16.
We train for 500 epochs on Airfoil and 1000 epochs on Cylinder.

Dynamics Modeling All our baselines are implemented in an auto-regressive (AR) manner to
perform forecasting.

• DeepONet: We use a DeepONet in which both Branch Net and Trunk Net are 4-layers
MLP with 100 neurons. The model is trained for 10, 000 epochs with a learning rate of
1e-5. To complete the upsampling studies, we used a modified DeepONet forward which
computes as follows: (1) Firstly, we compute an AR pass on the training grid to obtain a
prediction of the complete trajectory with the model on the training grid. (2) We use these
prediction as input of the branch net for a second pass on the up-sampling grid to obtain the
final prediction on the new grid.

• FNO: FNO is trained for 2, 000 epochs with a learning rate of 1e-3. We used 12 modes and
a width of 32 and 4 Fourier layers. We also use a step scheduler every 100 epochs with a
decay of 0.5.

• MP-PDE: We implement MP-PDE with a time window of 1 so that is becomes AR. The
MP-PDE solver is composed of a 6 message-passing blocks with 128 hidden features. To
build the graphs, we limit the number of neighbors to 8. The optimization was performed
on 10, 000 epochs with a learning rate of 1e-3 and a step scheduler every 2000 epochs until
10000. We decay the learning rate of 0.4 with weight decay 1e-8.

• DINo: DINo uses MFN model with respectively width and depth of 64 and 3 for Navier-
Stokes (NS), and 256 and 6 for Shallow-Water (SW). The encoder proceeds to 300 (NS)
or 500 (SW) steps to optimize the codes whose size is set to 100 (NS) or 200 (SW). The
dynamic is solved with a NODE that uses 4-layers MLP and a hidden dimension of 512
(NS) or 800 (SW). This model is trained for 10, 000 epochs with a learning rate of 5e-3. We
use the same scheduled sampling as for the CORAL training (see appendix B.1.4).

Geometry-aware inference Except on Pipe, the numbers for FactorizedFNO are taken from Tran
et al. (2023). In the latter we take the 12-layer version which has a comparable model size. We train
the 12-layer FactorizedFNO on Pipe with AdamW for 200 epochs with modes (32, 16), a width of 64,
a learning rate of 1e-3 and a weight decay of 1e-4. We implemented the baselines GeoFNO, FNO,
UNet according to the code provided in Li et al. (2022a)
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C Supplementary Results for Dynamics Modeling

C.1 Robustness to Resolution Changes

We present in Tables 6 and 7 the up-sampling capabilities of CORAL and relevant baselines both In-t
and Out-t, respectively for Navier-Stokes and Shallow-Water.

Table 6: Up-sampling capabilities - Test results on Navier-Stokes dataset. Metrics in MSE.

Xtr ↓
dataset→ Navier-Stokes
Xtr → 64× 64
Xte → Xtr 64× 64 128× 128 256× 256

In-t Out-t In-t Out-t In-t Out-t In-t Out-t

DeepONet 1.47e-2 7.90e-2 1.47e-2 7.90e-2 1.82e-1 7.90e-2 1.82e-2 7.90e-2
πtr = 100% FNO 7.97e-3 1.77e-2 7.97e-3 1.77e-2 8.04e-3 1.80e-2 1.81e-2 7.90e-2
regular grid MP-PDE 5.98e-4 2.80e-3 5.98e-4 2.80e-3 2.36e-2 4.61e-2 4.26e-2 9.77e-2

DINo 1.25e-3 1.13e-2 1.25e-3 1.13e-2 1.25e-3 1.13e-2 1.26e-3 1.13e-2
CORAL 2.02e-4 1.07e-3 2.02e-4 1.07e-3 2.08e-4 1.06e-3 2.19e-4 1.07e-3

DeepONet 8.35e-1 7.74e-1 8.28e-1 7.74e-1 8.32e-1 7.74e-1 8.28e-1 7.73e-1
πtr = 20% MP-PDE 2.36e-2 1.11e-1 7.42e-2 2.13e-1 1.18e-1 2.95e-1 1.37e-1 3.39e-1

irregular grid DINo 1.30e-3 9.58e-3 1.30e-3 9.59e-3 1.31e-3 9.63e-3 1.32-3 9.65e-3
CORAL 1.73e-3 5.61e-3 1.55e-3 4.34e-3 1.61e-3 4.38e-3 1.65e-3 4.41e-3

DeepONet 7.12e-1 7.16e-1 7.22e-1 7.26e-1 7.24e-1 7.28e-1 7.26e-1 7.30e-1
πtr = 5% MP-PDE 1.25e-1 2.92e-1 4.83e-1 1.08 6.11e-1 1.07 6.49e-1 1.08

irregular grid DINo 8.21e-2 1.03e-1 7.73e-2 7.49e-2 7.87e-2 7.63e-2 7.96e-2 7.73e-2
CORAL 1.56e-2 3.65e-2 4.19e-3 1.12e-2 4.30e-3 1.14e-2 4.37e-3 1.14e-2

Table 7: Up-sampling capabilities - Test results on Shallow-Water dataset. Metrics in MSE.

Xtr ↓
dataset→ Shallow-Water
Xtr → 64× 128
Xte → Xtr 32× 64 64× 128 128× 256

In-t Out-t In-t Out-t In-t Out-t In-t Out-t

DeepONet 7.07e-3 9.02e-3 1.18e-2 1.66e-2 7.07e-3 9.02e-3 1.18e-2 1.66e-2
πtr = 100% FNO 6.75e-5 1.49e-4 7.54e-5 1.78e-4 6.75e-5 1.49e-4 6.91e-5 1.52e-4
regular grid MP-PDE 2.66e-5 4.35e-4 4.80e-2 1.42e-2 2.66e-5 4.35e-4 4.73e-3 1.73e-3

DINo 4.12e-5 2.91e-3 5.77e-5 2.55e-3 4.12e-5 2.91e-3 6.04e-5 2.58e-3
CORAL 3.52e-6 4.99e-4 1.86e-5 5.32e-4 3.52e-6 4.99e-4 4.96e-6 4.99e-4

DeepONet 1.08e-2 1.10e-2 2.49e-2 3.25e-2 2.49e-2 3.25e-2 2.49e-2 3.22e-2
irregular grid MP-PDE 4.54e-3 1.48e-2 4.08e-3 1.30e-2 5.46e-3 1.74e-2 4.98e-3 1.43e-2
πtr = 20% DINo 2.32e-3 5.18e-3 2.22e-3 4.80e-3 2.16e-3 4.64e-3 2.16e-3 4.64e-3

CORAL 1.36e-3 2.17e-3 1.24e-3 1.95e-3 1.21e-3 1.95e-3 1.21e-3 1.95e-3
DeepONet 1.02e-2 1.01e-2 1.57e-2 1.93e-2 1.57e-2 1.93e-2 1.57e-2 1.93e-2

irregular grid MP-PDE 5.36e-3 1.81e-2 5.53e-3 1.80e-2 4.33e-3 1.32e-2 5.48e-3 1.74e-2
πtr = 5% DINo 1.25e-2 1.51e-2 1.39e-2 1.54e-2 1.39e-2 1.54e-2 1.39e-2 1.54e-2

CORAL 8.40e-3 1.25e-2 9.27e-3 1.15e-2 9.26e-3 1.16e-2 9.26e-3 1.16e-2

These tables show that CORAL remains competitive and robust on up-sampled inputs. Other baselines
can also predict on denser grids, except for MP-PDE, which over-fitted the training grid.

C.2 Learning a Dynamics on Different Grids

To extend our work, we propose to study how robust is CORAL to changes in grids. In our classical
setting, we keep the same grid for all trajectories in the training set and evaluate it on a new grid
for the test set. Instead, here, both in train and test sets, each trajectory i has its own grid Xi. Thus,
we evaluate CORAL’s capability to generalize to grids. We present the results in Table 8. Overall,
coordinate-based methods generalize better over grids compared to operator based and discrete
methods like DeepONet and MP-PDE which show better or equivalent performance when trained
only on one grid. CORAL’s performance is increased when trained on different grids; one possible
reason is that CORAL overfits the training grid used for all trajectories in our classical setting.
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Table 8: Learning dynamics on different grids - Test results in the extrapolation setting. Metrics in
MSE.

Xtr ↓ Xte
dataset→ Navier-Stokes Shallow-Water

In-t Out-t In-t Out-t

DeepONet 5.22E−1 5.00E−1 1.11E−2 1.12E−2
π = 20% MP-PDE 6.11E−1 6.10E−1 6.80E−3 1.87E−2

irregular grid DINo 1.30E−3 1.01E−2 4.12E−4 3.05E−3
CORAL 3.21E−4 3.03E−3 1.15E−4 7.75E−4

DeepONet 4.11E−1 4.38E−1 1.11E−2 1.12E−2
π = 5% MP-PDE 8.15E−1 1.10E−1 1.22E−2 4.29E−2

irregular grid DINo 1.26E−3 1.04E−2 3.89E−3 7.41E−3
CORAL 9.82E−4 9.71E−3 2.22e-3 4.89e-3

Table 9: Training time comparison - Expressed in days (d) or hours (h) on several datasets.
Model Cylinder Navier-Stokes Shallow-Water Elasticity NACA

CORAL (INR) 6h 1d 5d 4h 2d
CORAL (Process) 1h 4h 1h 1h 1h
NodeMLP 0.5h - - - -
GraphSAGE 1d - - - -
MP-PDE 7h 19h 21h - -
DINo - 8h 2d - -
DeepONet - 6h 5h - -
FNO - 8h 6h 0.5h 0.5h
UNet - - - 0.5h 0.5h
Geo-FNO - - - 1.0h 1.0h
Factorized-FNO - - - 1.0h 1.0h

C.3 Training Time

In Table 9, we present the training time for CORAL and different baselines for comparison. Since,
the training of CORAL is separated in 2 steps, we show in line ”INR” the training time for INR fitting
and in line ”Process” the second step to train the forecast model. We see that the longest part of the
training procedure in CORAL is the fitting of the INR. MP-PDE is the slowest baseline to train, due
to the KNN graph creation. DeepONet and FNO are the fastest baselines to train because they only
need a forward pass.

C.4 Inference Time

In this section, we evaluate the inference time of CORAL and other baselines w.r.t. the input grid size.
We study the impact of the training grid size (different models trained with 5%, 20% and 100% of the
grid) (Figure 6a) and the time needed for a model trained (5%) on a given grid to make computation
on finer grid size resolution (evaluation grid size) (Figure 6b).

On the graphs presented in Figure 6, we observe that except for the operator baselines, CORAL is also
competitive in terms of inference time. MP-PDE inference time increases strongly when inference
grid gets denser. The DINo model, which is the only to propose the same properties as CORAL, is
much slower when both inference and training grid size evolve. This difference is mainly explained by
the number of steps needed to optimize DINo codes. Indeed, at test time DINO’s adaptation requires
100x more optimization steps. MPPDE’s computation is slow due to the KNN graph creation and
slower message passing. DeepONet and FNO are faster due to forward computation only. CORAL’s
encoding/decoding is relatively resolution-insensitive and performed in parallel across all sensors.
Process operates on a fixed dimension independent of the resolution. FNO is fast due to FFT but
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(a) Average inference time (in seconds) of the
implemented baselines to unroll a trajectory until
T = 40 on Navier-Stokes . For irregular grids,

FNO is performed following linear interpolation.

(b) Inference time w.r.t. evaluation grid size (same
models).

Figure 6

cannot be used on irregular grids. For these experiments, we used linear interpolation which slowed
the inference time.

C.5 Propagation of Errors Through Time

In Figures 7a to 7c, we show the evolution of errors as the extrapolation horizon evolves. First, we
observe that all baselines propagate error through time, since the trajectories are computed using an
auto-regressive approach. Except for the 100%, DeepONet had difficulties to handle the dynamic.
It has on all settings the highest error. Then, we observe that for MP-PDE and FNO, the error
increases quickly at the beginning of the trajectories. This means that these two models are rapidly
propagating error. Finally, both DINo and CORAL have slower increase of the error during In-t and
Out-t periods. However, we clearly see on the graphs that DINo has more difficulties than CORAL to
make predictions out-range. Indeed, while CORAL’s error augmentation remains constant as long as
the time evolves, DINo has a clear increase.

C.6 Benchmarking INRs for CORAL

We provide some additional experiments for dynamics modeling with CORAL, but with diffrents
INRs: MFN (Fathony et al., 2021), BACON (Lindell et al., 2022) and FourierFeatures (Tancik et al.,
2020). Experiments have been done on Navier-Stokes on irregular grids sampled from grids of size
128 × 128. All training trajectories share the same grid and are evaluated on a new grid for test
trajectories. Results are reported in Table 10. Note that we used the same learning hyper-parameters
for the baselines than those used for SIREN in CORAL. SIREN seems to produce the best codes for
dynamics modeling, both for in-range and out-range prediction.

Table 10: CORAL results with different INRs. - Test results in the extrapolation setting on Navier-
Stokes dataset. Metrics in MSE.

Xtr ↓ Xte INR In-t Out-t

SIREN 5.76e-4 2.57e-3
π = 20% MFN 2.21e-3 5.17e-3

irregular grid BACON 2.90e-2 3.32e-2
FourierFeatures 1.70e-3 5.67e-3

SIREN 1.81e-3 4.15e-3
π = 5% MFN 9.97e-1 9.58e-1

irregular grid BACON 1.06 8.06e-1
FourierFeatures 3.60e-1 3.62e-1
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(a) Evolution of errors over time and across test samples for a model trained on 100% of the grid.

(b) Evolution of errors over time and across test samples for a model trained on 20% of the grid.

(c) Evolution of errors over time and across test samples for a model trained on 5% of the grid.

Figure 7: Errors along a given trajectory.
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C.7 Impact of 2nd order meta-learning

We provide in Figure 8 the evolution of the reconstruction error through the training epochs for
Navier-Stokes with first-order and second-order meta-learning. The first order method is able to
correctly train until it falls into an unstable regime for the common parameters. The second order
method is much more stable and achieves a 10x reduction in MSE.

Figure 8: Training of the modulated INR - Comparison on Navier-Stokes over three independent
runs of first order and second order meta-learning. We use the same number of inner-steps.

C.8 Key hyper parameter analysis

Table 11 presents a hyperparameter study on reconstruction and forecasting tasks for Navier-Stokes
dataset. Three hyperparameters—initial weight w0, latent dimension dz , and width—are varied to
observe their impact. We can notice that:

• w0 = 30 slightly improves the reconstruction on the test set.
• dz = 64 yields a better forecasting In-t performance.
• width = 256 significantly improves the model’s performance across nearly all metrics.

Table 11: Hyper parameter study - Reconstruction and forecasting results on Navier-Stokes dataset.
Metrics in MSE. Reconstruction are reported on the Train (In-t) and on the Test (In-t + Out-t).

Param ↓ Value ↓ Reconstruction Forecasting

Train Test In-t Out-t

w0
20 3,62e-5 6,86e-5 2,78e-4 1,88e-3
30 3,66e-5 5,85e-5 4,03e-4 2,28e-3

dz
64 3,94e-5 1,11e-4 1,22e-4 1,42e-3

256 2,73e-5 8,03e-5 1,63e-4 2,12e-3

width 64 1,50e-4 2,87e-4 2,84e-4 2,39e-3
256 1,60e-5 6,41e-5 1,23e-4 2,04e-3

CORAL baseline - 1.05e-4 1.21e-4 1.86e-4 1.02e-3

D Supplementary results for geometry-aware inference

D.1 Inverse Design for NACA-airfoil

Once trained on NACA-Euler, CORAL can be used for the inverse design of a NACA airfoil. We
consider an airfoil’s shape parameterized by seven spline nodes and wish to minimize drag and
maximize lift. We optimize the design parameters in an end-to-end manner. The spline nodes create
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the input mesh, which CORAL maps to the output velocity field. This velocity field is integrated to
compute the drag and the lift, and the loss objective is the squared drag over lift ratio. As can be seen
in Figure 9, iterative optimization results in an asymmetric airfoil shape, enhancing progressively
the lift coefficient in line with physical expectations. At the end of the optimization we reach a drag
value of 0.042 and lift value of 0.322.
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(d) Step = 5000

Figure 9: Design optimization of a NACA-Airfoil.

E Qualitative results

In this section, we show different visualization of the predictions made by CORAL on the three
considered tasks in this paper.

E.1 Initial Value Problem

We provide in Figure 10 and Figure 11 visualizations of the inferred values of CORAL on Cylinder
and Airfoil.

E.2 Dynamics modeling

We provide in Figure 13 and Figure 12 visualization of the predicted trajectories of CORAL on
Navier-Stokes and Shallow-Water.
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Figure 10: CORAL prediction on Cylinder
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Figure 11: CORAL prediction on Airfoil
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Figure 12: Prediction MSE per frame for CORAL on Navier-Stokes with its corresponding training
grid X . Each row corresponds to a different sampling rate and the last row is the ground truth. The
predicted trajectory is predicted from t = 0 to t = T ′. In our setting, T = 19 and T ′ = 39.

Figure 13: Prediction MSE per frame for CORAL on Shallow-Water with its corresponding training
grid X . Each row corresponds to a different sampling rate and the last row is the ground truth. The
predicted trajectory is predicted from t = 0 to t = T ′. In our setting, T = 19 and T ′ = 39.

E.3 Geometry-aware inference

We provide in Figure 14, Figure 15, Figure 16 visualization of the predicted values of CORAL on
NACA-Euler, Pipe and Elasticity.
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Figure 14: CORAL predictions on NACA-Euler
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Figure 15: CORAL predictions on Pipe
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Figure 16: CORAL predictions on Elasticity
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