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Abstract

Humans and animals have a rich and flexible understanding of the physical world,
which enables them to infer the underlying dynamical trajectories of objects and
events, plausible future states, and use that to plan and anticipate the consequences
of actions. However, the neural mechanisms underlying these computations are
unclear. We combine a goal-driven modeling approach with dense neurophysiolog-
ical data and high-throughput human behavioral readouts that contain thousands
of comparisons to directly impinge on this question. Specifically, we construct
and evaluate several classes of sensory-cognitive networks to predict the future
state of rich, ethologically-relevant environments, ranging from self-supervised
end-to-end models with pixel-wise or object-slot objectives, to models that future
predict in the latent space of purely static image-pretrained or dynamic video-
pretrained foundation models. We find that “scale is not all you need”, and that
many state-of-the-art machine learning models fail to perform well on our neural
and behavioral benchmarks for future prediction. In fact, only one class of models
matches these data well overall. We find that neural responses are currently best
predicted by models trained to predict the future state of their environment in the
latent space of pretrained foundation models optimized for dynamic scenes in a
self-supervised manner. These models also approach the neurons’ ability to predict
the environmental state variables that are visually hidden from view, despite not
being explicitly trained to do so. Finally, we find that not all foundation model
latents are equal. Notably, models that future predict in the latent space of video
foundation models that are optimized to support a diverse range of egocentric sen-
sorimotor tasks, reasonably match both human behavioral error patterns and neural
dynamics across all environmental scenarios that we were able to test. Overall,
these findings suggest that the neural mechanisms and behaviors of primate mental
simulation have strong inductive biases associated with them, and are thus far most
consistent with being optimized to future predict on reusable visual representations
that are useful for Embodied AI more generally.

1 Introduction

Within the span of a couple seconds, we are able to draw rich inferences and make predictions about
novel scenes [Smith and Vul, 2013, Battaglia et al., 2013]. A dominant cognitive theory has been that
the brain builds mental models of the physical world, using those models to make inferences about the
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future state of its environment [Craik, 1943]. In the past decade, this hypothesis has been supported
by comparisons of human behavior to computational models which predict what will happen next
in physical scenarios via forward simulations resembling those of game engines in modern video
games [Battaglia et al., 2013, Hamrick et al., 2016, Ullman et al., 2017]. Both neuroimaging work
in humans [Zacks, 2008, Fischer et al., 2016, Schwettmann et al., 2019, Pramod et al., 2022] and
recent electrophysiological work in monkeys [Rajalingham et al., 2022a,b] has further provided
evidence for the neurobiological basis of mental simulations in the frontoparietal network (FPN)
of primates, a large-scale network consisting of several interacting brain regions. In this work, we
make progress towards understanding the neural and behavioral mechanisms of mental simulation
by constructing models that perform this behavior in rich, naturalistic environments. Specifically,
we aim to determine what inductive biases (in the form of a loss function, architecture class, and
pretraining environment) enable the brain to generally perform mental simulation across a range of
environments and scenarios, from unstructured, continuous sensory inputs. In particular, we assess
not only model generalization to novel, high-variation examples within the same environment, but
also structural generalization to new environments and scenarios altogether.

Predicting the physical dynamics of environments is also critical to progress in Embodied AI. One
common paradigm for learning these dynamics has been as a next frame prediction problem via a
pixel-wise loss [Villegas et al., 2019, Wu et al., 2021, Babaeizadeh et al., 2021, Nash et al., 2022].
These losses emphasize prioritizing accurate prediction of every detail of a given scene’s dynamics.
However, fine-grained prediction of upcoming video frames would require near-perfect knowledge of
the world’s physical state (akin to Laplace’s Demon), which may explain the observation why many
of these models tend to underfit in high variation, naturalistic visual environments, with recent efforts
aimed at scaling these methods up primarily by increasing their parameter count [Dasari et al., 2019,
Babaeizadeh et al., 2021]. It is therefore unclear how much these resultant learned representations
are able to successfully capture general physical understanding.

Another recent class of approaches involves the design of visual “foundation models” [Bommasani
et al., 2021], trained on large amounts of webscale images and egocentric videos to develop an
implicit representation of the world, that can then be deployed to downstream robotic manipulation
tasks [Nair et al., 2022, Ma et al., 2023, Majumdar et al., 2023]. Of course, these models are not
directly designed to do explicit physical simulation, but we equip them with a forward dynamics
model that can be rolled out for an arbitrary number of timesteps. We ask whether such dynamically-
equipped foundation models have learned physical knowledge by evaluating their generalization both
to new scenarios and environments, and whether their representations bear any similarity to humans
and non-human primates performing the same tasks?

In particular, we find strong constraints on primate mental simulation, especially when examining
generalization within and across diverse environments. Our core result is that a small class of models
best match primate frontal cortex neural dynamics while the animal plays a ball interception task in
which the ball trajectory is partially occluded prior to hitting the paddle (“Mental-Pong”), developed
previously by Rajalingham et al. [2022a]. Overall, one model class can match both neural response
dynamics and human behavioral patterns reasonably well – namely, dynamics that are optimized to
future predict in the latent space of VC-1, a video foundation model pretrained on the largest variety
of egocentric sensorimotor settings overall. We therefore currently observe a tight correspondence
between the ability to predict fine-grained neural and behavioral responses for the mental simulation
phenomenon, and developing useful representations for Embodied AI more generally.

2 Related Work

Mental simulations have been studied at the level of neural activity only very recently. Prior
human neuroimaging studies [Zacks, 2008, Fischer et al., 2016, Pramod et al., 2022] in the past
decades showed elevated levels of blood-oxygen-level-dependent (BOLD) signal to mental simulation,
although they do not have the required resolution to verify that these dynamics are actually represented
in underlying neural activity. Rajalingham et al. [2022b] was the first study to show that neural
dynamics recorded from macaque dorsomedial frontal cortex (DMFC), track the occluded ball by
comparing these dynamics to Recurrent Neural Networks (RNNs) that simulate the occluded ball’s
position in Mental-Pong, and finding that they better match these dynamics than RNNs that only
perform ball endpoint prediction. However, monkeys can perform these tasks without substantial
training, suggesting that they are already equipped with the necessary neural foundations for mental

2



simulation in this environment. Therefore, we aim to also build networks that are not explicitly
trained on Mental-Pong itself, but are tasked to generalize to this novel setting as a test of their
general understanding of physical scene dynamics – chiefly developed through three factors: their
architecture, optimization objective, and pretraining on a naturalistic environment.

Additionally, we constrain our models by evaluating them against high-throughput human behavioral
data (from Bear et al. [2021]) in more naturalistic, 3D environments than Mental-Pong alone, which
goes beyond prior behavioral studies that either rely on a narrow range of physical scenarios [Shepard
and Metzler, 1971, Cooperau and Shepard, 1973], such as block towers with several cubes of different
colors [Groth et al., 2018, Li et al., 2016], or 2D environments that may not generalize to the real
world [Bakhtin et al., 2019]. A key challenge to addressing these questions is a common standard
to evaluating the everyday physical scene understanding and neural predictivity of these models,
especially since they are usually trained on vastly different scenarios and input types. Towards
this end, we require models to operate under similar constraints as the brain, namely (i) to take in
unstructured visual inputs across a range of physical phenomena, (ii) to generate physical predictions
for each scene (i.e. producing “behavioral outputs”), and (iii) to consist of internal units that can be
compared to biological units (i.e. containing “artificial neurons”).

Taken together, these three requirements encompass a large class of functionally reasonable hypothe-
ses that we call “sensory-cognitive networks”, and includes the two broad approaches mentioned in
§1. However, they do exclude some approaches – for example, particle-based graph neural network
dynamics predictors [Battaglia et al., 2016, 2018, Li et al., 2019, Sanchez-Gonzalez et al., 2020]
that take the ground truth simulator state as input (which may not be readily available in real-world
situations, failing to satisfy requirement (i)) or probabilistic programs [Battaglia et al., 2013, Hamrick
et al., 2016, Ullman et al., 2017] (which fail to satisfy requirements (i) and (iii)).

Nonetheless, we believe these latter approaches from cognitive science are a useful guide for building
improved models from pixels that satisfy the three requirements – especially in terms of assessing
whether the prediction problem lies at the level of vision, or the dynamics that interfaces with it.
For example, [Bear et al., 2021, Figure 5] demonstrated that particle-based graph neural networks
(e.g. DPI-Net [Li et al., 2019]) with access to the ground truth simulator state approach human-level
physical predictions on the OCP task that we consider in Section 4 across a diverse range of scenarios.
This observation indicates that the onus mainly rests on learning a good visual representation, as these
models assume perfect observability of physical dynamics. This further motivates our enforcement of
requirement (i) as being a worthwhile challenge, as well as our latent future prediction approach of
“factorizing” the mental simulation problem into separately pretrained vision and dynamics modules.

3 Methods

To tackle this question, we took a hypothesis-driven approach and built sensory-cognitive networks
that performed mental simulations of their environment in a variety of different ways (schematized
in Figure 1). Specifically, we tasked models to operate on the Physion dataset [Bear et al., 2021], a
large-scale video dataset that focuses on everyday physical understanding, consisting of eight different
scenarios in a simulated Unity3D-based environment (the ThreeDWorld simulator [Gan et al., 2021])
with roughly 2,000 scenes each. Models are pretrained on all eight scenarios of Dominoes, Support,
Collide, Contain, Drop, Link, Roll, and Drape; which together cover many scenes involving rigid and
soft bodies.

We additionally pretrain a subset of models on Kinetics-700 [Carreira et al., 2019], which consists
of over 500,000 training videos from real-world (rather than simulated) scenes from 700 different
action categories, in order to assess whether a different dataset of increased scale is beneficial or not,
relative to Physion.

We consider models from several sensory-cognitive hypothesis classes:

1. End-to-end self-supervised future prediction:
(a) Pixel-wise: This class of models consists of three parts: encoder, dynamics, and

decoder; which are altogether pretrained end-to-end with a pixel-wise loss to predict
the next frame. We consider a current state-of-the-art model in this model family,
FitVid [Babaeizadeh et al., 2021], and we pretrain it on Physion (with and without
temporal augmentations such as RandAugment [Cubuk et al., 2020]); along with an
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Figure 1: Model Pretraining and Evaluation Pipeline: We built and evaluate sensory-cognitive
networks for mental simulation. (A) Models are pretrained to predict the future state of naturalistic
environments in a variety of ways. Their dynamics are then compared to high-throughput human
behavioral judgements and dense primate neurophysiological response dynamics. Model pretraining
can be (1) two-stage, or (2) end-to-end. For the two-stage latent future prediction models, there is
first visual module pretraining (blue), then dynamics module pretraining on Physion (peach). Across
all models, the dynamics modules are pretrained on the same dataset (Physion), and then evaluated
against neural and behavioral data with model weights fixed. (B) Evaluations are multi-fold: (1)
Comparison to human behavior in OCP on held-out scenes across pretrained Physion scenarios. (2)
Comparison to neural activity in Mental-Pong, an out-of-distribution environment that none of the
models were pretrained on.

earlier variant, SVG [Denton and Fergus, 2018], that can be additionally trained at
larger image scales (128× 128 rather than 64× 64 pixels).

(b) Object-slot: This class of models is based on the Contrastive Learning of Structured
World Models framework (“C-SWM” [Kipf et al., 2020]) which contrastively learns
more structured object-slot latent states. It consists of an encoder (whose size we
vary: “small”, “medium”, and “large”) that outputs a fixed number of object slots
N = 10, and a graph neural network forward dynamics module that operates on this
representation. Since the dynamics module itself does not have temporal dependencies
(only spatial), we enable temporal dependencies by passing frames in the input channel
dimension of the encoder, as a sliding window of temporal dimension of T context
frames to predict the object-slot latent at timestep T + 1. This model family is one
instantiation of the cognitive theory that humans tend to reason about scenes with
regards to objects and their relations [Baillargeon et al., 1985, Spelke, 1990, Spelke and
Kinzler, 2007]. These Gestalt principles therefore may provide physical knowledge
that are better-positioned to generalize than more fine-grained (pixel-wise) prediction –
a hypothesis that we explicitly evaluate on high-throughput neural and behavioral data,
in what follows.

2. Latent self-supervised future prediction: These models consist of two parts: an encoder
E that produces a latent state space h and a dynamics module D that predicts the future state
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purely in the latent space h of E . E is fixed and pretrained to perform a challenging vision
task (“foundation model”), through which it learns a partial, implicit representation of the
physical world. However, since E is not pretrained to do explicit physical simulation, we
train additional dynamics D on Physion, that can later be “rolled out” an arbitrary number of
steps. More concretely, given T context frames, E produces the latent sequence h1:T , from
which D is trained to predict hT+1. D is relatively simple, being either an LSTM [Hochreiter
and Schmidhuber, 1997] or a continuous-time RNN (CTRNN) [Miller and Fumarola, 2012];
or “No Dynamics” as a control, which always outputs the last context frame latent hT of E .
We consider a variety of foundation encoders, divided into two primary classes based on
their type of large-scale pretraining dataset:

(a) Image Foundation Models (Static scenes):
• Standard Convolutional Neural Networks (CNNs) VGG16 [Simonyan and Zis-

serman, 2014] and ResNet-50 [He et al., 2016] pretrained on ImageNet with a
supervised categorization objective.

• Vision Transformer (ViT) [Dosovitskiy et al., 2021] based architectures such as
DeiT [Touvron et al., 2021] and DINO [Caron et al., 2021] pretrained on ImageNet
with a self-supervised objective.

• DINOv2 [Oquab et al., 2023], which is a very recent ViT pretrained on a larger
curated dataset called LVD-142M (142 million images).

• CLIP [Radford et al., 2021], which is a ViT pretrained on 400 million image-text
pairs curated from the Internet (250 times larger than ImageNet).

(b) Video Foundation Models (Dynamic scenes):
• R3M [Nair et al., 2022], which is a ResNet-50 architecture pretrained with a

temporally-contrastive video-language alignment objective on 5 million frames
from a subset of the recent large-scale Ego4D human video dataset [Grauman et al.,
2022].

• VIP [Ma et al., 2023], which is a ResNet-50 architecture pretrained with a goal-
conditioned value function objective on 5 million frames from a subset of Ego4D.

• VC-1 [Majumdar et al., 2023], which is a very recent ViT pretrained on 7 different
egocentric video sources (over 5.6 million frames, including Ego4D) relevant to
sensorimotor skills, using a self-supervised masked autoencoding (MAE) [He et al.,
2022] objective. While MAE is pretrained on individual frames, the statistics of
the frames are informed by egocentric motion, unlike webscale images.

In total, these networks encompass both qualitatively distinct hypotheses (pixel-wise vs. object-
slot vs. latent future prediction), alongside several variations within each hypothesis class. This
combination of diverse networks allows us to potentially differentiate hypothesis classes across a
range of functionally capable instantiations of each hypothesis.

4 Comparison to Human Physical Judgements

4.1 OCP task evaluation

In the object contact prediction (OCP) task [Bear et al., 2021], each evaluation scenario involves a
red “agent” object and a yellow “patient” object (which did not appear during model pretraining).
Both humans and models are tasked to predict the probability that they will come into contact.
This prediction requires understanding of the relevant physical phenomenon in the given scenario,
corresponding to a higher-order readout of the underlying scene dynamics.

4.2 End-to-end pixel-wise future predictors best predict human behavior in the same
environment

The model comparison results are summarized in Figure 2. In Figure 2A, we examine held-out
scene accuracy of models across all eight scenarios in the OCP task, where chance performance
is 50%. We can see that humans are quite reliable on this task, attaining 74.04% average held-out
accuracy across scenarios (grey horizontal line). Furthermore, the best models that approach human
accuracy are models that are pretrained end-to-end with pixel-wise losses (FitVid and SVG). Despite
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Figure 2: Model Comparisons to Human Physical Judgements: (A) Each model is compared to
binary (“yes/no”) accuracy on the OCP task (chance is 50%). Grey horizontal bar represents the
human accuracy on this task. Mean and s.e.m. across all eight Physion scenarios, weighted by number
of scenes in each scenario. Hatched bars represent models pretrained on the Kinetics-700 dataset,
rather than on Physion. (B) Each model is compared to human subject judgement probabilities for
the OCP task, via Pearson’s correlation from the Logistic Regression classifier trained on each of
the model dynamics. Grey is the correlation of human judgement probabilities to each other. Mean
and s.e.m. across all eight Physion scenarios, weighted by number of scenes in each scenario. (C) A
model’s match to human judgement probabilities is strongly correlated with its OCP task accuracy.
(D) Per scenario model comparisons to human subject judgement probabilities for the OCP task.
Mean and s.e.m. across all 41 models.

their differences in architecture, both FitVid and SVG are comparable to one another in their OCP
test set accuracy (61.12%-63.31%), attaining non-significant differences in the distribution of their
accuracies across scenarios (Paired t-test, minimum Bonferroni corrected p-value of 0.444 across
pairwise comparisons). For a fixed architecture, pretraining with increased image size helps improve
accuracy somewhat on the OCP prediction task (SVG 128 × 128, rightmost periwinkle bar, vs.
SVG 64× 64, leftmost one), along with temporal augmentations for a high capacity model (FitVid,
rightmost dark green bar vs. leftmost one), but these differences are overall non-significant (Paired
t-test p = 0.461 and p = 0.196 within the SVG and FitVid architectures, respectively). However,
not all end-to-end models match human accuracy well. In particular, we see that the object-slotted
C-SWM class of models matches human accuracies least well compared to other model classes,
despite varying the encoder size. The class of latent future prediction models overall better matches
these behavioral patterns than the more explicitly structured C-SWM models, but there does not
appear to be strong differentiation across foundation models, and also not much differentiation
between having a dynamics module vs. using the encoder latents directly (rightmost two bars vs.
leftmost bar in each group). This suggests that at least for the OCP task, either Physion is not
sufficiently high-variation enough to pretrain the dynamics module or most of the predictivity comes
from the physical scene understanding encapsulated in the foundation model encoder latents. The
latter appears to be more likely, since pretraining the dynamics module on a larger-scale dataset
such as Kinetics-700 for a subset of the models (VIP+LSTM/CTRNN, VC-1+LSTM/CTRNN, and
R3M+LSTM/CTRNN; hatched bars) does not improve OCP accuracy over the base encoder latents
either, relative to pretraining them on Physion (Paired t-test, minimum Bonferroni corrected p-value
of 0.066 across architectures).
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Additionally, we can look at finer-grained error patterns of the probabilities reported by humans
compared to those of models (rather than accuracies alone), summarized in Figure 2B. Here we see
that despite the metric being more detailed, humans are quite consistent with each other, suggesting
that this type of behavioral metric is quite reliable (grey horizontal line). In fact, all models appear to
be further from the human-to-human consistency than the OCP accuracy. However, overall, similar
trends appear to hold across models as with the OCP accuracy measure – where the end-to-end
pixel-wise models (FitVid and SVG) match these consistency scores the best across models, and the
object-slotted C-SWM models match them the least well. From an AI perspective, it is actually quite
relevant to work towards matching human error patterns, as it is highly correlated with the primarily
performance based measure of OCP accuracy, as seen in Figure 2C (R ≈ 0.865, p ≪ 0.001).

And as shown in Figure 2D, all models have the most room to improve to match human error patterns
and OCP accuracy (Figure S4) for soft-body interactions (the “Drape” scenario). On the other hand,
models seem to do reasonably well on certain rigid-body scenarios, especially “Support” relations
where stacks of objects fall over depending on their shapes and arrangement; “Collide”, where pairs
of objects collide depending on their trajectories and placement; and “Roll”, where objects move
across a surface either by rolling or sliding. In these scenarios, the best Physion-pretrained models,
namely the pixel-wise future predictors, can attain human consistency scores much higher than what
we report in Figures 2B and D of around 0.6 (cf. Figure S5B).

5 Comparison to Dense Neurophysiological Data

To gain more insight into model generalization, we compared the above models to neural dynamics
recorded from macaque dorsomedial frontal cortex (DMFC), which was shown by Rajalingham
et al. [2022b] to simulate the ball’s position in Mental-Pong while behind an occluder, until it was
intercepted by the paddle. This environment is completely out-of-distribution for the models, unlike
Physion, and therefore tests structural generalization.

5.1 Inter-animal consistency and neural behavioral decoders

For each of the 79 conditions (different randomized start position of the ball), we present the frames
in the visible epoch (the time up until the ball reaches the occluder) as context frames to the models,
and unroll the model dynamics during the occluded epoch of the condition. We then build detailed,
physical mappings (schematized in Figure 3A) from the committed model layer latent dynamics to
match every single neuron in the population, and the ground truth ball state while occluded, when
mental simulation takes place. We enforce the requirement, established in prior work [Nayebi et al.,
2021, Cao and Yamins, 2021], that models are at least as similar to a given animal’s neural responses
as two conspecifics’ neural responses are to each other. When we perform these mappings, we see
that both the inter-animal neural predictivity consistency and ground truth ball state decoding from
DMFC is quite high (grey horizontal lines in Figures 3B and C, respectively), indicating that these
are very reliable neural and behavioral measures of the mental simulation phenomenon.

5.2 Neural response predictivity strongly separates models

When we map model units to DMFC units across 79 conditions (different randomized ball start
position), we see in Figure 3B that across all architectures, only dynamically-equipped models from
the video foundation model class predict DMFC dynamics best (46.34-48.83% neural predictivity),
specifically in the latent space of the VC-1 and R3M encoders. However, the VC-1 and R3M
encoder’s latents alone are insufficient to predict the data (19.03% and 24.79% neural predictivity,
respectively), although their latents best predict neural responses compared to other foundation
models (cf. Figure S3C). Pretraining end-to-end on Physion with either a pixel-wise loss (SVG and
FitVid; 14.44%-25.35% neural predictivity) or an object-slot loss (C-SWM with varying encoder
sizes; 13.69%-23.05% neural predictivity) is not sufficient either, indicating a strong constraint on
the neural mechanisms of mental simulation being performed on a suitable latent space. However, it
is not the case that any latent space works, since all dynamics trained on encoder latents pretrained
on static images, regardless of their imageset scale, attained at most 29.67% neural predictivity.
This is suggestive that for a relatively small but time-varying stimulus such as the Mental-Pong ball,
models that are pretrained on static images may not be equipped to handle the temporal coherence
of a single object moving through time, as prior studies have mainly examined generalization of

7



(A) (B)

(C)
(D)

ball    paddle  occluder

Time

Observed epoch
(1240±350 ms)

Occluded epoch
(895±270 ms)

Feedback

DMFC

DMFC
Monkey M

Monkey P

Model

L
M

P

L
M

odel
P

�

LModel M
�

�

LP
M

�

L
M

Ball

�

LP Ball
�

LModel Ball�

End-to-End

Image Foundation Models

Video Foundation Models

DMFC Predictivity

C-SWMSVG FitVid VGG16 ResNet-50 DeiT DINO DINOv2 CLIP VIP VC-1 R3M
End-to-End Latent Future Prediction

Pixel-wise

Image Foundation Models

Video Foundation Models

Object
-slot

Sm
al

l
 L

ar
ge

M
ed

iu
m

N
o 

D
yn

am
ic

s
LS

TM
 D

yn
am

ic
s

CT
RN

N
 D

yn
am

ic
s

N
o 

D
yn

am
ic

s
LS

TM
 D

yn
am

ic
s

CT
RN

N
 D

yn
am

ic
s

CT
RN

N
 D

yn
am

ic
s

LS
TM

 D
yn

am
ic

s

64
x6

4
12

8x
12

8

64
x6

4
64

x6
4+

 R
an

dA
ug

m
en

t

R≈0.701, p << 0.001

Ba
ll 

Po
si

ti
on

 +
 V

el
oc

it
y 

Pr
ed

ic
ti

vi
ty

(P
ea

rs
on

’s 
R)

Ba
ll 

Po
si

ti
on

 +
 V

el
oc

it
y 

Pr
ed

ic
ti

vi
ty

(P
ea

rs
on

’s 
R)

Neural Predictivity
(Pearson’s R)

End-to-End Latent Future Prediction

Inter-animal Consistency

C-SWMSVG FitVid VGG16ResNet-50 DeiT DINO DINOv2 CLIP VIP VC-1 R3M

Pixel-wise

Image Foundation Models

Video Foundation Models

64
x6

4
12

8x
12

8

64
x6

4
64

x6
4+

 R
an

dA
ug

m
en

t

Sm
al

l

 L
ar

ge
M

ed
iu

m

Object
-slot

N
o 

D
yn

am
ic

s
LS

TM
 D

yn
am

ic
s

CT
RN

N
 D

yn
am

ic
s

N
o 

D
yn

am
ic

s
LS

TM
 D

yn
am

ic
s

CT
RN

N
 D

yn
am

ic
s

CT
RN

N
 D

yn
am

ic
s

LS
TM

 D
yn

am
ic

s

Oracles

Ba
ll 

Po
si

ti
on

Ba
ll 

Po
si

ti
on

 +
 V

el
oc

it
y

Ba
ll 

Ve
lo

ci
tyN

eu
ra

l P
re

di
ct

iv
it

y
(P

ea
rs

on
’s 

R)

Encoder
Dynamics

Perfect Simulation Oracle

Figure 3: Model Comparisons to Neural Response Dynamics: (A) We measure how similar model
dynamics (red) are to each primate’s DMFC neural dynamics up to at least how (linearly) similar
primates are to each other, via the linear transform LN (black arrows). We also assess how well
models can decode ball state (position and velocity) up to how well it can be decoded from DMFC via
the linear transform LB (teal arrows). (B) DMFC test set neural predictivity of each model, averaged
across five train-test splits. Median and s.e.m. across 1,889 recorded units. For each of the latent
future prediction models, there are three bars: the first corresponding to final context encoder latent
itself (“No Dynamics”); and the last two bars are with LSTM or CTRNN dynamics, respectively.
For the VIP, VC-1, and R3M based models, we also pretrain the LSTM and CTRNN dynamics on
Kinetics-700 rather than Physion, and their predictivity is displayed in the last two additional hatched
bars. The grey horizontal bar represents how well each primate’s DMFC can predict the other’s
via the linear transform LN schematized in (A), setting a consistency ceiling on model predictivity.
Position, velocity, and position + velocity oracles are the ground truth ball state values for those
variables while it is occluded (and not visible to the primate during game play). Dotted “Perfect
Simulation Oracle” line corresponds to the position + velocity oracle’s neural predictivity. (C) Ball
position and velocity predictivity of each model, averaged across five train-test splits, from the best
DMFC fitting model layer used in (B) via the linear transform LB schematized in (A). The grey
horizontal bar represents the ball position and velocity predictivity from DMFC units. Median and
s.e.m. across four quantities: the ground truth (x, y) position and velocity of the ball while it was
occluded (in degrees of visual angle). (D) Mental-Pong ball position and velocity predictivity (y-axis)
vs. neural predictivity (x-axis). Dotted golden line represents best linear fit to the data.

ImageNet-optimized CNNs to novel yet static, single-object scenes [Hong et al., 2016]. Moreover,
even for video optimized foundation models, we see differentiation at the level of loss function. In
particular, goal-conditioned self-supervised learning on videos, as instantiated by VIP (which differs
from R3M primarily in the choice of objective function, as it shares the same ResNet-50 architecture
and is also pretrained on Ego4D), fails to match DMFC neural dynamics well (7.37%-18.12% neural
predictivity). We also see parsimony at the level of the architecture and pretraining dataset of
the dynamics module, as the VC-1/R3M+CTRNN either attains comparable or improved neural
predictivity over the more sophisticated VC-1/R3M+LSTM (middle vs. rightmost bars for each
encoder type), even when pretraining on a larger dataset like Kinetics-700 (Figure S1). This suggests
that simple dynamics may be sufficient at predicting neural response dynamics given the appropriate
visual encoder and highlights the limits of dataset scale alone without changing inductive biases.
Both the VC-1/R3M+LSTM and VC-1/R3M+CTRNN models approach the neural predictivity of
the ground truth ball position oracle model (50.74%, leftmost golden bar in Figure 3B), with the
joint position + velocity oracle performing the best (60.65% neural predictivity, rightmost golden
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bar, which also corresponds to the “Perfect Simulation Oracle” dotted line). This suggests that a
substantial amount of the neural response variability is devoted to simulating the ball’s state while it
is occluded, as opposed to other static features of the environment. The remaining gap between the
“Perfect Simulation Oracle” and the inter-animal consistency may be due to other factors such as time
since stimulus onset, attentional demands/eye movements, and perhaps uncertainty when the ball
bounces, which can be explored in future work.

In Figure 3C, we see that the most neurally predictive dynamically-equipped VC-1/R3M-based
models generalize to the Mental-Pong task, approaching DMFC’s ability to track the ground truth
position and velocity of the ball while it is occluded, despite not being explicitly pretrained in this
environment. In particular, there is a linear relationship (R ≈ 0.701, p ≪ 0.001) between the
model’s ability to generalize to the Mental-Pong environment and its ability to predict DMFC neural
dynamics (Figure 3D). This relationship indicates that predicting the underlying neural dynamics is
in fact behaviorally relevant to effectively simulating the ball’s dynamics, which Rajalingham et al.
[2022a,b] judged in humans based on eye tracking data. Furthermore, the dynamically-equipped VC-
1/R3M-based models can best represent the ball position and velocity separately as well (Figure S6),
demonstrating that they can independently track these variables.

6 Dynamically-Equipped Video Foundation Models Can Match Both Human
Behavioral and Neural Response Patterns Across Environments

(A) (B)
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Figure 4: Dynamically-Equipped Video Foundation Models Can Match Both Neural and
Behavioral Metrics: (A) Ball state (position and velocity) predictivity in Mental-Pong (y-axis) vs.
OCP accuracy in Physion (x-axis). Across models, these two metrics appear to be largely independent.
(B) The dynamically-equipped VC-1 models (VC-1+LSTM/CTRNN pretrained on either Physion or
Kinetics-700) can reasonably match neural response dynamics in Mental-Pong and match human
error patterns in the OCP task, relative to other models. Dotted grey line is the unity line to indicate
that better models will occupy the top right of this scatter plot.

Both the OCP human behavioral error pattern metric and the DMFC Mental-Pong neural predictivity
metric are linearly correlated to their corresponding behavior of OCP accuracy and ball position
prediction (as seen in Figures 2C and 3D), which suggests that these more fine-grained metrics are
relevant to the underlying behavioral goal that they represent. But how do they relate to each other,
and is there a model class that can match both reasonably well?

As we can see in Figure 4A, the two behavioral goals of Mental-Pong ball state predictivity and
Physion OCP accuracy do not appear to be very related across models (R ≈ −0.241, p ≈ 0.134).
This suggests that held-out accuracy to novel scenes within environment as in OCP, does not imply
that the same model will generalize to completely new environmental dynamics as in Mental-Pong.
In particular, it is important to consider generalization to new environments, since the end-to-end
pixel-wise models such as SVG and FitVid subtly overfit to this environment (attaining the highest
OCP held-out scene accuracy), but they fail to generalize as well to the completely out-of-distribution
Mental-Pong setting (rightmost periwinkle and dark green points in Figure 4A). For example, for
FitVid, this failure is visualizable, as it predicts the Mental-Pong ball to be static, regardless of
enlarging the ball during evaluation or pretraining with temporal augmentations (Figure S2).

Delving into the more challenging, fine-grained measures of DMFC Mental-Pong neural predictivity
and correlation to human error patterns, we observe in particular that the dynamically-equipped
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VC-1-based models (VC-1+CTRNN and VC-1+LSTM in cyan) reasonably match both human error
patterns in Physion and Mental-Pong DMFC neural dynamics (Figure 4B).

Just as VC-1 on its own does not universally dominate on every individual sensorimotor task,
but instead outperforms the best prior existing visual foundation models on average across the 17
CortexBench tasks [Majumdar et al., 2023], our finding that future prediction in the latent space of
this model class reasonably matches both human behavioral patterns and neural responses is therefore
consistent with this observation. Taken together, our results suggest that future prediction in the
latent space of video foundation models for Embodied AI is a promising paradigm for developing
models of physical dynamics that are both a better match to neural and behavioral recordings, and
can structurally generalize across diverse environments and scenarios within.

7 Discussion

Overall, we find that structural generalization to completely new environments and matching dense
neurophysiological data to be a strong constraint on sensory-cognitive hypotheses of mental simula-
tion. In a manner evocative of Yamins et al. [2014]’s discovery of then-novel image categorization-
optimized CNNs outperforming all prior models in matching primate inferotemporal cortex, our
dynamically-equipped video foundation models notably outperform all other models in DMFC neural
response matching, illustrating the evolving nature of goal-driven models, especially when applied
to higher-cognitive brain areas while the animal is performing a task. Going forward, we believe
that we are at a crucial turning point whereby foundation models that engage with the visually rich,
dynamic scenes that humans and animals naturally interface with, will be jointly critical for progress
in Embodied AI and neuroscience, addressing the recent call to action to build AI that can be as
grounded in the physical world as animals are [Zador et al., 2023]. We observe that both the popular
machine learning paradigm of pixel-wise future prediction and visual foundation models pretrained
on webscale imagesets, typically favored for classic computer vision tasks like image segmentation
and classification, underperform here. Instead, future prediction within the latent space of a video
foundation model, pretrained on diverse egocentric sources, aligns best with high-throughput neural
and behavioral patterns in scenes that it was not originally trained on. Our findings indicate that pri-
mate mental simulation harbors robust inductive biases, and is so far most consistent with predicting
the future state of its environment in a latent space that is reusable across dynamic environments.

On our existing benchmarks, there are a few ways that we envision our current models can be
improved. First, we believe that major strides can still be made in the encoder module of the models,
namely by better leveraging temporal relationships to build a more “factorized” and reusable, object-
centric representation. The need for a more factorized, object-centric representation is suggested
by the high neural predictivity of the joint, ground truth position + velocity oracle in Figure 3B,
compared to either the position or velocity oracles alone. At the same time, it is crucial to also
maintain reusability in this representation since the fixed object-slot C-SWM models do not match
these data well, and can be considered an example of an object-centric, but not reusable, representation.
Therefore, a couple ideas in this direction would be to employ dynamic object-slots [Traub et al.,
2022, Didolkar et al., 2023] or structured masking [Bear et al., 2023, Yuan et al., 2023] pretrained
on Ego4D or even larger egocentric datasets such as CortexBench [Majumdar et al., 2023], to yield
object-centric, video foundation models. Additionally, simpler modifications such as differentiating
between agent-based egomotion vs. external object motion may likely improve video foundation
models by better closing the loop between taking actions in the world vs. simulating it.

The encoder modifications mentioned above may enable the models to learn more explicit representa-
tions of objects and their material properties, compared to current self-supervised methods that are
more statistical in nature [Balestriero et al., 2023]. This is especially relevant given our finding that
all current models struggle most with the soft-body interactions of the “Drape” scenario in Physion,
both in terms of accuracy (Figure S4D) and matching human error patterns (Figure 2), yet Ego4D has
many examples of deformable objects in it (such as baking, clay, etc). Thus, it is not the pretraining
dataset that is impoverished, but rather the current model architectures and loss functions are failing
to pick up on these in existing datasets. The dynamics architecture could also benefit from including
multiple timescales of hierarchy, with some recent neurobiological evidence of this type of temporal
hierarchy already existing in frontal cortex [Sarafyazd and Jazayeri, 2019]. Such dynamics could sync
well with dynamic object-slot encoders, capturing more rapid object state changes at one timescale
and slower material property shifts across scenes at a higher-level, more abstracted timescale.
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Broader Impact

Almost everything humans and animals do revolves around an intuitive understanding of the physical
dynamics of the world we are embedded in, enabling us to make long-range plans and perform
actions that ensure our survival. Furthermore, engineering at least this same level of intuitive physical
understanding in silico will be critical for progress in robotics, autonomous vehicles, and any other
embodied applications that involve safely taking actions in the real world. Our work not only provides
a strong measurement of the degree of alignment between our current best engineered systems to those
of humans and animals, but through the differentiation across choices of the architecture, objective
function, and pretraining dataset, also provides scientific insight into the evolutionary constraints
underlying the neural mechanisms of mental simulation. In particular, we quantitatively observe that
future prediction in a latent space optimized for diverse, dynamic scenes is our current best theory
that predicts neural dynamics during mental simulation behavior, compared to popular pixel-wise and
object-slot alternatives. This set of observations suggests that making progress in Embodied AI will
also correspondingly yield an improved understanding of mental simulation in human and animal
brains.
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