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Abstract

Traditional cameras produce desirable vision results but struggle with motion blur in
high-speed scenes due to long exposure windows. Existing frame-based deblurring
algorithms face challenges in extracting useful motion cues from severely blurred
images. Recently, an emerging bio-inspired vision sensor known as the spike
camera has achieved an extremely high frame rate while preserving rich spatial
details, owing to its novel sampling mechanism. However, typical binary spike
streams are relatively low-resolution, degraded image signals devoid of color
information, making them unfriendly to human vision. In this paper, we propose a
novel approach that integrates the two modalities from two branches, leveraging
spike streams as auxiliary visual cues for guiding deblurring in high-speed motion
scenes. We propose the first spike-based motion deblurring model with bidirectional
information complementarity. We introduce a content-aware motion magnitude
attention module that utilizes learnable mask to extract relevant information from
blurry images effectively, and we incorporate a transposed cross-attention fusion
module to efficiently combine features from both spike data and blurry RGB
images. Furthermore, we build two extensive synthesized datasets for training
and validation purposes, encompassing high-temporal-resolution spikes, blurry
images, and corresponding sharp images. The experimental results demonstrate
that our method effectively recovers clear RGB images from highly blurry scenes
and outperforms state-of-the-art deblurring algorithms in multiple settings.

1 Introduction

Traditional computer vision is well developed and models on visual tasks are satisfying [10, 37, 36,
11]. As a mature industrial product, frame-based cameras have also been fully developed whose
imaging quality is high. Due to the existence of the exposure window, high-speed scenes or moving
objects will cause serious blur effects as illustrated in Fig. 1(a), which degrades or invalidates the
model performance. Thus, deblurring task remains an important demand for applications. With
the development of convolutional neural networks and Transformers, models like Restormer [59]
and SwinIR [32] used for deblurring tasks perform well. Nevertheless, our main concern is that the
performance of these models is not reliable as the blurry image lacks sufficient contextual information
to recover the corresponding clear image. When the blurry artifact is severe, models only input with
blurry images may fail.
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(a) Discrete Images from  Frame-based Camera

(b) Continuous Spikes from  Spike Camera

(c) Fusion of Spikes and Images for Deblurring

Exposure Window

Figure 1: Illustration of the motivation of this paper. (a) The exposure window leads to motion blur
in frame-based cameras. (b) Continuous spikes can recover low-resolution gray images yet with high
temporal resolution. (c) Our method aims to fuse two modalities for motion deblurring.

Neuromorphic vision sensors, including event cameras [1, 33] and spike cameras [16], have gained
recent attention due to advantages such as high temporal resolution, dynamic range, and low power
consumption. Event cameras capture changes in light intensity, while spike cameras record absolute
intensity in a unique way. They accumulate voltage converted from the light signal asynchronously
and emit spikes when a preset threshold is reached, achieving a time resolution of up to 40,000Hz.
Spike cameras are motion-sensitive and capture comprehensive texture information, offering the
potential to mitigate motion blur. However, the spike stream is not directly interpretable by humans
like RGB images. Initial research aimed at reconstructing grayscale images from spikes (see Fig. 1(b)).
Subsequent studies leveraged spikes for high-level vision tasks, including object tracking, optical
flow estimation, and depth estimation. Presently, spike cameras face challenges in these tasks due to
their lower spatial resolution and absence of color. We consider utilizing spike cameras to assist in
image deblurring. Our intuition is that the information in the RGB images and the neuromorphic data
are complementary. The image domain contains rich spatial texture information with high-fidelity
color, while the neuromorphic domain provides abundant temporal information [72, 9] promises them
to record fast motions. Some studies utilize event cameras to assist image deblurring [57, 63, 49].
However, most event-based methods unidirectionally utilize information from the event domain to
assist the image domain, without achieving the complementarity of information from both domains.
Unlike event cameras, spike cameras maintain high temporal resolution while also recording texture
information in the form of spike intervals [72]. The complete texture information, as opposed to
solely motion edge information, can offer more valuable cues for deblurring tasks. As shown in
Fig. 1(c), we aim to simultaneously consider the bidirectional transmission of information from both
modalities, thereby achieving more efficient motion deblurring.

Therefore, we propose the first spike-based RGB image deblurring model named SpkDeblurNet. The
model takes high-resolution blurry RGB images and low-resolution spike streams as input, each of
which passes through one Transformer-based branch. We design a content-aware motion-magnitude
attention module to fuse the high-resolution features in images into the spike branch. We further
propose transposed cross-attention to perform a bidirectional fusion of cross-modal features between
two branches. Moreover, we establish two high-quality datasets Spk-X4K1000FPS and Spk-GoPro
for both training and validation. In experiments, we compare with various deblurring methods and
prove the effective assistance of spikes. The complementarity of the two modalities is also verified.
Our contributions to this work can be summarized as follows:

• We propose the first spike-based motion deblurring model with bidirectional information
complementarity. Specifically, we propose a content-aware motion magnitude attention
module based on learnable mask to utilize effective information in blurry images. A
transposed cross-attention fusion module is built to efficiently fuse features from spikes and
blurry RGB images.

• We generate two large-scale synthesized datasets used for training and validation, which
contain high-temporal-resolution spikes, blurry images, and sharp images.

• Experimental results demonstrate that the proposed method achieves ideal results, outper-
forming other deblurring methods.
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2 Related Works

Research on Spike Camera. Spike cameras possess the advantages of ultra-high temporal resolution
and high dynamic range, which bring the potential to solve various visual tasks, especially in
high-speed scenes. Early studies focus on recovering clear gray-scale images from spikes. Zhu et
al. [72] propose the first work by directly analyzing the spike firing rate and the inter-spike interval.
Some works [73, 69] take biological plausibility into consideration. Spk2imgnet [65] achieves
satisfying performance by training deep convolutional neural networks (CNNs) in a supervised
manner. Chen et al. [5] introduce the self-supervised framework. Besides, some studies [56, 64]
explore recovering super-resolution images from spikes. Recently, more researchers have used
spike cameras to solve various visual tasks. Zhao et al. [66] build a new spike-based dataset
for object recognition. Zheng et al. [68] propose a bio-inspired framework for object tracking.
Hu et al. [15] contribute to spike-based optical flow estimation by proposing the SCFlow net and
new datasets. Zhao et al. [67] proposed to jointly estimate a series of flow fields. Chen et al.[6]
propose a self-supervised framework for joint learning of optical flow and reconstruction. Besides,
Spike Transformer [62] and SSDEFormer [53] are proposed for monocular/stereo depth estimation.
Additionally, we observed similarities between single-photon cameras (SPCs) and spike cameras in
their binary output. Nonetheless, SPCs predominantly depends on single-photon avalanche diode
(SPAD) detector [35, 17, 27] or quanta image sensors (QIS) [38, 7, 2, 13], while the spike camera is
based on CMOS sensors like traditional cameras and employs standard semiconductor manufacturing
processes, rendering them fundamentally distinct, with the latter being more cost-efficient.

Frame-Based Motion Deblurring. Traditional frame-based motion deblurring methods typically
employ optimization techniques [12, 24, 29, 30, 58] and blur kernel estimation [28, 55, 42, 21]. In
recent years, with the advancement of deep learning, end-to-end approaches based on CNNs and
transformers have demonstrated impressive performance in image deblurring. Multi-scale [39, 50],
multi-stage [61, 4], and progressive strategies [8] have been proposed to improve the effectiveness
of end-to-end training. Some works [25, 26] proposed to utilize Generative Adversarial Networks
(GANs) to provide better human perception. On the other hand, universal networks [3, 31, 32, 54, 61,
59, 60, 4] have been introduced to address a series of low-level problems including image deblurring.
Further research applied the powerful transformer framework [54, 31, 32, 59, 23] to motion debluring,
achieving state-of-the-art (SOTA) performance. Unlike the conventional one-to-one mapping from
a blurry image to a single sharp image, blurry frame interpolation or blur decomposition aims to
recover multiple sharp images from a single blurry image [20, 19, 44, 45, 40, 70]. Additionally,
directional ambiguity can be avoided in methods based on blurry video inputs [19, 44, 45, 40, 70]
due to the motion cues of adjacent frames.

Event-Based Motion Deblurring. There has been increasing interest in utilizing event cameras to
assist image deblurring. Several works [18, 43] utilized optical flow to provide motion information.
NEST [51] proposed an efficient event representation based on bidirectional LSTM for deblurring.
Kim et al. [22] extended the task to images with unknown exposure time. EFNet [48] introduced
a multi-head attention module to better fuse event and image information. Some works [34, 41,
52, 49, 63, 57] have utilized events to assist blurry frame interpolation or blur decomposition.
In addition, a series of high-quality event-image datasets have been proposed [51, 49, 18, 48],
providing convenience for subsequent research. Most event-based methods merely utilize event-based
information to assist the image domain task. In this paper, we aim to use the bidirectional transmission
of information from both modalities to achieve more efficient motion deblurring.

3 Methods

3.1 Spike Generation Mechanism

Spike cameras, different from the differential sampling of event cameras, adopt the integral sampling
mechanism. A spike camera with the spatial resolution of H ×W is composed of an array of units
on each pixel. The working mechanism of the spike camera is illustrated in Fig. 2. For a unit at
pixel (x, y) that x ∈ [0,W ), y ∈ [0, H) continuously receives coming photons at any timestamps t
and converts the light intensity Lx,y(t) into the electric current, and increases its voltage Vx,y(t). A
voltage threshold Θ is pre-defined. A spike will be triggered once the threshold is reached, and the
Vx,y(t) will be reset to 0. The process can be formulated as follows:
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Figure 2: Illustration of the mechanism of generating spikes as the light intensity changes.

V +
x,y(t) =

{
V −
x,y(t) + α · Lx,y(t), if V −

x,y(t) < Θ,

0, otherwise,
(1)

where V −
x,y(t) and V +

x,y(t) denotes the voltage before and after receiving the electric current, and the
α is the photoelectric conversion factor. The back-end circuit reads out spikes continuously with
a very small interval η (25µs). A pixel at (x, y) will output S(x, y, n) = 1 when the threshold is
reached at t ∈ (η(n− 1), ηn], otherwise output S(x, y, n) = 0. Thus, for a T -times readout, a spike
train with the size of H ×W × T would be generated.

3.2 Problem Statement

A spike camera outputs binary spike streams with very-high temporal resolution. A conventional
frame-based camera outputs an image sequence and each image is generated after an exposure time
Te. Though scenes in the world are continuous, images are discrete. We regard spikes approximately
as continuous signals. When coming to scenarios with high-speed motions, the exposure window in
frame-based cameras leads to a blurred image Be, while spikes Se during the exposure time finely
records the motion dynamics. In this work, we aim to utilize the spike stream Se during the Te to
deblur the RGB image Be. Moreover, the current spatial resolution of spike cameras is relatively low,
so we set the spatial resolution of Se to half of Be to simulate the real situation.

3.3 Architecture

To achieve effective integration of the high resolution color texture information in conventional
images and the high temporal resolution offered by spike streams, we present a novel two-branch
fusion spike-based image deblurring framework, SpkDeblurNet (Fig. 3). Our framework combines
the benefits of both image deblurring and spike-based image processing. In the first branch of
SpkDeblurNet, we input the blurred RGB image Be, while the second branch takes a continuous
spike stream Se centered around the latent clear image. Be has twice the spatial resolution of Se.

The input blurry image BH×W×3
e is first passed through two 3× 3 convolutional layers with a stride

of 2 for downsampling. Subsequently, the downscaled features are fed into a series of continuous
Residual Swin Transformer blocks (RSTB) [32, 37]. These RSTBs play a crucial role in extracting
features that encapsulate enhanced spatiotemporal semantics. Mathematically, we can express this
process as follows:

f b
1 = RSTBb

1(F
b
down(B

H×W×3
e )), (2)

f b
i=2,3 = RSTBb

i (f
b
i−1), (3)

where the Fb
down(·) denotes the downsampling operations.

Similarly, the spike stream SH×W×T
e undergoes processing through a singular convolutional layer,

facilitating the embedding of spike streams within the feature domain. Furthermore, a sequence of
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Figure 3: The architecture of the SpkDeblurNet. Arrows in red denote the image branch, the blue
denotes the spike branch, and the green denotes the bidirectional cross-model feature fusion process.

three RSTBs is employed to execute profound spatiotemporal semantic extraction:

fs
1 = RSTBs

1(F
s
down(S

H×W×T
e )), (4)

fs
i=2,3 = RSTBs

i (f
s
i−1). (5)

To effectively merge the comprehensive high resolution color texture information available in the
image domain with the spatiotemporal semantic extraction performed on the spike stream, we design
a novel Content-Aware Motion Magnitude Attention module (CAMMA). This module facilitates
the extraction of features specifically from the regions of clarity within the initial deblurred image,
thereby producing a robust motion mask represented as M. By combining this motion mask with the
initial deblurred image F

′b
up(f

b
3) extracted from the blurry image and integrating it with the feature

fs
3 obtained from the spike domain using the Transposed Cross-Attention Fusion (TCAF) module, a

clear grayscale image denoted as Îgt is generated through an RSTB and a post-upsampling process.
The mathematical expression for this procedure is as follows:

fs
tcaf = TCAFs(M∗ F

′b
up(f

b
3), f

s
3 ), (6)

Îgt = Fs
up(RSTBs

4(f
s
tcaf )), (7)

with ∗ denotes the element-wise multiplication, and Îgt denotes the predicted grayscale image at the
center timestamp t of window Te.

We then combine the spike features fs
4 with the feature information f b

3 obtained by the blurry image
through the TCAF module, and output a refined sharp color image Ît with a series of RSTBs and
upsampling, which can be summarized as follows:

f b
tcaf = TCAFb(fs

4 , f
b
3), (8)

Ît = Fb
up(RSTBsb(f b

tcaf )), (9)

In the blurry decomposition task, a common issue is directional ambiguity [70, 71]. Since we
reconstruct the center position of the exposure window in the spike branch, the output of RSTBs

contains time-specific spike encoding information, which can avoid this problem. During online
inference, we can decompose the blurry image into different timestamps by moving the position of
the spike stream, and the frame rate of the decomposed images depends on the sampling rate of the
spike camera.

3.4 Cross-Modal Information Complementing

Spike Reconstruction Based on High Resolution Prior in Image Domain. Each pixel in the spike
camera asynchronously outputs high-time-resolution spikes according to the brightness proportional to
the input light intensity. This mechanism enables the spike stream to effectively capture and represent
both temporal and spatial information of visual inputs. However, the current spatial resolution of the
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Figure 4: Illustration of the Content-Aware Motion Magnitude Attention Module and the Transposed
Cross-Attention Fusion Module.

spike camera is relatively low. In our module, we explicitly reconstruct high-resolution grayscale
images of the spike stream to enable the network to learn image-like features. Given the ground truth
grayscale image Igt at the moment of the exposure window center, the loss function is formulated as:

Lrecon = ∥Igt − Îgt ∥1, (10)
Reconstructing high-resolution frames solely from the spike stream itself remains challenging. To
fully leverage the advantages of both input modalities, we propose to utilize information from the
image domain as a high-resolution prior to spike reconstruction. However, the input images are mostly
highly blurred, which hinders the provision of high-resolution clues for reconstruction. Therefore,
we further introduce the CAMMA module to adaptively search for regions with smaller motion
magnitudes in the initial deblurred image, and fuse them into the spike branch.

Content Aware Motion Magnitude Attention Module. In order to incorporate high-resolution prior
knowledge from the image domain into the spike domain, an intuitive idea is to directly fuse the input
blurred image with the spike branch. The blurry foreground caused by moving objects cannot provide
effective texture information, which can be handled by using a mask to retain sharp backgrounds [47].
Moreover, the global blur caused by camera motion is unable to provide effective high-resolution prior.
Therefore, we propose a CAMMA module to encode the motion magnitude from the initial deblurred
result. As shown in Fig. 4, we first pass the f b

3 through shallow convolution and upsampling to obtain
the initial deblurred image It. Through training, the blur in It is initially reduced. Subsequently, we
need a coarse sharp image as a reference to obtain the blurry region by comparing it with It. We
adopt the basic statistical method text-from-interval (TFI) [72] to center-spike firing interval (CSFI)
to obtain the central coarse sharp image. CSFI estimates the pixel value of the current pixel based on
the observation that the spike camera’s firing frequency at each pixel is proportional to the real light
intensity by statistically analyzing the spike interval. The process is formulated as:

Icsfit =
C

∆t
, (11)

where ∆t represents the inter-spike interval corresponding to moment t, and the C refers to the maxi-
mum dynamic range of the reconstruction. Subsequently, we perform differencing and normalization
on the upsampled Icsfit and It and then apply thresholding to obtain the hard thresholding motion
magnitude mask. However, since Icsfit is merely a basic reconstruction and suffers from noise [72].
In order to enable the network to learn a more robust motion magnitude mask, we concatenate
Icsfit and It and use simplified channel attention [3] with the hard thresholding mask to obtain a
content-aware motion magnitude mask M. After multiplying the motion magnitude mask with It,
we utilize the TCAF module to fuse it into the spike branch. We refer to the CAMMA module, the
CSFI process, and the F

′b
up(·) module as the CAMMA branch, with which the high-resolution prior

knowledge from the image domain can be transferred effectively into the spike domain.

Spike-Guided Motion Deblurring. As mentioned in Sec. 3.3, our SpkDeblurNet involves informa-
tion transfer from image to spike and spike to the image. The modalities differ significantly for the
former, while the differences are minor for the latter. In order to better integrate the two modalities,
we propose the TCAF Module. The query (Qm1) is derived from one modality m1 with c1 channels,
while the key (Km2) and value (Vm2) are obtained from another modality m2 with c2 channels. The
attention is computed using the following equation:

f̂m1 = fm1 +Vm2 ·G(Km2 ·Qm1/α), (12)
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Table 1: Comparison of various motion deblurring methods on Spk-X4K1000FPS.
Method Extra Data PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ #Param
Spk-X4K1000FPS e = 33 e = 65
HINet [4] - 33.98 0.933 29.19 0.867 88.7M
NAFNet [3] - 34.13 0.937 29.06 0.878 67.9M
EFNet [48] Spike 36.36 0.960 33.53 0.937 8.5M
REFID [49] Spike 36.30 0.962 33.47 0.945 15.9M
SpkDeblurNet (Ours) Spike 37.42 0.968 35.94 0.966 13.5M

Where fm1 and f̂m1 are the features before and after fusion for modality m1, G denotes the softmax
function and α is a learnable scaling parameter. However, the calculation of attention faces two
problems: 1) The spike branch is lightweight with fewer channels compared to the deblurring branch,
which makes traditional attention computation in the spatial dimension not directly applicable. 2)
The computational cost of traditional attention grows quadratically with the input size, which is not
acceptable for image restoration tasks. In the main network, we mitigate these issues by employing
the RSTB [37, 36], which calculates attention within windows to reduce computation. In TCAF, we
adopt the Transposed Attention proposed in [59], which performs attention computation along the
channel dimension, thereby addressing the aforementioned problems. We apply the TCAF module to
the fusion of features in both directions.

3.5 Joint Learning of Deblurring and Reconstruction

We jointly train the proposed SpkDeblurNet. The spike reconstruction branch obtains high-resolution
image priors from the initial deblurred result, enabling the recovery of better image-like features. The
features from the spike branch in turn guide the deblurring branch, providing time-specific texture
information. For both the initial deblurred result It and the refined deblurred result Ît, we utilize the
L1 loss for supervision during training. The loss function of the entire network can be formulated as
follows:

L = ∥It − Ît∥1 + λ1∥Igt − Îgt ∥1 + λ2∥It − It∥1, (13)

where λ1 and λ2 are hyperparameters that control the loss terms.

3.6 Datasets

This paper is the first study on spike-based motion deblurring, and no large-scale training datasets are
currently available. Therefore, we built two large-scale spike-based datasets based on existing real
image datasets [39, 46] for training and validation. The first one, named ‘Spk-X4K1000FPS’, is built
on the dataset X4K1000FPS which contains clear images captured by 1000fps cameras. To generate
spikes, we utilize the interpolation method [46] to further increase the frame rate four times. Then we
build a simple spike simulator according to the spike generation mechanism. It inputs continuous
sharp images as light signals and converts them to spikes. For clips in the dataset, we use the average
of neighboring e sharp images around the ground truth images to generate blurry images, where
e = 33, 65. The second one, named ‘Spk-GoPro’ is built on the GoPro [39] dataset in a similar way
as above. More implementation details are attached in the supplementary materials.

4 Experiments

4.1 Comparative Results

In this section, we present comparative results on both Spk-X4K1000FPS and Spk-GoPro datasets.
For Spk-X4K1000FPS, we generate blurry images by setting an exposure window of e = 33 as well
as an extreme exposure window of e = 65. For Spk-GoPro, we use the provided blurry images.
Implementation details can be found in supplementary materials.

Results on Spk-X4K1000FPS. Tab. 1 and Fig. 5 present quantitative and qualitative comparisons
of our method with other approaches under two different exposure window settings. For EFNet
and REFID, we use their networks for spike-assisted deblurring. For EFNet, we employed input
representations similar to its SCER approach, excluding the EMGC module due to its event-related
nature. Regarding REFID, we utilized similar spike voxel representations. All comparative methods
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Blurry Image (e=65)

Ground Truth Blurry Image (e=33)

NAFNet 28.85dB

NAFNet 35.22

HINet 29.52dB

HINet 34.54dB

Ours 36.12dB

Ours 36.41dB

Blurry Image (e=65)
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NAFNet 24.21dB

NAFNet 29.44dB

HINet 22.99dB

HINet 26.77dB

Ours 28.47dB

Ours 30.15dB

Figure 5: Visualized results on Spk-X4K1000FPS dataset, compared with NAFNet [3] and HINet [4].

were trained from scratch on the proposed dataset. We observe that both image-domain methods
perform well in recovering image details with a smaller exposure window setting (e = 33). However,
when the exposure window becomes larger (e = 65), pure image-based methods struggle to find cues
from extremely blurry scenes to restore clear images, resulting in significant loss of texture details or
generating artifacts. In the second row of the first sample sequence in Fig. 5, NAFNet and HINet
mistakenly recover non-existent stair edges. In contrast, our multimodal approach leverages spike
streams to find cues and restore correct and clear textures. Additionally, the networks in event-assisted
methods fall short of our network. This is due to our network’s superior bidirectional information
transmission nature.

Results on Spk-GoPro. As shown in Tab. 2, our proposed SpkDeblurNet outperforms the state-of-
the-art model REFID [49] and other competitive models in terms of PSNR On the GoPro dataset. We
have observed that both our SpkDeblurNet and the SOTA event-based methods have significantly
outperformed image-based methods, which demonstrates the substantial potential of neuromorphic
data in complementing information for the image domain. Fig. 5 visualizes the deblurred results
of different methods, from which we demonstrate that the quality of sharp images predicted by
the SpkDeblurNet is more promising and satisfying than others. In the first sample of Fig. 5, our
approach successfully restored the clear license plate number while also effectively recovering the
fallen leaves on the ground, while other methods only achieved a relatively blurred restoration of the
ground. Furthermore, our method excelled in restoring the clearest facial features of the person in
the second sample. Zoom in for more details. Our framework, by leveraging the complementary
information from both image and spike domains, has surpassed event-based methods that solely rely
on unidirectional information transfer in terms of both quantitative and qualitative results.

Results on Real-World Scenes. To validate the generalization of our method in real-world scenarios,
we construct a hybrid camera system to capture real-world spike-image data. We use a beam splitter
to connect a spike camera and a conventional frame-based camera, enabling both cameras to have
the same view. We rapidly wave objects in front of the cameras to simulate high-speed motion. We
synchronize the two cameras and manually aligned their spatial and temporal outputs. Fig. 7 presents
visual results of applying our model trained on the Spk-X4K1000FPS dataset with a window size of
33 to two real-world sequences. We can observe desirable results with clear textures and accurate
colors. This demonstrates the good generalization of our proposed algorithm and dataset, highlighting
the potential of our algorithm for real-world applications. More results and the hybrid camera system
diagram can be found in the supplementary materials.
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Table 2: Comparison of various motion deblurring methods on Spk-GoPro. HINet+: event-enhanced
versions of HINet [4].

Method Extra Data PSNR ↑ SSIM ↑ #Param
Spk-GoPro
DeblurGAN-v2 [26] 29.55 0.934 -
D2Nets [43] Event 31.60 0.940 -
LEMD [18] Event 31.79 0.949 -
MPRNet [61] 32.66 0.959 20.0M
HINet [4] 32.71 0.959 88.7M
Restormer [59] 32.92 0.961 26.1M
ERDNet [14] Event 32.99 0.935 -
HINet+ [4] Event 33.69 0.961 88.7M
NAFNet [3] 33.69 0.967 67.9M
EFNet [48] Event 35.46 0.972 8.5M
REFID [49] Event 35.91 0.973 15.9M
SpkDeblurNet (Ours) Spike 36.12 0.971 13.5M
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Figure 6: Visualized results on Spk-GoPro dataset.
4.2 Ablation Studies
In this section, we conduct a series of ablation studies on Spk-X4K1000FPS dataset.
Effectiveness of the proposed modules. As shown in Tab. 3, removing the CAMMA branch resulted
in a performance degradation of 0.2-0.3 dB, confirming the necessity of introducing features from
the deblurring branch and the effectiveness of the CAMMA module’s learnable magnitude masking
mechanism. Additionally, replacing the TCAF module with concatenation led to minor performance
degradation, which we attribute to the explicit supervision of the spike reconstruction branch enabling
the branch to learn image-like features, thereby the modality gap is reduced.

Information supplementation from image domain to spike domain. We further conduct ablation
studies on spike reconstruction with different combinations of three input representations and the
usage of the CAMMA branch. To be specific, we employ either coarse reconstruction CSFI or a
symmetric cumulative spike representation similar to EFNet [48]. For the latter, we accumulate
spikes from the center towards both ends using three window lengths and concatenate the results
along the channel dimension. As shown in Tab. 4, CAMMA consistently significantly improves
spike reconstruction across all input representations. For settings using CSFI and cumulated spikes
as inputs, CAMMA enhances performance by 1.5-3.5 dB. This is due to the simpler nature of CSFI
and cumulated spikes, which contain less texture and motion information. High-resolution image
priors from the deblurring branch compensate for this, further enhancing spike reconstruction. Even
with spike streams as input, CAMMA still yields improvements of 0.4-0.7 dB. This set of ablation
experiments demonstrates the effectiveness of the proposed scheme in incorporating high-resolution
features from the deblurring branch into the spike branch, thereby enhancing spike reconstruction
performance and providing better guidance and cues for the deblurring task.
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Table 3: Ablation study of our proposed modules and input representations.

Experiment settings PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
Spk-X4K1000FPS e = 33 e = 65
Replace input representation with CSFI 36.08 0.957 34.22 0.950
Replace input representation with cumulate spikes 36.34 0.955 34.92 0.955
Replace TCAF with concatenation 37.36 0.968 35.81 0.965
Remove CAMMA branch 37.20 0.967 35.64 0.965
Our final SpkDeblurNet 37.42 0.968 35.94 0.966

Table 4: Ablation study of CAMMA on spike reconstruction with different inputs.

Experiment settings PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
Input Representation CAMMA e = 33 e = 65
CSFI ✘ 33.67 0.923 33.69 0.922
CSFI ✔ 37.25 0.939 36.13 0.935
Cumulated Spikes ✘ 35.58 0.926 35.11 0.914
Cumulated Spikes ✔ 37.54 0.935 36.65 0.936
Spike Streams ✘ 38.72 0.953 38.91 0.952
Spike Streams ✔ 39.41 0.955 39.32 0.954

Information supplementation from spike domain to image domain. We investigate the com-
plementary role of the spike domain to the image domain by replacing the input representation.
Quantitative results in Tab. 3 indicated that using coarse reconstruction as input still yielded competi-
tive performance, suggesting that the rough texture information contained in CSFI serves as a good
complement to the deblurring branch. On the other hand, using cumulated spikes as input further
improved the performance. As a comparison, we achieved the highest performance using pure spike
stream as input, demonstrating the network’s ability to fully excavate the rich temporal information
and clues embedded in spike streams to recover clear images. We further conduct ablation studies on
different combinations of three input representations and the usage of the CAMMA module for the
deblurring task, the results can be found in the supplementary materials.

5 Conclusion
In this paper, we propose the first spike-based motion deblurring model with bidirectional information
complementarity, in which we propose a content-aware motion magnitude attention module and a
transposed cross-attention fusion module. We build two large-scale synthesized datasets used for
both training and validation, which contain high-temporal-resolution spikes, blurry images, and sharp
images. Experimental results demonstrate that the proposed method outperforms other deblurring
methods and achieves desirable results.

Limitations. Our future work will prioritize enhancing the resolution of the spike stream to improve
its auxiliary capability for image-domain tasks, considering the limitation of the current low resolution
of spike cameras and the significant impact of spatial super-resolution on applications.
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