
Multiply Robust Federated Estimation of Targeted
Average Treatment Effects

Larry Han
Department of Health Sciences

Northeastern University
Boston, MA 02115

lar.han@northeastern.edu

Zhu Shen
Department of Biostatistics

Harvard University
Boston, MA 02115

zhushen@g.harvard.edu

José R. Zubizarreta
Departments of Health Care Policy, Biostatistics, and Statistics

Harvard University
Boston, MA 02115

zubizarreta@hcp.med.harvard.edu

Abstract

Federated or multi-site studies have distinct advantages over single-site studies,
including increased generalizability, the ability to study underrepresented popula-
tions, and the opportunity to study rare exposures and outcomes. However, these
studies are complicated by the need to preserve the privacy of each individual’s
data, heterogeneity in their covariate distributions, and different data structures
between sites. We propose a novel federated approach to derive valid causal infer-
ences for a target population using multi-site data. We adjust for covariate shift and
accommodate covariate mismatch between sites by developing a multiply-robust
and privacy-preserving nuisance function estimation approach. Our methodology
incorporates transfer learning to estimate ensemble weights to combine information
from source sites. We show that these learned weights are efficient and optimal
under different scenarios. We showcase the finite sample advantages of our ap-
proach in terms of efficiency and robustness compared to existing state-of-the-art
approaches. We apply our approach to study the treatment effect of percutaneous
coronary intervention (PCI) on the duration of hospitalization for patients experi-
encing acute myocardial infarction (AMI) with data from the Centers for Medicare
& Medicaid Services (CMS).

1 Introduction

Compared to single-site studies, federated or multi-site studies confer distinct advantages, such as
the potential for increased generalizability of findings, the opportunity to learn about underrepre-
sented populations, and the ability to study rare exposures and outcomes. However, deriving valid
causal inferences using multi-site data is difficult due to numerous real-world challenges, including
heterogeneity of site populations, different data structures, and privacy-preserving constraints stem-
ming from policies such as the General Data Protection Regulation (GDPR) and Health Insurance
Portability and Accountability Act (HIPAA) that prohibit direct data pooling.

Recent methodological developments have focused on privacy-preserving estimation strategies.
These strategies typically involve sharing summary-level information from multiple data sources
[28, 29, 13, 14, 20]. However, they often require restrictive assumptions such as homogeneous data
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structures and model specifications (e.g., a common set of observed covariates measured using a
common data model), which are not realistic in practice.

To address these methodological gaps, we propose a multiply robust and privacy-preserving estimator
that leverages multi-site information to estimate causal effects in a target population of interest.
Compared to existing approaches, our method allows investigators from different sites to incorporate
site-specific covariate information and domain knowledge and provides increased protection against
model misspecification. Our method allows for flexible identification under different settings,
including systematically missing covariates and different site-specific covariates (termed covariate
mismatch). Our proposed method adopts an adaptive ensembling approach that optimally combines
estimates from source sites and serves as a data-driven metric for the transportability of source sites.
Moreover, the proposed method relaxes the assumption of homogeneous model specifications by
adopting a class of multiply robust estimators for estimating the nuisance functions.

1.1 Related Work and Contributions

The current literature on multi-site causal inference typically assumes that a common set of con-
founders is observed in all sites [8, 7, 13, 14]. However, this assumption is rarely met due to variations
in local practices, e.g., differing data collection standards and coding practices. In particular, the
target site often lacks data on certain covariates available in the source sites, and ignoring them can
result in biased and inefficient inference [32]. Recently, [30] proposed a method to address covariate
mismatch by integrating source samples with unmeasured confounders and a target sample containing
information about these confounders. However, they assumed that the target and source samples are
obtained from the same population. [12] extended the method of [30] to the setting where the average
treatment effect (ATE) is not identifiable in some sites by constructing control variates. However,
their approach is focused on addressing selection biases where preferential selection of units solely
depends on the binary outcome, and it is not obvious how one could extend the method to other
settings. [32] extended the framework by [8, 7] to handle covariate mismatch by regressing predicted
conditional outcomes on effect modifiers and then taking the means of these regression models
evaluated on target site samples. Our work leverages ideas from [32] to a more general multi-site
federated data setting by utilizing an adaptive weighting approach that optimally combines estimates
from source sites.

Most existing approaches in the generalizability and transportability literature deal with heterogeneous
covariate distributions by modeling the site selection processes [6, 2, 27, 8, 7]. These approaches,
which incorporate inverse probability of selection weights [6, 2], stratification [27], and augmentation
[8, 7], involve pooling individual-level information across sites. Our work differs from those in
that we preserve individual data privacy, sharing only summary-level information from the target
site. Specifically, we adopt density ratio models [24, 9] that only share covariate moments of the
target samples. Under certain specifications, these density ratio models are equivalent to logistic
regression-based selection models for adjusting heterogeneity between target and source populations.
Our approach shares similarities with calibration weighting methods but leverages semi-parametric
efficiency theory to enable a closed-form approximation of the variance.

Further, when data sources are heterogeneous, it would be beneficial for investigators at different
sites to incorporate site-specific knowledge when specifying candidate models. However, to the best
of our knowledge, existing methods require common models to be specified across sites, which may
not be realistic or flexible enough [28, 29, 13, 14, 20]. In contrast, this paper takes a different stance;
we accommodate variations in outcome and treatment models across sites using a multiply robust
estimator, instead of imposing a uniform model. Our work builds on [22], which established an
equivalence between doubly robust and multiply robust estimators using mixing weights determined
by predictive risks of candidate models [17, 15, 16, 3, 4, 5]. We take advantage of this equivalent
form to obtain closed-form expressions for the variance of our federated global estimator. Compared
to [32], where they consider a single source site and a single target site, we are able to consider
multiple source sites and multiple target sites. To prevent the negative transfer, we combine the
estimates from multiple sites via a data-adaptive ensembling approach first proposed in [13].
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2 Preliminaries

We consider data from K sites, where each site has access to its individual-level data but is prohibited
from sharing this data with any other site. The set of sites will be denoted by K = {1, 2, ...,K}. We
index the target site with T and the source sites as the remaining sites, i.e., S = K \ T .

For each individual i, let Yi denote an observed outcome, which can be continuous or discrete.
Xi ∈ Rp represents the p-dimensional baseline covariates in source site k ∈ S. Vi ∈ Rq represents
the (partial) baseline covariates in the target site T such that Vi ⊆ Xi. To simplify the presentation, we
assume an identical set of covariates across all source sites, although our method can accommodate
scenarios where distinct covariate sets are present among the source sites. Let Ai represent a
binary treatment indicator, with Ai = 1 denoting treatment and Ai = 0 denoting control. Ri is
a site indicator with Ri = k if patient i is from the site k. We observe nT target observations,
DT = {Yi, Vi, Ai, Ri = T, 1 ≤ i ≤ nT } and nk source observations, Dk = {Yi, Xi, Ai, Ri =
k, 1 ≤ i ≤ nk} for each k ∈ S. The total sample size is N =

∑
k∈K nk. Under the potential

outcomes framework [23, 25], we denote the counterfactual outcomes under treatment and control
as {Yi(1), Yi(0)}, and only one of them is observed: Yi = AiYi(1) + (1−Ai)Yi(0) [26]. The data
structure is illustrated in Figure 1.

Figure 1: Schematic of the data structure in the multi-site setting.

Our goal is to estimate the target average treatment effect (TATE),

∆T = µ1,T − µ0,T where µa,T = E {Yi(a) | Ri = T} for a ∈ {0, 1}, (1)

where µa,T is the mean potential outcome under treatment a in the target population. To identify this
quantity, we consider the following assumptions:

(A1) (Consistency): For every individual i, if Ai = a, then Yi = Yi(a).
(A2) (Mean exchangeability over treatment assignment in the target population):

E{Yi(a) | Vi = v,Ai, Ri = T} = E {Yi(a) | Vi = v,Ri = T}.
(A3) (Positivity of treatment assignment in the target population):

0 < P (Ai = 1 | Vi = v,Ri = T ) < 1 for any v s.t. P (Vi = v | Ri = T ) > 0.
(A4) (Mean exchangeability over treatment assignment in the source populations):

E{Yi(a) | Xi = x,Ai, Ri = k} = E {Yi(a) | Xi = x,Ri = k}, k ∈ S.
(A5) (Positivity of treatment assignment in the source populations):

0 < P (Ai = 1 | Xi = x,Ri = k) < 1 for any x s.t. P (Xi = x | Ri = k) > 0, k ∈ S.
(A6) (Mean exchangeability over site selection):

E{Yi(a) | Vi = v,Ri = k} = E {Yi(a) | Vi = v}, k ∈ K.
(A7) (Positivity of site selection):

0 < P (Ri = k | Vi = v) < 1 for k ∈ S and any v s.t. P (Vi = v) > 0.

Assumption (A1) is the stable unit treatment value assumption (SUTVA), requiring no interference
between individuals. Assumption (A2) (Assumption (A4)) states that the mean counterfactual
outcome under treatment a is independent of treatment assignment, conditional on baseline covariates
in the target (source) populations. For Assumption (A2) and (A4) to hold, we require all effect
modifiers to be measured in V . Assumption (A3) (Assumption (A5)) states that each individual in the
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target (source) populations has a positive probability of receiving each treatment. Assumption (A6)
states that the mean counterfactual outcome is independent of site selection, conditional on covariates
in the target population. For Assumption (A6) to hold, we require all covariates that are distributed
differently between target and source populations (shifted covariates) to be measured in V . Thus,
if these effect modifiers are measured in V , Assumption (A2), (A4) and (A6) automatically hold.
Assumption (A7) requires that in each stratum defined by V , the probability of being in a source
population for each individual is positive. Theorem 1 shows that under Assumption (A1), (A4) - (A7),
the mean counterfactual outcome for the target can be identified in the sources.
Theorem 1. If Assumptions (A1) - (A3) hold, the mean counterfactual outcomes in the target
population can be identified using the target sample.

µa,T = E {Yi(a) | Ri = T} = E {E {Yi | Vi = v,Ai = a,Ri = T} | Ri = T} . (2)

If Assumptions (A1), (A4) - (A7) hold, the mean counterfactual outcomes in the target population can
be identified using the source samples.

µa,T = E {Yi(a) | Ri = T}
= E {E {E {Yi | Xi = x,Ai = a,Ri = k} | Vi = v,Ri = k} | Ri = T} . (3)

3 Site-specific Estimation

For the target site k = {T}, a standard augmented inverse propensity weighted (AIPW) estimator is
used for µa,T as follows

µ̂a,T =
1

nT

n∑
i=1

[
I(Ai = a,Ri = T )

π̂a,T (Vi)

{
Yi − m̂a,T (Vi)

}
+ m̂a,T (Vi)

]
, (4)

where m̂a,T (Vi) is an estimator for E {Yi | Vi = v,Ai = a,Ri = T}, the outcome model in the
target population, and π̂a,T (Vi) is an estimator for P (Ai = 1 | Vi = v,Ri = T ), the probability of
receiving treatment a in the target population.

For each source site k ∈ S, we propose an estimator for µa,T as follows

µ̂a,k =
1

nk

n∑
i=1

[
I(Ai = a,Ri = k)

π̂a,k(Xi)
ζ̂k(Vi)

{
Yi − m̂a,k(Xi)

}]

+
1

nk

n∑
i=1

[
I(Ri = k)ζ̂k(Vi)

{
m̂a,k(Xi)− τ̂a,k(Vi)

}]
+

1

nT

n∑
i=1

I(Ri = T )τ̂a,k(Vi), (5)

where τ̂a,k(Vi) is an estimator for E {ma,k(x) | Vi = v,Ri = k} and m̂a,k(Xi) is an estimator for
E {Yi | Xi = x,Ai = a,Ri = k}. ζ̂k(Vi) estimates f(Vi | Ri = T )/f(Vi | Ri = k), the density
ratios of covariate distributions in the target population T and source population k ∈ S. π̂a,k(Xi)
estimates P (Ai = 1 | Xi = x,Ri = k), the probability of receiving treatment a in source k ∈ S.
The estimators (4) and (5) are derived leveraging semi-nonparametric theory. They can be seen as a
functional Taylor expansion of the target functional µa,T . This method is commonly used in causal
inference to correct for the bias of the plug-in estimators. These resulting estimators exhibit favorable
statistical properties, even when slow-converging non-parametric techniques are used for nuisance
estimation. For a more comprehensive discussion, interested readers can refer to [21] and [18].

Compared to the transportation estimators in [8, 7], we introduce two additional nuisance functions,
ζk(Vi) and τa,k(Vi). Specifically, ζk(Vi) accounts for covariate shift across sites while preserving
individual’s data privacy, while τa,k(Vi) is introduced to address covariate mismatch across sites.
We provide estimation procedures for these nuisance functions in the following subsections, and the
theoretical guarantees of the estimator are presented in Section 5.

3.1 Density Ratio Weighting

Most existing methods adjust for covariate shift across sites by relying on inverse probability of
selection weighting, which requires pooling target and source samples. However, such pooling is
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often not possible due to data privacy regulations. We consider a density ratio weighting approach,
which offers equivalent estimation without the need for direct data pooling (see Appendix A).

Formally, as in [13], we model the density ratios of covariate distributions in the tar-
get T and source k ∈ S by specifying an exponential tilt model [24, 9]; ζk(Vi; θk) =
f(Vi | Ri = T )/f(Vi | Ri = k) = exp

{
−θ⊤k ψ(Vi)

}
where f(Vi | Ri = T ) and f(Vi | Ri = k)

are density functions of covariates Vi in the target T and source k ∈ S, respectively, and ψ(Vi) is
some d-dimensional basis with 1 as its first element. With this formulation, ζk(Vi; θk) = 1 for θk = 0
and

∫
ζk(Vi; θk)f(Vi | Ri = k)dx = 1. If we choose ψ(Vi) = Vi, we can recover the entire class of

natural exponential family distributions. If we include higher-order terms, the exponential tilt model
has greater flexibility in characterizing the heterogeneity between two populations [10]. We solve for
θ̂k with the following estimating equation

1

nT

N∑
i=1

I (Ri = T )ψ (Vi) =
1

nk

N∑
i=1

I (Ri = k)ψ (Vi) exp
{
−θ⊤k ψ(Vi)

}
. (6)

This procedure preserves individual privacy; choosing ψ(Vi) = Vi, the target site only needs to share
its covariate means with the source sites; each source site then solves (6) with its own data to obtain
the density ratios.

3.2 Multiply Robust Estimation

We relax the assumption of homogeneous model specifications across sites and allow each site to
propose multiple models for nuisance functions. Our proposal follows the construction of multiply
robust estimators for nuisance functions via a model-mixing approach [22].

Formally, for each site k ∈ K, we consider a set of J candidate treatment models for the propensity
scores {πj

a,k (x) : j ∈ J = {1, ..., J}}. Let π̂j
a,k(x) be the estimator of πj

a,k(x) obtained by
fitting the corresponding candidate models on the data, which can be parametric, semiparametric,
or nonparametric machine learning models. π̂a,k(Xi) =

∑J
j=1 Λ̂j π̂

j
a,k(Xi) denotes the weighted

predictions of propensity scores, with weights Λ̂j assigned to predictions by each candidate model j.
To calculate the weights Λ̂j , we adapt a model-mixing algorithm developed in [31] and [22] based on
the cumulative predictive risks of candidate models.

First, we randomly partition the data within each site into a training set Dtrain
k of units indexed by

{1, ..., ntrain
k } and a validation set Dval

k of units indexed by {ntrain
k + 1, ..., nk}. Then, each candidate

treatment model is fit onDtrain
k to obtain π̂j

a,ntrain
k

for j ∈ J . The model-mixing weights are determined

by the models’ predictive risks assessed on Dval
k according to the Bernoulli likelihood. Specifically,

Λ̂j =
(
nk − ntrain

k

)−1
nk∑

i=ntrain
k +1

Λ̂j,i and

Λ̂j,i =
Πi−1

q=ntrain
k +1

π̂j

a,ntrain
k

(Xq)
Aq

{
1− π̂j

a,ntrain
k

(Xq)
}1−Aq

∑J
j′=1 Π

i−1
q=ntrain

k +1
π̂j′

a,ntrain
k

(Xq)
Aq

{
1− π̂j′

a,ntrain
k

(Xq)
}1−Aq

for ntrain
k + 2 ≤ i ≤ nk,

(7)

where Λ̂j,ntrain
k +1 = 1/J . The model-mixing estimators are consistent if one of the j ∈ J candidate

models is correctly specified [22]. A similar strategy can be used for conditional outcomes ma,k(Xi)
by combining a set of L candidate outcome models {ml

a,k (x) : l ∈ L = {1, ..., L}}. We obtain
m̂a,k(Xi) =

∑L
l=1 Ω̂lm̂

l
a,k(Xi) as the predicted outcomes with weights Ω̂l of candidate outcomes

models under treatment a in site k. Further details are provided in Appendix B.

3.3 Covariate Mismatch

To account for covariate mismatch, we adapt the approach in [32], introducing the nuisance function
τa,k(Vi) = E{ma,k(x) | Vi = v,Ri = k}, where ma,k(x) is the outcome regression for treatment a
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in site k. First, we estimate ma,k(Xi) by regressing the outcome Yi on covariates Xi among units
receiving treatment a in site k. We then regress m̂a,k(Xi), the estimates from the previous step, on Vi
in the source site k to obtain τ̂a,k(x). By doing so, we project all site-specific estimates of conditional
outcomes to a common hyperplane defined by Vi. If all effect modifiers that are distributed differently
between target and source populations are measured in Vi, then the information contained in the
projected site-specific estimates can be transported to the target site. Finally, we take the mean
of τ̂a,k(x) over the target sample, which gives us the transported estimate τ̂a,k(Vi) for the mean
counterfactual outcomes under treatment a in the target population.

4 Federated Estimation

Let µ̂a,T denote the estimate of µa,T based on target data only and µ̂a,k be the estimates of µa,T

using source data k ∈ S. We propose a general form of the federated global estimator as follows

µ̂a,G = µ̂a,T +
∑
k∈K

η̂k {µ̂a,k − µ̂a,T } , (8)

where η̂k ≥ 0 is a non-negative weight assigned to site-specific estimates and
∑

k∈K η̂k = 1. The role
of ηk is to determine the ensemble weight given to the site-specific estimates. We can employ diverse
weighting methods by selecting appropriate values of ηk. For example, if ηk = 0, the global estimator
is simply the estimator based on target data only; if ηk = nk/N , the global estimator combines
site-specific estimates by their sample sizes; if ηk = (1/σ2

k)/
∑

j∈K(1/σ
2
j ) where σ2

k = Var(µ̂a,k),
the global estimator is the inverse variance weighting estimator, which is known to be appropriate
when working models are homogeneous across sites [29].

In transportability studies, preventing negative transfer is critical when there are multiple, potentially
biased source sites. If source sites are biased, both the sample size-weighted estimator and the
variance-weighted estimator would inherit this bias. By examining the MSE of the data-adaptive
estimator to the limiting estimand of the target estimator, the MSE can be decomposed into a variance
term that can be minimized by regression of influence functions obtained from the asymptotic linear
expansion of the target and source estimates, and an asymptotic bias term. This allows us to rewrite
the problem of solving for ensemble weights as an adaptive LASSO problem [13, 14] as follows:

η̂k,L1 = arg min
ηk≥0

N∑
i=1

[
ξ̂T,i(a)−

∑
k∈K

ηk

(
ξ̂T,i(a)− ξ̂k,i(a)− δ̂k

)]2
+ λ

∑
k∈K

|ηk| δ̂2k, (9)

where ηk,L1
denotes the data-adaptive weights; ξ̂T,i(a) and ξ̂k,i(a) are the estimated influence

functions for the target and source site estimators (see Appendix E.3 for the exact form of the
influence functions). The estimated difference δ̂k = µ̂a,k − µ̂a,T quantifies the bias between the
estimate from source k ∈ S and the estimate from the target T . The tuning parameter λ determines the
penalty imposed on source site estimates and in practice, is chosen via cross-validation. Specifically,
we create a grid of values of λ and iteratively train and evaluate the model using different λ values,
selecting the one with the lowest average validation error after multiple sample splits.

We estimate the variance of µ̂a,G using the estimated influence functions for µ̂a,T and µ̂a,k. By the

central limit theorem,
√
N(µ̂a,G − µ̄a,G)

d→ N (0,Σ), where Σ = E{
∑

k∈K η̄kξk,i(a)}2 and µ̄a,G

and η̄k denote the limiting values of µ̂a,G and η̂k respectively. The standard error of µ̂a,G is estimated

as
√
Σ̂/N where Σ̂ = N−1

∑
k∈K

∑nk

i=1{η̂k ξ̂k,i(a)}2. A two-sided (1 − α)×100% confidence
interval for µa,G is

Ĉα =

[
µ̂a,G −

√
Σ̂/NZα/2, µ̂a,G +

√
Σ̂/NZα/2

]
, (10)

where Zα/2 is the 1− α/2 quantile for a standard normal distribution.

5 Theoretical Guarantees

In this section, we first establish the theoretical properties of the site-specific estimators constructed
with the multiply robust model-mixing approach. Define πj

a,k, ml
a,k, τa,k and ζk as non-stochastic
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functionals that the corresponding estimators π̂j
a,k, m̂l

a,k, τ̂a,k and ζ̂k converge to for k ∈ K1. That is,

∥π̂j
a,k − πj

a,k∥ = op(1), ∥m̂l
a,k −ml

a,k∥ = op(1), ∥τ̂a,k − τa,k∥ = op(1), ∥ζ̂k − ζk∥ = op(1).

As shown in Lemmas E.1 and E.2 in Appendix E.2, the L2 risks of the model-mixing estimators
π̂a,k and m̂a,k are bounded by the smallest risks of all candidate models plus a remainder term that
vanishes at a faster rate than the risks themselves. Leveraging Lemmas E.1 and E.2, we show the
consistency and asymptotic normality of the site-specific estimators in Theorem 2. The proofs are
given in the Appendix E.4.

Theorem 2. Suppose that the conditions in Lemmas E.1 and E.2 hold, and for k ∈ K that π̂j
a,k, m̂l

a,k,

ζ̂k, τ̂a,k, π̄j
a,k, m̄l

a,k, ζ̄k and τ̄a,k are uniformly bounded for all treatment models j ∈ J and for all
outcome models l ∈ L. Consider the following conditions:

(B1) πj
a,k = πa,k for some j ∈ J ,

(B2) ml
a,k = ma,k for some l ∈ L,

(C1) ζk = ζk,
(C2) τa,k = τa,k.

Then, under Assumptions (A1) - (A7), and if one of (B1) or (B2) and one of (C1) or (C2) hold,

∥µ̂a,k − µa,T ∥ = Op

(
n−1/2 + ∥π̂a,k − πa,k∥∥m̂a,k −ma,k∥+ ∥ζ̂k − ζk∥∥τ̂a,k − τa,k∥

)
. (11)

Further, if the nuisance estimators satisfy the following convergence rate

∥m̂a,k −ma,k∥ ∥π̂a,k − πa,k∥ = op(1/
√
n), ∥ζ̂k − ζk∥ ∥τ̂a,k − τa,k∥ = op(1/

√
n), (12)

then
√
n(µ̂a,k − µa,T ) asymptotically converges to a normal distribution with mean zero and asymp-

totic variance equal to the semiparametric efficiency bound.

In Theorem 3, we establish the consistency and asymptotic normality of the federated global estimator.
These properties are attained without requiring consistency in the site-specific estimators from the
source sites, a consequence of the adaptive weighting method employed. We further delve into
conditions in which leveraging information from source sites can enhance the efficiency of the
estimator constructed solely with the target data. The proofs are given in the Appendix E.5.
Theorem 3. Under Assumptions (A1) - (A7) and the regularity conditions specified in the Ap-
pendix E.5, the federated global estimator of ∆T , given by ∆̂G = µ̂1,G − µ̂0,G, is consistent and
asymptotically normal, √

N/V̂
(
∆̂G −∆T

)
d→ N (0, 1), (13)

with the variance estimated consistently as V̂ . The variance of ∆̂G is no larger than that of the
estimator based on target data only, ∆̂T = µ̂1,T − µ̂0,T . Further, if there exist some source sites with
consistent estimators of ∆T and satisfy conditions specified in the Appendix E.5, the variance of ∆̂G

is strictly smaller than ∆̂T .

6 Numerical Experiments

We evaluate the finite sample properties of five different estimators: (i) an augmented inverse
probability weighted (AIPW) estimator using data from the target site only (Target), (ii) an AIPW
estimator that weights each site proportionally to its sample size (SS), (iii) an AIPW estimator that
weights each site inverse-proportionally to its variance (IVW), (iv) an AIPW estimator that weights
each site with the L1 weights defined in (9) (AIPW-L1), and (v) a multiply robust estimator with the

1When k = T , the site-specific estimator takes the form in (4) and we only specify the outcome and treatment
models. To establish the consistency and asymptotic normality of the target site-specific estimator, we require
one of the Assumptions (B1) and (B2) in Theorem 3 to hold. Then (11) is simplified since we only need to
consider the convergence rate of ∥m̂a,k −ma,k∥ ∥π̂a,k − πa,k∥.
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L1 weights defined in (9) (MR-L1). Across different settings, we examine the performance of each
estimator in terms of mean absolute error, root mean square error, and coverage and length of 95%
confidence intervals (CI) across 500 simulations.

We consider a total of five sites and fix the first site as the target site with a relatively small sample size
of 300. The source sites have larger sample sizes of {500, 500, 1000, 1000}. We model heterogeneity
in the covariate distributions across sites with skewed normal distributions and varying levels of
skewness in each site, Xkp ∼ SN

(
x; Ξkp,Ω

2
kp, γkp

)
, where k ∈ {1, ..., 5} indexes each site

and p ∈ {1, ..., 4} indexes the covariates; Ξkp, Ω2
kp and γkp are the location, scale, and skewness

parameters, respectively. Following [19], we also generate covariatesZkp as non-linear transformation
ofXkp such thatZk1 = exp(Xk1/2),Zk2 = Xk2/{1+exp(Xk1)}+10,Zk3 = (Xk1Xk3/25+0.6)3

and Zk4 = (Xk2 +Xk4 + 20)2.

To demonstrate that our proposed MR-L1 estimator can handle covariate mismatch across sites, we
consider the setting where there exists covariate mismatch across sites, i.e. Vk = {Xk1, Xk2} for the
target site and Xk = {Xk1, Xk2, Xk3, Xk4} for the source sites. In Appendix D.1, we also provide
results for the setting where there is no covariate mismatch between sites. Specifically, we generate
potential outcomes as

Yk(a) = 210 +Xkβx + εk (14)
where βx = (27.4, 13.7, 0, 0) for units in the target site and βx = (27.4, 13.7, 13.7, 13.7) for units in
the source sites. Similarly, the treatment is generated as

Ak ∼ Bernoulli (πk) πk = expit(Xkαx) (15)
where αx = (−1, 0.5, 0, 0) for units in the target site and αx = (−1, 0.5,−0.25,−0.1) for units in
the source site. With this data generation scheme, the true TATE is ∆T = 0.

The AIPW-L1 estimator, which requires common models across sites, only uses the shared covariates
(Xk1 and Xk2) to specify outcome and treatment models for all sites. On the other hand, our MR-L1

estimator allows for different covariates in different sites, so we utilize both shared covariates with
the target site and unique covariates to specify the outcome and treatment models in the source sites.

For the site-specific estimators based on MR-L1, we adaptively mix two outcome models and two
treatment models. In particular, we specify the first model with the covariates Xkp, and the second
model with the covariates Zkp.

Table 1: Mean absolute error (MAE), root mean squared error (RMSE), coverage (Cov.), and length (Len.) of
95% CIs based on 500 simulated data sets in covariate mismatch settings.

Target SS IVW AIPW-L1 MR-L1

MAE 0.108 4.331 0.150 0.107 0.053
RMSE 0.136 4.401 0.186 0.134 0.067
Cov. 0.946 1.000 0.882 0.950 0.944
Len. 0.538 26.024 0.553 0.536 0.253

In Table 1, we observe that the AIPW-L1 estimator exhibits similar MAE, RMSE, coverage, and
length of confidence intervals as the Target estimator while outperforming the SS and IVW estimators.
This is because relying solely on shared covariates leads to significant biases in all source sites (Figure
2, left panel), and the AIPW-L1 estimator assigns nearly all of the ensemble weight to the target site
so as to reduce bias.

In contrast, the MR-L1 estimator outperforms the AIPW-L1 estimator by exhibiting substantially
smaller MAE, lower RMSE, and better coverage. This improvement can be attributed to the inclusion
of unique covariates from the source sites, which allows for the recovery of true models in those
sites and contributes to accurate estimation of ∆T (Figure 2, right panel). These findings suggest
that neglecting covariate mismatch by solely relying on shared covariates can lead to highly biased
results.

7 Case Study

We employ our approach to investigate the treatment effect of percutaneous coronary intervention
(PCI) on the duration of hospitalization for individuals experiencing acute myocardial infarction
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Figure 2: Estimates of the TATE based on 500 simulated data sets with covariate mismatch comparing the
site-specific estimators with nuisance functions estimated by AIPW and by multiply robust model-mixing.

(AMI), one of the leading causes of hospitalization and mortality in the United States. We utilize
a dataset from the Centers for Medicare & Medicaid Services (CMS), comprising a representative
cohort of Medicare beneficiaries admitted to short-term acute-care hospitals. We select Maine as
our target state of interest and incorporate data from the other 48 continental states to augment the
Maine-specific treatment effect estimation.

We choose Maine as our target state for studying PCI treatment quality due to its limited AMI patient
population. This scarcity of data in Maine necessitates the integration of information from other states
for more precise treatment quality assessment. We consider a scenario where we only possess basic
patient demographic information, including age, race, gender, and principal diagnosis categories in
Maine. In contrast, the other source states have access to more extensive patient medical histories
and have collected additional covariates, namely patient comorbidities.

The AIPW-L1 estimator requires a homogeneous model across states, so we define outcome and
treatment models within each state using common patient demographic variables. By contrast, for
our proposed MR-L1 estimator, we use patient demographic variables for outcome and treatment
models in Maine, while in other states, we use both patient demographic and comorbidity variables
for model specification. We adaptively combine two outcome models and two treatment models in
the source states. The first model is defined using patient demographic variables, and the second
model is defined with both patient demographic and comorbidity variables.

The estimation results of the case study are illustrated in Figure 3 using the five estimators. We
observe that the AIPW-L1 and our proposed MR-L1 estimators yield point estimates that are close
to the estimate by the Target estimator, while SS and IVW estimators exhibit substantial bias. The
estimated treatment effect of PCI is approximately -7.6 days, indicating that if patients diagnosed
with AMI in Maine had received PCI treatment instead of medical management alone, they would
have experienced an estimated reduction in their hospitalization duration of approximately 7.6 days2.
Both the AIPW-L1 and our proposed MR-L1 estimators exhibit efficiency gain with smaller standard
errors compared to the Target estimator.

    Target    −7.63 (−11.45  −3.81)

        SS    −9.93 (−15.29  −4.56)

       IVW    −8.94 ( −9.47  −8.41)

   AIPW−L1    −7.84 ( −9.60  −6.09)

     MR−L1    −7.49 ( −9.82  −5.16)

−16 −14 −12 −10 −8 −6 −4 −2 0

 Estimator     Est.           (CI)

Figure 3: Estimates of PCI treatment effect in Maine with covariate mismatch in patient comorbidities

2We assigned patients who died in the hospital a length of stay equivalent to the maximum of either their
actual length of stay or the 99th percentile value of the length of stay in the dataset [1]. This modification is
intended to prevent hospitals where patients often die early in their hospitalization from inaccurately appearing
more efficient than other hospitals. Using the exact length of stay as the outcome may result in a lower estimated
effect of the PCI treatment.
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To highlight the ensemble weights corresponding to the source states, we generate Figure 4 illustrating
the estimated weights associated with each state. States with positive weights are colored in blue, with
darker shades indicating larger weights. States with zero weights are uncolored (white). We observe
that both SS and IVW estimators integrate all state-specific estimates, regardless of how dissimilar
these estimates are to the target estimate, thereby introducing negative transfer. In contrast, with
the proposed adaptive ensemble approach, both AIPW-L1 and MR-L1 estimators only incorporate
estimates from a few states whose state-specific estimates are close to the target state estimate,
ensuring that the federated estimate closely aligns with the target estimate while achieving an
efficiency gain.
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Figure 4: Federation weights across states for the PCI treatment effect in Maine using four federated estimators.

8 Conclusion

We have proposed a novel federated approach for privacy-preserving, multiply robust, and covariate
flexible estimation of causal effects. Compared to existing federated methods, our proposed approach
accommodates covariate shift and covariate mismatch across sites, while guaranteeing efficient
estimation and preserving privacy in the sense that only covariate means of the target samples are
shared in a single round of communication. Our proposal allows investigators in each site to have
greater flexibility in specifying candidate models by utilizing site-specific information. Moreover,
our method utilizes adaptive ensemble weights to avoid negative transfer in the federation process.

In practical scenarios, the proposed method would be particularly valuable in multi-source research
settings (e.g., data consortia) lacking a central data collection point. These methods would be
beneficial for combining dissimilar data sources from various hospitals. Additionally, our proposed
methodology would find utility in other contexts, such as multi-source clinics, firms, or schools
needing to assess their performance relative to peer institutions. These situations may involve data
privacy or propriety concerns that prevent the sharing of detailed, unit-level data.

To handle high-dimensional covariates, future research can explore ways to jointly model the propen-
sity score and density ratio to reduce the dimension of parameters for population balancing.

In real-world scenarios, a potential weakness of our proposed approach is the risk of breaching
patient privacy. We do not claim or test for formal privacy guarantees of the method; our work is
privacy-preserving in the sense that only summary-level information is shared between target and
source sites. Any given site is not allowed to specify a specific group and query this group’s statistics
in any other source site’s dataset. Consequently, the target site cannot easily perform membership
inference attacks. Nonetheless, for a more formal demonstration of privacy preservation, future
research could employ the differential privacy (DP) method [11].
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APPENDIX

A Equivalence of density ratio weighting and inverse of selection probability
weighting

We show that the inverse probability of selection weighting (IPSW) to the site k, ρk(Vi) =
1−P (Ri=k|Vi=v)
P (Ri=k|Vi=v) is equivalent to the density ratio weighting ζk(Vi) =

P (Vi=v|Ri=T )
P (Vi=v|Ri=k) .

Under Assumptions (A1) - (A7), the site-specific estimators based on the IPSW for µa,T is

µ̂a,k =
1

nT

n∑
i=1

[
I(Ai = a,Ri = k)

π̂a,k(Xi)
ρ̂k(Vi){Yi − m̂a,k(Xi)}

]

+
1

nT

n∑
i=1

[
I(Ri = k)ρ̂k(Vi)

{
m̂a,k(Xi)− τ̂a,k(Vi)

}]

+
1

nT

n∑
i=1

I(Ri = T )τ̂a,k(Vi) (16)

where ρ̂k(Vi) =
1−P̂ (Ri=k|Vi=v)

P̂ (Ri=k|Vi=v)
is an estimator for ρk(Vi). Applying Baye’s rule, we show that the

IPSW is equivalent to the density ratio weighting up to a constant,

ρk(Vi) =
1− P (Ri = k | Vi = v)

P (Ri = k | Vi = v)

=
P (Ri = T | Vi = v)

P (Ri = k | Vi = v)

=
P (Vi = v | Ri = T )P (Ri = T )

P (Vi = v | Ri = k)P (Ri = k)

= ζk(Vi)
P (Ri = T )

P (Ri = k)
. (17)

We re-write (16) by substituting ρ̂k(Vi) with ζ̂k(Vi),

µ̂a,k =
1

nT

n∑
i=1

[
I(Ai = a,Ri = k)

π̂a,k(Xi)
ζ̂k(Vi)

P̂ (Ri = T )

P̂ (Ri = k)
{Yi − m̂a,k(Xi)}

]

+
1

nT

n∑
i=1

[
I(Ri = k)ζ̂k(Vi)

P̂ (Ri = T )

P̂ (Ri = k)
{m̂a,k(Xi)− τ̂a,k(Vi)}

]

+
1

nT

n∑
i=1

I(Ri = T )τ̂a,k(Vi). (18)

A reasonable estimator P̂ (Ri=T )

P̂ (Ri=k)
is nT

nk
. Therefore, we recover our proposed site-specific estimator

for µa,T ,

µ̂a,k =
1

nk

n∑
i=1

[
I(Ai = a,Ri = k)

π̂a,k(Xi)
ζ̂k(Vi){Yi − m̂a,k(Xi)}

]

+
1

nk

n∑
i=1

[
I(Ri = k)ζ̂k(Vi){m̂a,k(Xi)− τ̂a,k(Vi)}

]

+
1

nT

n∑
i=1

I(Ri = T )τ̂a,k(Vi). (19)

B Multiply robust estimation for ma,k

For multiply robust outcome estimation within each site k, we consider a set of L candidate models
for conditional outcomes {ml

a,k (x) : l ∈ L = {1, ..., L}}. Let m̂l
a,k(x) be the estimates of ml

a,k(x)

1



obtained by fitting the corresponding candidate models, which can be parametric, semiparametric,
or nonparametric machine learning models. Let m̂a,k(Xi) =

∑L
l=1 Ω̂lm̂

l
a,k(Xi) be the predictions

with ensemble weights Ω̂l of candidate outcome models under treatment a in site k. We derive the
ensemble weights Ω̂l based on the cumulative predictive risk of candidate models. In particular,
we denote the data corresponding to treated and control units as Dk,1 and Dk,0 respectively, and
the sample sizes of Dk,1 and Dk,0 are denoted as nk,1 and nk,0. Consider the treated samples first;
we randomly partition Dk,1 into a training set Dtrain

k,1 of units i ∈ {1, ..., ntrain
k,1 } and a validation set

Dval
k,1 of units i ∈ {ntrain

k,1 + 1, ..., nk,1}. Then, each candidate outcome model is fit on Dtrain
k,1 to obtain

m̂l
a,ntrain

k,1
for l ∈ L.

If the outcome is binary, the ensemble weights are determined by the fitted models’ predictive risks
evaluated on Dval

k,1 according to the Bernoulli likelihood as shown in (7). If the outcome is continuous,
the ensemble weights are alternatively determined by the mean squared errors of the fitted models on
Dval

k,1 [15, 4]. Specifically,

Ω̂l =
(
nk,1 − ntrain

k,1

)−1
nk,1∑

i=ntrain
k,1+1

Ω̂l,i and

Ω̂l,i =

exp

[
−κ
∑i−1

q=ntrain
k,1+1

{
Yq − m̂l

ntrain
k,1

(Xq)
}2
]

∑L
l′=1 exp

[
−κ
∑i−1

q=ntrain
k,1+1

{
Yq − m̂l′

ntrain
k,1

(Xq)
}2
] for ntrain

k,1 + 2 ≤ i ≤ nk,1, (20)

where Ω̂l,ntrain
k,1+1 = 1/L and the ensemble predictions for the conditional outcomes under treatment

is m̂1,k(Xi) =
∑L

l=1 Ω̂lm̂
l
1,k(Xi). The above procedure is then repeated in the control group Dk,0

and a = 0 to obtain the ensemble predictions for the conditional outcomes under control.

The tuning parameter κ in (20) can be selected via cross-validation and [4] showed that the perfor-
mance of model mixture estimators is generally robust across different choices of κ; they recom-
mended choosing κ = max(1, ⌊log(L)⌋).

C Practical considerations

C.1 Assessing the identification assumptions

In general, our proposed causal identification assumptions in Section 2 are similar to those in existing
work in the domain of causal generalizability and transportability [2, 1, 16]. Further, the estimation
assumptions that we make for consistency require only one of J +K models to be correctly specified,
which is weaker than the other work, requiring one of the outcome and treatment models to be
correctly specified [2, 1].

More specifically, some of the assumptions we proposed can be verified empirically. For instance,
Assumptions (A3), (A5), and (A7) can be verified by computing the treatment probabilities for
specific patient subgroups of interest. Diagnostic plots can be valuable tools for detecting potential
positivity violations in practice. For a more comprehensive discussion and practical guidance, one
can refer to [1] and [7]. Furthermore, in specific real-world scenarios, these assumptions can also be
justified with domain knowledge. For example, in our case study with the CMS dataset, Assumptions
(A3) and (A5) hold because each state has some hospitals performing PCI treatment and there are no
baseline covariates that a contraindications for the treatment. Assumption (A7) is also plausible since
none of the states deny admission to AMI patients on the basis of any of the baseline covariates.

The Assumptions (A2) and (A6) are not testable, so it is reasonable to explore how the conclusion
changes with different degrees of assumption violations. Various sensitivity analysis methods can be
applied, for example, [13] and [3]. Discerning the plausibility of assumptions can also be facilitated
using directed acyclic graphs; the graphical identification algorithms for assessing transportability
can be useful [14]. In the important practical scenario that treatment is randomly assigned (e.g., a
multi-site randomized trial), then consistency, exchangeability, and positivity of treatment assignment
will hold by design.

2



When identification assumptions do not hold, we cannot identify the TATE from the observed
data. However, we can still derive bounds under relaxed identification requirements. These bounds
are useful because they provide a range of plausible values for the TATE. In practice, we suggest
conducting sensitivity analyses. For example, we can relax identification assumption (A6) as follows:

|E{Yi(a) | Vi = v,Ri = T} − E{Yi(a) | Vi = v,Ri = k}| ≤ δk almost surely for all a. (21)

The specific value for δk can be determined with domain knowledge. Investigators can also learn the
value of δk that changes results substantially (e.g., flips the sign of the treatment effect).

C.2 The target population can be defined generally

In this work, without loss of generality, we assume that our target population is a population of a
specific site, namely the target site population. However, our target population can be generally
specified to correspond to different goals. For example, a target population can be some covariate
profiles of the patients admitted to the hospital or any covariate profiles of patients admitted to
hospitals within a geographic region, the definition we delved into during our case study. As one
reviewer suggested, we can even define our target population at the level of an individual’s covariate
profile, with all other individuals being regarded as source individuals. Within this framework, our
method can potentially be extended to estimate individual treatment effects. However, we identify
some challenges in extending our method to the individual treatment effect estimation. First, obtaining
a reliable estimate of the target individual effect to obtain an initial "anchor estimate" is not a simple
task given that we perform estimation and inference for only one unit. Another challenge is the
privacy concern. If we operate on an individual level, we must be more careful about possible privacy
leakage and membership inference attacks.

C.3 Detecting the model heterogeneity

In practice, it can be challenging to assess whether the same outcome and treatment models should
be adopted across sites. Our primary recommendation is to consult with investigators at each site
and draw upon their domain-specific knowledge. For example, in the context of hospital quality
measurement, a shared model may not be suitable, as certain hospitals might excel in treating specific
diagnoses compared to others. Previous research has also indicated that regression models can diverge
across sites, even within the same population [10].

In cases where domain-specific expertise is unavailable, we advocate using the model-mixing al-
gorithm by [11] as a useful diagnosis of model heterogeneity across sites. Specifically, we apply
the algorithm in each site with a set of candidate outcome and treatment models and examine the
associated mixing weight of each model. If substantial variations in mixing weights exist across sites
(i.e. certain sites favor one model while others favor a different one), model heterogeneity is likely to
occur across sites. In such a case, we recommend the use of the MR-L1 approach over the AIPW-L1

approach.

In the case study, we consider two outcome models and two treatment models. We specify the first
model with the patient’s demographic variables and the second model with the patient’s demographic
and comorbidity variables. We extract the model-mixing weights for the two outcome and treatment
models and present them in Figure 5. We observe substantial variations in the assigned mixing
weights across different states, especially in terms of the treatment model. For instance, in the State of
Alabama (AL), the first model receives a mixing weight of 0.24, while the second model is assigned a
weight of 0.76. In contrast, in the State of Nebraska (NE), the second model is favored with a mixing
weight of 0.84, whereas the first model is assigned a weight of 0.16. These findings suggest that
simply assuming the same treatment model across states may not be suitable.

C.4 Stabilize the density ratio estimation

In practice, some sites can have extreme covariate shifts against the target site, meaning that their
patient population can be very different from the target patient population. Under this scenario,
correctly specifying the density ratio model can be challenging. To increase the flexibility of
the density ratio models, we allow for different basis functions to capture potential nonlinearities.
Furthermore, in the implementation, we suggest stabilizing density ratio estimates by trimming
extreme values [12].
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To further protect against potential density ratio model misspecification, we introduce the adaptive
ensemble method, described in Section 4, so that the source site estimates will be down-weighted if
they are extremely biased or the variance is too large due to the extreme density ratio weights. Finally,
as we have shown in Theorem 2, if we can estimate the τ function well enough, our site-specific
estimator can still be consistent, even when the density ratio models are completely misspecified.
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Figure 5: Model-mixing weights for the two outcome models and two treatment models across states.

D Additional experimental details

We consider five different estimators: (i) an augmented inverse probability weighted (AIPW) estimator
using data from the target site only (Target), (ii) an AIPW estimator that weights each site proportion-
ally to its sample size (SS), (iii) an AIPW estimator that weights each site inverse-proportionally to
its variance (IVW), (iv) an AIPW estimator that weights each site with the L1 weights defined in (9)
(AIPW-L1), and (v) a multiply robust estimator with the L1 weights defined in (9) (MR-L1).

We consider a total of five sites and fix the first site as the target site with a relatively small sample size
of 300. The source sites have larger sample sizes of {500, 500, 1000, 1000}. We model heterogeneity
in the covariate distributions across sites with skewed normal distributions and varying levels of
skewness in each site, Xkp ∼ SN

(
x; Ξkp,Ω

2
kp, γkp

)
, where k ∈ {1, ..., 5} indexes each site and

p ∈ {1, ..., 4} indexes the covariates. Specifically, for any given site k ∈ K, we set the location
parameters Ξkp = 0 and the scale parameter Ωkp = 1. Moreover, in the case of the target site, we
specifically assign the skewness parameter γkp a value of zero, denoting a symmetrical distribution.
However, for source site k ∈ S, we adopt different values for γkp based on the sample size. If
the sample size is equal to 500, we assign γkp the value of (1/2)p, reflecting a positively skewed
distribution. On the other hand, if the sample size is 1000, we assign γkp the value of −(1/2)p,
indicating a negatively skewed distribution. Following [8], we generate covariates Zkp as non-
linear transformation of Xkp such that Zk1 = exp(Xk1/2), Zk2 = Xk2/{1 + exp(Xk1)} + 10,
Zk3 = (Xk1Xk3/25 + 0.6)3 and Zk4 = (Xk2 +Xk4 + 20)2.

To obtain the site-specific TATE estimates, we adopt the model-mixing procedure in [11], partitioning
the data within each site into two equally sized training and validation datasets five times. The
model-mixing weights for outcome models and treatment models are determined by computing 20
and 7, respectively. We follow the recommendation in [11], setting the tuning parameter κ in 20 as
κ = max(1, ⌊log(L)⌋).
To compute the optimal ensemble weights, we solve the adaptive LASSO problem
9. The tuning parameter λ is selected through cross-validation using a grid of values
{0, 10−3, 10−2, 0.1, 0.5, 1, 2, 5, 10}. To perform cross-validation, the simulated datasets in each
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site are split into two equally sized training and validation datasets. To account for cases where
source sites have extreme covariate shifts against the target site, we stabilize density ratio estimates
by trimming extreme values such that all estimated density ratios are within a range from 0.01 to 100.

D.1 No covariate mismatch

The main text presented simulation results in Table 1 based on 500 simulations, assuming there is
covariate mismatch. Here, we investigate the performance of the estimators assuming no covariate
mismatch, i.e. Vk = Xk = {Xk1, Xk2, Xk3, Xk4} for target and source sites. We generate potential
outcomes as

Yk(a) = 210 +Xkβx + Zkβz + εk (22)
where βx = βz = (27.4, 13.7, 13.7, 13.7). For units in the target site, we generate outcomes with
Xk only by setting βz = 0; for units in the source sites, either Xk or Zk is used to generate outcomes.
If βx ̸= 0, then βz = 0 and vice versa. Similarly, the treatment is generated as

Ak ∼ Bernoulli (πk) πk = expit(Xkαx + Zkαz) (23)

where αx = αz = (−1, 0.5,−0.25,−0.1). For units in the target site, we generate treatments with
Xk only by setting αz = 0; for units in the source sites, eitherXk or Zk is used to generate treatments.
If αx ̸= 0, then αz = 0 and vice versa. With this data generation scheme, the true ATE is ∆T = 0.

We compare the performance of the five estimators under the following settings (C denotes the
proportion of source sites that correctly specify the outcome and treatment models):

Setting 1 (C = 0): outcomes and treatments in source sites are generated with Zk by setting βx = 0
and βz = (27.4, 13.7, 13.7, 13.7). However, all source sites misspecify both models with Xk. The
target site correctly specifies both models with Xk.

Setting 2 (C = 1/2): outcomes and treatments are generated with Xk in Sites 2 and Site 4 by setting
βx = (27.4, 13.7, 13.7, 13.7) and βz = 0. In Sites 3 and 5, outcomes and treatments are generated
with Zk by setting βx = 0 and βz = (27.4, 13.7, 13.7, 13.7). Thus, the outcome and treatment
models are misspecified in Sites 3 and 5 with Zk, and only half of the source sites correctly specify
the models.

Setting 3 (C = 1): outcomes and treatments in all source sites are generated with Xk by setting
βx = (27.4, 13.7, 13.7, 13.7) and βz = 0, so all source sites correctly specify outcome and treatment
models with Xk.

Table 2: Mean absolute error (MAE), root mean squared error (RMSE), coverage (Cov.), and length (Len.) of
95% CIs based on 500 simulated data sets in three (mis)specification settings.

Target SS IVW AIPW-L1 MR-L1

C = 0
MAE 0.109 1.933 0.177 0.110 0.050
RMSE 0.141 1.987 0.219 0.144 0.061
Cov. 0.950 0.998 0.826 0.936 0.960
Len. 0.551 7.035 0.567 0.547 0.234

C = 1/2
MAE 0.109 1.111 0.107 0.109 0.050
RMSE 0.141 1.189 0.139 0.140 0.062
Cov. 0.950 1.000 0.942 0.950 0.962
Len. 0.551 6.010 0.540 0.547 0.242

C = 1
MAE 0.109 0.036 0.035 0.050 0.049
RMSE 0.141 0.045 0.044 0.064 0.063
Cov. 0.950 0.968 0.956 0.958 0.960
Len. 0.551 0.195 0.191 0.260 0.253

The results in Table 2 indicate that the MR-L1 estimator has lower RMSE than the Target estimator
when some source sites have correctly specified models (C = 1/2 andC = 1). Relative to the MR-L1

estimator, the SS and IVW estimators demonstrate larger biases and RMSE, and lower coverage
when some source sites have misspecified models (C = 0 and C = 1/2). The MR-L1 estimator
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shows reduced biases and RMSE compared to the AIPW-L1 estimator, while maintaining similar
coverage; this improvement can be attributed to the inclusion of an additional model that closely
resembles the true model. When all source sites correctly specify working models (C = 1), the IVW
estimator performs optimally with the shortest confidence interval as expected.

To provide further insights into the site-specific estimates, we present simulation results in Figure 6.
The results show that in cases where some sites fail to specify their working models properly, AIPW
estimators exhibit significant bias, while the multiply robust estimators can accurately recover the
true TATE. This can be attributed to the fact that the additional candidate model closely approximates
the true underlying models. These findings underscore the enhanced safeguard against model
misspecification provided by the multiply robust estimators.
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(b) Site 2 and Site 4 Correctly Specify Models (C = 1/2)
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(c) All Sites Correctly Specify Models (C = 1)

Figure 6: Results of site-specific estimation based on 500 simulated data sets in three (mis)specification settings.
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D.2 Non-comparable source site sample sizes

To study if the proposed method is robust in the case where the number of samples in different sites is
not comparable, we generated a new experiment building on the one in Section D.1. Specifically, the
target site has a sample size of 300, and the two source sites have sample sizes of 300 (Source Site
2) and 3000 (Source Site 3). We conducted 300 iterations of the experiment due to the computing
resource constraints. The results in Table 3 indicate that even for non-comparable target and source
site sample sizes, the proposed MR-L1 still demonstrates superior performance than other methods.

Table 3: Mean absolute error (MAE), root mean squared error (RMSE), coverage (Cov.), and length (Len.) of
95% CIs based on 300 simulated data sets in three specification settings.

Target SS IVW AIPW-L1 MR-L1

MAE 0.111 1.938 0.177 0.110 0.070
RMSE 0.143 1.985 0.226 0.142 0.086
Cov. 0.953 1.000 0.880 0.957 0.973
Len. 0.555 15.140 0.642 0.554 0.378

(a) Setting 1: Only the target site (size of 300) correctly specifies both models

Target SS IVW AIPW-L1 MR-L1

MAE 0.111 1.821 0.155 0.111 0.073
RMSE 0.143 1.872 0.200 0.143 0.092
Cov. 0.953 1.000 0.907 0.953 0.947
Len. 0.555 16.100 0.627 0.554 0.387

(b) Setting 2: Target site (size of 300) and Source Site 2 (size of 300) correctly specify both models

Target SS IVW AIPW-L1 MR-L1

MAE 0.111 0.241 0.051 0.109 0.072
RMSE 0.143 0.292 0.065 0.140 0.088
Cov. 0.953 1.000 0.990 0.953 0.973
Len. 0.555 1.716 0.374 0.545 0.382

(c) Setting 3: Target site (size of 300) and Source Site 3 (size of 3000) correctly specify both models

D.3 Alternative data generation process

We designed a data generation process based on Section D.1 such that there is extra information in the
source sites which is not helpful for specifying models. We conducted two experiments which enabled
us to study the efficiency loss due to specifying more models. Specifically, for the first experiment,
we generate the source and target site data according to 14 and 15. For units in the target and source
sites, we generate outcomes with Xk only by setting βz = 0 and βx = (27.4, 13.7, 13.7, 13.7).
Similarly, for units in the target and source sites, we generate treatments with Xk only by setting
αz = 0 and αx = (−1, 0.5,−0.25,−0.1). The true ATE is still set to ∆T = 0. To examine the
estimator’s performance under covariate mismatch setting, the target site correctly specifies outcome
and treatment models with Xk, while all source sites specify outcome and treatment models with Xk

and (Zk1, Zk2); (Zk1, Zk2) are two additional dimensions that are not helpful for specifying models.
The results in Table 4 indicate that including additional covariates does not lead to a degradation in
the performance of the MR-L1 estimator. The MR-L1 estimator demonstrates comparable levels
of bias, RMSE, confidence interval coverage, and interval length as observed with the AIPW-L1

estimator. As expected, the MR-L1 estimator outperforms the Target estimator by achieving lower
RMSE values, and the IVW estimator attains optimal performance with the shortest confidence
interval since all source sites correctly specify the working models.
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Table 4: Mean absolute error (MAE), root mean squared error (RMSE), coverage (Cov.), and length (Len.) of
95% CIs based on 500 simulated data sets in covariate mismatch setting.

Target SS IVW AIPW-L1 MR-L1

MAE 0.109 0.036 0.035 0.050 0.050
RMSE 0.141 0.045 0.044 0.064 0.063
Cov. 0.950 0.968 0.956 0.958 0.954
Len. 0.551 0.195 0.191 0.260 0.251

D.4 Reproducibility and computing resources

All experiments in this study were performed using the statistical programming language R (version
4.2.2). The package sn (version 2.1.0) was employed for generating covariates that follow a skewed-
normal distribution within each site. To solve the density ratio estimating equations, we utilized the
rootSolve package (version 1.8.2.3). For the estimation of adaptive ensemble weights based on
penalized regression of site-specific influence functions, we employed the glmnet package (version
4.1-4).

To enhance computational efficiency, parallel computing packages were employed. Specifically,
the packages foreach (version 1.5.2) and doParallel were employed to facilitate the replication
of experiments. For the purpose of model-mixing in multiply robust estimation, we employed the
parallel package (version 4.2.2). The replication of experiments was carried out using ten CPU
cores, while the implementation of the model-mixing algorithm utilized five CPU cores.

E Proofs

E.1 Proof of Theorem 1

If Assumptions (A1) - (A3) hold, the mean counterfactual outcomes in the target population can be
identified using data from the target site;

µa,T = E {Yi(a) | Ri = T}
= E[E {Yi(a) | Vi = v,Ri = T} | Ri = T ]

= E[E {Yi(a) | Vi = v,Ai = a,Ri = T} | Ri = T ]

= E[E {Yi | Vi = v,Ai = a,Ri = T} | Ri = T ]. (24)

The second line follows the law of total expectation; the third line follows Assumption (A2); the last
line follows Assumption (A1).

If Assumptions (A1), (A4) - (A7) hold, the mean counterfactual outcomes in the target population
can be identified using data from source sites;

µa,T = E {Yi(a) | Ri = T}
= E[E {Yi(a) | Vi = v,Ri = T} | Ri = T ]

= E[E {Yi(a) | Vi = v,Ri = k} | Ri = T ]

= E (E[E {Yi(a) | Xi = x, Vi = v,Ri = k} | Vi = v,Ri = k] | Ri = T )

= E (E[E {Yi(a) | Xi = x,Ri = k} | Vi = v,Ri = k] | Ri = T )

= E (E[E {Yi(a) | Xi = x,Ri = k,Ai = a} | Vi = v,Ri = k] | Ri = T )

= E (E[E {Yi | Xi = x,Ri = k,Ai = a} | Vi = v,Ri = k] | Ri = T ) . (25)

The second line follows the law of total expectation; the third line follows Assumption (A6); the
fourth line follows the law of total expectation; the fifth line follows by our setup that Vi ⊆ Xi; the
sixth line follows Assumption (A4) the last line follows Assumption (A1).

8



E.2 Lemmas in [11]

We restate Lemmas E.1 and E.2 that were proved in [11]. These two lemmas together show that the
L2 risks of the multiply robust estimators for πa,k and ma,k are bounded by the L2 risks of the model
with the smallest risks, plus a negligible remainder term.
Lemma E.1. Suppose that for each j ∈ J , there exists a constant 0 < ϵj < 1/2 such that
ϵj < π̂j

a,k(x) < 1− ϵj for all x and some k ∈ K. Then

E
(
∥π̂a,k − πa,k∥2

)
≤ inf

j∈J

2

ϵ2j
E
(
∥π̂j

a,k − πa,k∥2
)
+

2 log(J)

nk − ntrain
k

(26)

where π̂a,k(x) =
∑J

j=1 Λ̂j π̂
j
a,k(x).

If the candidate propensity models are parametric and one of them is correctly specified for πa,k,
then infj∈J

2
ϵ2j
E(∥π̂j

a,k − πa,k∥2) converges at a rate of 1/n. If the candidate propensity models

are non-parametric, then infj∈J
2
ϵ2j
E(∥π̂j

a,k − πa,k∥2) converges at a rate slower than 1/n. The

remainder term 2 log(J)

nk−ntrain
k

converges at the rate 1/nk − ntrain
k , so it vanishes at a faster rate than the

statistical risks of candidate models themselves.
Lemma E.2. Suppose we have a continuous outcome and follow the continuous outcome model-
mixing algorithm presented in Appendix B. Suppose there exist constants C1, C2 > 0 such that
supl∈L |m̂l

a,k(x) −ma,k(x)| ≤ C1 for all x and the subexponential norm of Y −ma,k(x) given
X = x is bounded above by C2 for all x. Then for a ∈ {0, 1}

E
(
∥m̂a,k −ma,k∥2

)
≤ inf

l∈L
E
(
∥m̂l

a,k −ma,k∥2
)
+

log(L)

κ
(
nk,a − ntrain

k,a

)
for

0 < κ ≤ max

 1

16eC1C2
,

exp
{
C1 (8eC2)

−1
}

4M2

{
(4eC2)

−1
}
+ 16C2

1M0

{
(4eC2)

−1
}
 (27)

where M0(t) = 2 exp
(
2e2C2

2 t
2
)
,M2(t) = 16

√
2C2

2 exp
(
8e4C2

2 t
2
)

and e = exp(1).

E.3 Influence function of site-specific estimator

In this section, we give the form of the influence functions for the site-specific estimators. The
complete derivation is omitted here since it follows very closely to the derivation in [5] and [16]. The
primary difference with the derivation in [16] is that we use the density ratio weights ζk(V ) instead of
the inverse probability of selection weights. Define Zi = (Yi, Ai, Xi, Ri) with the (partial) baseline
covariates in the target site as Vi ⊆ Xi. The general form for our efficient influence function is

ξa,k(Zi) =
1

P (Ri = k)

[
I(Ai = a,Ri = k)

πa,k(Xi)
ζk(Vi){Yi −ma,k(Xi)}

]

+
1

P (Ri = k)

[
I(Ri = k)ζk(Vi){ma,k(Xi)− τa,k(Vi)}

]

+
1

P (Ri = T )

[
I(Ri = T )τa,k(Vi)

]
− µa,T . (28)

The target site estimator has the following form,

µ̂a,T =
1

nT

n∑
i=1

[
I(Ai = a,Ri = T )

πa,T (Vi)
{Yi −ma,T (Vi)}+ I(Ri = T )ma,T (Vi)

]
. (29)

This is a standard AIPW estimator whose influence function is derived in [2, 6] as
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ξa,T (Zi) =
1

P (Ri = T )

[
I(Ai = a,Ri = T )

πa,T (Vi)
{Yi −ma,T (Vi)}+ I(Ri = T )ma,T (Vi)

]
− µa,T .

(30)

E.4 Proof of Theorem 2

We first prove that given the conditions in Theorem 2, the site-specific estimator is a consistent
estimator of µa,T , formalized in the following Lemma:
Lemma E.3. Given Assumptions (A1) - (A7), and E.1 and E.2, if one of (B1) or (B2) and one of (C1)
or (C2) hold, then µ̂a,k is a consistent estimator for µa,T .

Proof of Lemma E.3. We divide the proof into four cases and show that µ̂a,k achieves consistency.

Case 1: When πj
a,k = πa,k and τa,k = τa,k

By assumption, we have ∥π̂j
a,k − πa,k∥ = op(1) and ∥τ̂a,k − τa,k∥ = op(1). Given Lemma

E.1 for π̂a,k, ∥π̂a,k − πa,k∥ = op(1). Define ma,k(x) =
1
L

∑L
l=1m

l
a,k(x). By definition,

∥m̂l
a,k −ml

a,k∥ = op(1), so ∥m̂a,k −ma,k∥ = op(1). Together with ∥ζ̂k − ζk∥ = op(1),
we can re-write the site-specific estimator as

µ̂a,k =
1

n

n∑
i=1

[
n

nk

I(Ai = a,Ri = k)

πa,k(Xi)
ζk(Vi)

{
Yi −ma,k(Xi)

}]

+
1

n

n∑
i=1

[
n

nk
I(Ri = k)ζk(Vi)

{
ma,k(Xi)− τa,k(Vi)

}]

+
1

n

n∑
i=1

n

nT
I(Ri = T )τa,k(Vi)

+ op(1) (31)

By assumption of i.i.d. units within each site and the law of large numbers, µ̂a,k converges
in probability to

E

[
n

nk

I(Ai = a,Ri = k)

πa,k(Xi)
ζk(Vi)

{
Yi −ma,k(Xi)

}]
+E

[
n

nk
I(Ri = k)ζk(Vi)

{
ma,k(Xi)− τa,k(Vi)

}]
+E

[
n

nT
I(Ri = T )τa,k(Vi)

]
=E

[
n

nk
I(Ri = k)ζk(Vi)

{I(Ai = a)

πa,k(Xi)
Yi − τa,k(Vi)

}]
︸ ︷︷ ︸

T1

−E

[
n

nk
I(Ri = k)ζk(Vi)

{I(Ai = a)

πa,k(Xi)
− 1
}
ma,k(Xi)

]
︸ ︷︷ ︸

T2

+E

[
n

nT
I(Ri = T )τa,k(Vi)

]
︸ ︷︷ ︸

T3

. (32)

Given that πa,k is the true propensity score model, E(T2) = 0 since

E
{I(Ai = a)

πa,k(Xi)
− 1 | Xi, Ri = k

}
=
P (Ai = a | Xi, Ri = k)

πa,k(Xi)
− 1 = 0. (33)
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Similarly, given that τa,k = E{ma,k(Xi) | Vi, Ri = k} is the true model,

E(T3) = E{E(T3 | Ri = T )}

=
n

nT
P (Ri = T )E(τa,k(Vi) | Ri = T )

= E(τa,k(Vi) | Ri = T )

= µa,T . (34)

Finally, we consider T1;

E(T1) = E

[
n

nk
I(Ri = k)ζk(Vi)

{I(Ai = a)

πa,k(Xi)
Yi − τa,k(Vi)

}]
= E

(
E
[ n
nk
I(Ri = k)ζk(Vi)

{I(Ai = a)

πa,k(Xi)
Yi − τa,k(Vi)

}
| Vi
])

= E

(
n

nk
I(Ri = k)ζk(Vi)

[
E
{I(Ai = a)

πa,k(Xi)
Yi | Vi

}
− τa,k(Vi)

])

= E

(
n

nk
I(Ri = k)ζk(Vi)

[
E
{I(Ai = a)

πa,k(Xi)
Yi | Vi, Ri = k

}
− τa,k(Vi)

])

= E

{
n

nk
I(Ri = k)ζk(Vi)

(
E
[
E
{I(Ai = a)

πa,k(Xi)
Yi | Xi, Ri = k

}
| Vi, Ri = k

]
−τa,k(Vi)

)}

= E

(
n

nk
I(Ri = k)ζk(Vi)

[
E
{
E(Yi | Ai = a,Xi, Ri = k) | Vi, Ri = k

}
−τa,k(Vi)

])

= E

(
n

nk
I(Ri = k)ζk(Vi)

[
E
{
ma,k(Xi) | Vi, Ri = k

}
−τa,k(Vi)

])
= 0, which completes the proof for Case 1. (35)

Case 2: When πj
a,k = πa,k and ζk = ζk

By assumption, we have ∥π̂j
a,k − πa,k∥ = op(1) and ∥ζ̂k − ζk∥ = op(1). Given Lemma

E.1 for π̂a,k, ∥π̂a,k − πa,k∥ = op(1). Define ma,k(x) =
1
L

∑L
l=1m

l
a,k(x). By definition,

∥m̂l
a,k−ml

a,k∥ = op(1), so ∥m̂a,k−ma,k∥ = op(1). Together with ∥τ̂a,k−τa,k∥ = op(1),
we can write the site-specific estimator as

µ̂a,k =
1

n

n∑
i=1

[
n

nk

I(Ai = a,Ri = k)

πa,k(Xi)
ζk(Vi)

{
Yi −ma,k(Xi)

}]

+
1

n

n∑
i=1

[
n

nk
I(Ri = k)ζk(Vi)

{
ma,k(Xi)− τa,k(Vi)

}]

+
1

n

n∑
i=1

n

nT
I(Ri = T )τa,k(Vi)

+ op(1) (36)

By assumption of i.i.d. units within each site and the law of large numbers, µ̂a,k converges
in probability to

E

[
n

nk

I(Ai = a,Ri = k)

πa,k(Xi)
ζk(Vi)

{
Yi −ma,k(Xi)

}]
+E

[
n

nk
I(Ri = k)ζk(Vi)

{
ma,k(Xi)− τa,k(Vi)

}]
+E

[
n

nT
I(Ri = T )τa,k(Vi)

]

11



=E
{ n

nk

I(Ai = a,Ri = k)

πa,k(Xi)
ζk(Vi)Yi

}
︸ ︷︷ ︸

T1

+E

[
n

nk
I(Ri = k)ζk(Vi)ma,k(Xi)

{
1− I(Ai = a)

πa,k(Xi)

}]
︸ ︷︷ ︸

T2

+E

[
τa,k(Vi)

{ n

nT
I(Ri = T )− n

nk
I(Ri = k)ζk(Vi)

}]
︸ ︷︷ ︸

T3

(37)

Given that πa,k is the true propensity score model, E(T2) = 0 since

E
{I(Ai = a)

πa,k(Xi)
− 1 | Xi, Ri = k

}
=
P (Ai = a | Xi, Ri = k)

πa,k(Xi)
− 1 = 0. (38)

Also since ζk = f(Vi|Ri = T )/f(Vi|Ri = k) is the true density ratio model,

E(T3) = E

(
E

[
τa,k(Vi)

{ n

nT
I(Ri = T )− n

nk
I(Ri = k)ζk(Vi)

}
| Vi
])

= E

(
τa,k(Vi)

[
n

nT
E
{
I(Ri = T )

}
− n

nk
E
{
I(Ri = k)

}
ζk(Vi) | Vi

])
= 0 following the results from Appendix A. (39)

Thus, we are left with T1, which equals to µa,T by iterative conditioning and Assumptions
(A1), (A2), (A4) and (A6).

Proofs for Case 3, when ml
a,k = ma,k and τa,k = τa,k and Case 4, when ml

a,k = ma,k and ζk = ζk,
follow closely to the proofs of Cases 1 and 2 and are omitted here for brevity.

Proof of Theorem 2. Given the general form of influence function (28), we can decompose the
estimation risk of the site-specific estimator as

Pn(µ̂a,k)− E(µa,T ) = (Pn − E) (µ̂a,k − µa,T ) + (Pn − E)µa,T + E(µ̂a,k − µa,T ) (40)

Assuming proper sample splitting methods are employed, as stated in Lemma 2 of [9], we have:

(Pn − E) (µ̂a,k − µa,T ) = op(n
−1/2). (41)

Then, we consider (Pn − E)µa,T . By the Central Limit Theorem, we have
√
n {Pn(µa,T )− E(µa,T )}

d→ N (0, σ2), where σ2 is given by:

σ2 = E
{
ξa,k(Zi)

2
}

= E

 1

P 2(Ri = k)

[
I(Ai = a,Ri = k)

πa,k(Xi)
ζk(Vi){Yi −ma,k(Xi)}

]2
+ E

 1

P 2(Ri = k)

[
I(Ri = k)ζk(Vi){ma,k(Xi)− τa,k(Vi)}

]2
+ E

 1

P 2(Ri = T )

[
I(Ri = T ) {τa,k(Vi)− µa,T }

]2
+ Remaining cross-terms. (42)

It can be verified that all remaining cross-terms have an expected value of zero. Hence,

σ2 = E

{
1

P 2(Ri = k)

[
I(Ai = a,Ri = k)

π2
a,k(Xi)

ζ2k(Vi){Yi −ma,k(Xi)}2
]}

12



+ E

{
1

P 2(Ri = k)
I(Ri = k) [ζk(Vi){ma,k(Xi)− τa,k(Vi)}]2

}
+ E

[
1

P 2(Ri = T )
I(Ri = T ) {τa,k(Vi)− µa,T }2

]
= E

[
E

{
1

P 2(Ri = k)

[
I(Ai = a,Ri = k)

π2
a,k(Xi)

ζ2k(Vi){Yi −ma,k(Xi)}2
]
| Xi

}]

+ E

[
E

{
1

P 2(Ri = k)
I(Ri = k)ζ2k(Vi){ma,k(Xi)− τa,k(Vi)}2 | Vi

}]
+ E

[
1

P 2(Ri = T )
I(Ri = T ) {τa,k(Vi)− µa,T }2

]
= E

[
P (Ri = k | Xi)

P 2(Ri = k)
ζ2k(Vi)E

{
I(Ai = a)

π2
a,k(Xi)

{Yi −ma,k(Xi)}2 | Xi, Ai = a,Ri = k

}]

+ E

{
P (Ri = k | Xi)

P 2(Ri = k)
ζ2k(Vi)E

[
{ma,k(Xi)− τa,k(Vi)}2 | Xi, Ri = k

]}
+ E

(
P (Ri = T )

P 2(Ri = T )
E
[
{τa,k(Vi)− µa,T }2 | Ri = T

])
= E

[
P (Ri = k | Vi)
P 2(Ri = k)

ζ2k(Vi)
Var{Yi | Xi, Ai = a,Ri = k}

πa,k(Xi)

]
+ E

[
P (Ri = k | Vi)
P 2(Ri = k)

ζ2k(Vi)Var{ma,k(Xi) | Vi, Ri = k}
]

+ E

[
Var {τa,k(Vi) | Ri = T}

P (Ri = T )

]
. (43)

This expression represents the semiparametric efficiency bound for estimating µa,T and is finite
given that all nuisance functions are uniformly bounded. Consequently, we can conclude that
(Pn − E)(µa,T ) = Op(n

−1/2).

Moving forward, we analyze the conditional bias term. Firstly, let us define
E {m̂a,k(Xi) | Vi, Ri = k} = τ̃a,k(Vi). Given conditions in Theorem 2 and Lemma E.3,
we can rewrite the conditional bias as follows:

E (µ̂a,k − µa,T ) = E

(
n

nk

[
I(Ai = a,Ri = k)

π̂a,k(Xi)
ζ̂k(Vi)

{
ma,k(Xi)− m̂a,k(Xi)

}])
+ E

(
n

nk

[
I(Ri = k)ζ̂k(Vi)

{
τ̃a,k(Vi)− τ̂a,k(Vi)

}])
+ E

(
n

nT

[
I(Ri = T )

{
τ̂a,k(Vi)− µa,T (Vi)

}])
= E

(
n

nk

[
I(Ai = a,Ri = k)

π̂a,k(Xi)
ζ̂k(Vi)

{
ma,k(Xi)− m̂a,k(Xi)

}])
+ E

(
n

nk

[
I(Ri = k)ζ̂k(Vi)

{
τ̃a,k(Vi)− τa,k(Vi)

}])
− E

(
n

nk

[
I(Ri = k)ζ̂k(Vi)

{
τ̂a,k(Vi)− τa,k(Vi)

}])
+ E

(
n

nT

[
I(Ri = T )

{
τ̂a,k(Vi)− µa,T (Vi)

}])
= E

(
n

nk

[
I(Ai = a,Ri = k)

π̂a,k(Xi)
ζ̂k(Vi)

{
ma,k(Xi)− m̂a,k(Xi)

}])
+ E

(
n

nk

[
I(Ri = k)ζ̂k(Vi)

{
m̂a,k(Xi)−ma,k(Xi)

}])

13



− E

(
n

nk

[
I(Ri = k)ζ̂k(Vi)

{
τ̂a,k(Vi)− τa,k(Vi)

}])
+ E

(
n

nT

[
I(Ri = T )

{
τ̂a,k(Vi)− µa,T (Vi)

}])
= E

[
n

nk
ζ̂k(Vi)

{I(Ai = a,Ri = k)

π̂a,k(Xi)
− I(Ri = k)

}{
ma,k(Xi)− m̂a,k(Xi)

}]
︸ ︷︷ ︸

T1

+ E

[{ n

nT
I(Ri = T )− n

nk
I(Ri = k)ζ̂k(Vi)

}{
τ̂a,k(Vi)− τa,T (Vi)

}]
︸ ︷︷ ︸

T2

. (44)

Step 3 is derived from Step 2 through conditioning on the variables (Vi, Ri = k), and we obtain the
following equality:

E

(
n

nk

[
I(Ri = k)ζ̂k(Vi)

{
τ̃a,k(Vi)− τa,k(Vi)

}])
= E

(
n

nk

[
I(Ri = k)ζ̂k(Vi)

{
m̂a,k(Vi)−ma,k(Vi)

}])
.

(45)
Step 4 can be derived from Step 3 by definition; in the target site, the conditional outcome is
represented by µa,T = ma,T (Vi) and τa,T = E {ma,T (Vi) | Vi, Ri = T} = ma,T (Vi) = µa,T .
Conditioning on Xi, we have the following expression:

T1 =E

[
n

nk
ζ̂k(Vi)

{I(Ai = a,Ri = k)

π̂a,k(Xi)
− I(Ri = k)

}{
ma,k(Xi)− m̂a,k(Xi)

}]
=E

[
n

nk
ζ̂k(Vi)E

{I(Ai = a,Ri = k)

π̂a,k(Xi)
− I(Ri = k) | Xi

}{
ma,k(Xi)− m̂a,k(Xi)

}]
=E

[
n

nk
ζ̂k(Vi)P (Ri = k | Xi)

{πa,k(Xi)

π̂a,k(Xi)
− 1
}{

ma,k(Xi)− m̂a,k(Xi)
}]

=E

[
ζ̂k(Vi)

π̂a,k(Xi)

{
πa,k(Xi)− π̂a,k(Xi)

}{
ma,k(Xi)− m̂a,k(Xi)

}]
(46)

Given the boundedness of ζ̂k and π̂a,k, it can be concluded that T1 = Op(∥π̂a,k − πa,k∥∥m̂a,k −
ma,k∥). Now let us consider T2. Conditioning on Vi, we have the following expression:

T2 = E

[{ n

nT
I(Ri = T )− n

nk
I(Ri = k)ζ̂k(Vi)

}{
τ̂a,k(Vi)− τa,T (Vi)

}]
= E

[
E
{ n

nT
I(Ri = T )− n

nk
I(Ri = k)ζ̂k(Vi) | Vi

}{
τ̂a,k(Vi)− τa,T (Vi)

}]
= E

[{ n

nT
P (Ri = T | Vi)−

n

nk
P (Ri = k | Vi)ζ̂k(Vi)

}{
τ̂a,k(Vi)− τa,T (Vi)

}]
= E

[{ 1

P (Ri = T )
P (Ri = T | Vi)−

1

P (Ri = k)
P (Ri = k | Vi)ζ̂k(Vi)

}{
τ̂a,k(Vi)− τa,T (Vi)

}]
= E

[
P (Ri = k | Vi)
P (Ri = k)

{
ζk(Vi)− ζ̂k(Vi)

}{
τ̂a,k(Vi)− τa,T (Vi)

}]
. (47)

Therefore, T2 = Op(∥ζ̂k − ζk∥ ∥τ̂a,k − τa,k∥).
Combining all results from the above three steps yields

∥µ̂a,k − µa,T ∥ = Op

(
n−1/2 + ∥π̂a,k − πa,k∥∥m̂a,k −ma,k∥+ ∥ζ̂k − ζk∥∥τ̂a,k − τa,k∥

)
. (48)

Further, if the nuisance estimators satisfy the following convergence rate

∥m̂a,k −ma,k∥ ∥π̂a,k − πa,k∥ = op(1/
√
n), ∥ζ̂k − ζk∥ ∥τ̂a,k − τa,k∥ = op(1/

√
n), (49)
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then the conditional bias, E (µ̂a,k − µa,T ) = op(1/
√
n) since Op(op(1/

√
n)) = op(1/

√
n).

Consequently, by Slutsky’s theorem,
√
n(µ̂a,k − µa,T )

d→ N (0, σ2). Here, σ2 represents the
semiparametric efficiency bound, which has been derived and defined in (43).

E.5 Proof of Theorem 3

Proof. The proof presented herein closely follows the methodology outlined in [5]; we start by
establishing the consistency and asymptotic normality of the global estimator, assuming a fixed ηk.
We then invoke Lemma 4 and 5 in [5], which state that the proposed adaptive estimation for ηk as
shown in (9) allows for (i) the recovery of the optimal η̄k by the estimator η̂k, and (ii) the uncertainty
introduced by η̂k is negligible when estimating ∆T . Essentially, we require Assumptions (A1)-(A7)
and the assumptions stated in Theorem 2 to hold. The additional regularity conditions we require
are the variance and covariance of the influence functions to be properly bounded. Note that we can
invoke Lemma 4 in [5] to prove the negligible uncertainty of our proposed estimator because both the
optimization problem posed in [5] and the optimization problem in our formulation aim to minimize
the asymptotic variance of the global federated estimator while controlling for possible estimation
bias due to the introduction of the penalty term. Specifically, to show the equivalence between S.9 in
[5] and (9) in our formulation, we first see that the penalty terms are equivalent under assumptions
in Theorem 3. We then establish the equivalence of the leading term by comparing the asymptotic
variance of the global federated estimator derived in (55) and the S.9 in [5].

Lemma E.3 demonstrates the consistency of the site-specific estimators given that the source site
k satisfies the conditions outlined in Theorem 2. We denote the set of source sites that fulfill the
conditions in Theorem 2 as S∗, and consider a fixed ηk such that ηk = 0 for k ̸∈ S∗, then

µ̂a,G(ηk) = µ̂a,T +
∑
k∈K

ηk{µ̂a,k − µ̂a,T } (50)

is consistent for µa,T since µ̂a,k for k ∈ S∗ are consistent estimators for µa,T . Hence, we can
establish that ∆̂G(ηk) = µ̂1,G(ηk)− µ̂0,G(ηk) consistently estimates ∆T = µ1,T − µ0,T . Moving
forward, we proceed to examine the asymptotic normality of the global estimator by utilizing the
influence functions for the site-specific estimators. First, we rewrite the global estimator with the
fixed ηk as

∆̂G(ηk) =

(
1−

∑
k∈S

ηk

)
(µ̂1,T − µ̂0,T ) +

∑
k∈S

ηk (µ̂1,k − µ̂0,k) =

(
1−

∑
k∈S

ηk

)
∆̂T +

∑
k∈S

ηk∆̂k

(51)

In Appendix E.3, the influence functions for the source site and target site estimators have been
derived. To facilitate representation, we decompose the influence functions for the source site
estimators into two parts, each defined on the target sample and source sample, respectively,

ξ
(1)
a,k(Zi) =

1

P (Ri = k)

[
I(Ai = a,Ri = k)

πa,k(Xi)
ζk(Vi){Yi −ma,k(Xi)}

]

+
1

P (Ri = k)

[
I(Ri = k)ζk(Vi){ma,k(Xi)− τa,k(Vi)}

]

ξ
(2)
a,k(Zi) =

1

P (Ri = T )

[
I(Ri = T )τa,k(Vi)

]
− µa,T . (52)

Here, it should be noted that the expectations of where ξ(1)a,k(Zi) and ξ(2)a,k(Zi) are both equal to zero.
Furthermore, for the target site estimator, we define:

ξ
(2)
a,T (Zi) =

1

P (Ri = T )

[
I(Ai = a,Ri = T )

πa,T (Vi)
{Yi −ma,T (Vi)}+ I(Ri = T )ma,T (Vi)

]
− µa,T

(53)
and the expectation of ξ(2)a,T (Zi) is also zero. We denote the influence function for ∆̂k as ξ(1)1,k(Zi)−
ξ
(1)
0,k(Zi) + ξ

(2)
1,k(Zi) − ξ

(2)
0,k(Zi). Similarly, the influence function for ∆̂T is given by ξ(2)1,T (Zi) −
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ξ
(2)
0,T (Zi). Thus, the influence function for the global estimator evaluated with target and source

samples can be expressed as:

∆̂G(ηk)−∆T =

(
1−

∑
k∈S

ηk

)(
∆̂T −∆T

)
+
∑
k∈S

ηk

(
∆̂k −∆T

)

=

(
1−

∑
k∈S

ηk

)
1

nT

N∑
i=1

I(Ri = T )
{
ξ
(2)
1,T (Zi)− ξ

(2)
0,T (Zi)

}

+

(∑
k∈S

ηk

)
1

nT

N∑
i=1

I(Ri = T )
{
ξ
(2)
1,k(Zi)− ξ

(2)
0,k(Zi)

}

+
∑
k∈S

ηk
1

nk

N∑
i=1

I(Ri = k)
{
ξ
(1)
1,k(Zi)− ξ

(1)
0,k(Zi)

}

=
1

N

N∑
i=1

I(Ri = T )

(
1−

∑
k∈S

ηk

) {
ξ
(2)
1,T (Zi)− ξ

(2)
0,T (Zi)

}
P (Ri = T )

+
1

N

N∑
i=1

I(Ri = T )

(∑
k∈S

ηk

) {
ξ
(2)
1,k(Zi)− ξ

(2)
0,k(Zi)

}
P (Ri = T )

+
1

N

∑
k∈S

N∑
i=1

I(Ri = k)ηk

{
ξ
(1)
1,k(Zi)− ξ

(1)
0,k(Zi)

}
P (Ri = k)

(54)

The asymptotic variance for ∆̂G(ηk) equals the variance of the influence function (54). Its derivation
is similar to that of 43. Let us denote this asymptotic variance as V(ηk). Under the assumption of
i.i.d. units within each site, we have:

V(ηk) =

(
1−

∑
k∈S

ηk

)2 Var
{
ξ
(2)
1,T (Zi)− ξ

(2)
0,T (Zi) | Ri = T

}
P (Ri = T )

+

(∑
k∈S

ηk

)2 Var
{
ξ
(2)
1,k(Zi)− ξ

(2)
0,k(Zi) | Ri = T

}
P (Ri = T )

+ 2

(
1−

∑
k∈S

ηk

)(∑
k∈S

ηk

)
Cov

{
ξ
(2)
1,T (Zi)− ξ

(2)
0,T (Zi), ξ

(2)
1,k(Zi)− ξ

(2)
0,k(Zi) | Ri = T

}
P (Ri = T )

+
∑
k∈S

η2k

Var
{
ξ
(1)
1,k(Zi)− ξ

(1)
0,k(Zi) | Ri = k

}
P (Ri = k)

(55)

Under the boundedness conditions of the variance and covariance of the influence functions, this
variance is finite. Consequently, we can express the asymptotic distribution of

√
N
(
∆̂G(ηk)−∆T

)
as: √

N
(
∆̂G(ηk)−∆T

)
d→ N (0,V(ηk)) (56)

We further define the optimal adaptive weight η̄k as follows:

η̄k = arg min
ηk=0∀k ̸∈S∗

V(ηk) (57)

By leveraging Lemmas 4 and 5 from [5], we can recover the optimal η̄k with negligible uncertainty
for estimating ∆T if we estimate η̂k,L1

using (9). The consistency of V̂(η̂k,L1
) follows when we can

effectively approximate V(η̄k) with V̂(η̂k,L1). Thus,√
N/V̂(η̂k,L1)

(
∆̂G(η̂k,L1)−∆T

)
d→ N (0, 1) (58)
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We now proceed to analyze the efficiency gain resulting from the federation process. The estimator
that relies solely on the target data is denoted as ∆̂T = ∆̂G(η0), where η0 assigns all weights to
the target and none to the source. In contrast, the estimator that leverages the proposed adaptive
ensemble approach is denoted as ∆̂G(η̂k,L1

) = (1 −
∑

k∈S η̂k,L1
)∆̂T +

∑
k∈S η̂k,L1

∆̂k. Here,
η̂k,L1

can recover the optimal weight η̄k that is associated with the minimum asymptotic variance.
Consequently, the variance of ∆̂G(η̂k,L1

) is no larger than that of the estimator relying solely on the
target data by definition.

To establish that the asymptotic variance of ∆̂G(η̂k,L1) is strictly smaller than that of the estimator
based solely on the target data ∆̂T , we adapt Proposition 1 in [5] with a modified informative source
condition. Specifically, for each source site s ∈ S∗, we define ∆̂G(ηs) a global estimator where ηs is
the optimal ensemble weight if we only consider target site and this source site s. Then the modified
informative source condition is Cov

{√
N∆̂T ,

√
N
(
∆̂G(ηs)− ∆̂T

)}
, where ∆̂G(ηs) − ∆̂T can

be expressed as

∆̂G(ηs)− ∆̂T = ∆̂G(ηs)−∆T −
(
∆̂T −∆T

)
=

1

N

N∑
i=1

I(Ri = T ) (1− ηs)

{
ξ
(2)
1,T (Zi)− ξ

(2)
0,T (Zi)

}
P (Ri = T )

+
1

N

N∑
i=1

I(Ri = T )ηs

{
ξ
(2)
1,s(Zi)− ξ

(2)
0,s(Zi)

}
P (Ri = T )

+
1

N

N∑
i=1

I(Ri = s)ηs

{
ξ
(1)
1,s(Zi)− ξ

(1)
0,s(Zi)

}
P (Ri = s)

− 1

N

N∑
i=1

I(Ri = T )

{
ξ
(2)
1,T (Zi)− ξ

(2)
0,T (Zi)

}
P (Ri = T )

=
1

N

N∑
i=1

I(Ri = T )ηs

{
ξ
(2)
1,s(Zi)− ξ

(2)
0,s(Zi)− ξ

(2)
1,T (Zi) + ξ

(2)
0,T (Zi)

}
P (Ri = T )

+
1

N

N∑
i=1

I(Ri = s)ηs

{
ξ
(1)
1,s(Zi)− ξ

(1)
0,s(Zi)

}
P (Ri = s)

. (59)

In summary, if there exist a source site s with consistent estimator of ∆T and further satisfy∣∣∣Cov{√N∆̂T ,
√
N
(
∆̂G(ηs)− ∆̂T

)}∣∣∣ ≥ ε where ε denotes a positive constant, the variance

of ∆̂G is strictly smaller than ∆̂T .
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