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Abstract

Section 1 is the proof of Theorem 1. Section 2 is the proof of Theorem 2. Section 3 is the proof
of Corollary 1. Section 4 is the proof for Corollary 2. Section 5 is the proof of the additional
Theorem 4. Section 6 is the proof of Theorem 3. Section 7 is the experiment details for
simulations and applications. All the codes for replicating the analysis and parameter estimates
are available at: https://github.com/JiawenChenn/GP_mixture_kernel.

1 Proof of Theorem 1

We first state a Lemma for determining the smoothness for a stationary GP.

Lemma 1 (Stein (1999)). Let ρ be the spectral density of a GP with kernel K, then K is d-times
mean squared differentiable if and only if∫

∥ω∥2dρ(ω)dω < ∞.

Proof of Theorem 1. Let ρl be the spectral density of Kl, then the spectral density of K is given by
ρ =

∑L
l=1 ρl by the linearity of Fourier transform. Then by the smoothness of Kl and Lemma 1, we

have
∫
∥ω∥2dlρl(ω)dω < ∞. As a result,∫

∥ω∥2dρ(ω)dω =

L∑
l=1

∫
∥ω∥2dρl(ω)dω =

L∑
l=1

∫
∥ω∥≤1

∥ω∥2dρl(ω)dω +

L∑
l=1

∫
∥ω∥≥1

∥ω∥2dρl(ω)dω

≤
L∑

l=1

∫
∥ω∥≤1

ρl(ω)dω +

L∑
l=1

∫
∥ω∥2dlρl(ω)dω < ∞,

that is, K is d-times MSD. Similarly, K is not d+ 1-times MSD since∫
∥ω∥2(d+1)ρ(ω)dω =

L∑
l=1

∫
∥ω∥2(d+1)ρl(ω)dω ≥

∫
∥ω∥2(d+1)ρ1(ω)dω = ∞.
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2 Proof of Theorem 2

We first state a Lemma, also known as the integral test to determine whether two GPs are equivalent
or not.
Lemma 2 (Yadrenko and Balakrishnan (1983), Zhang (2004)). Let K1 and K2 be the kernels of two
GPs P1 and P2 with spectral densities ρ1 and ρ2. Then P1 ≡ P2 if

1. There exists r > 0 such that ∥ω∥rρ1(ω) is bounded away from both zero and infinity as ω → ∞.

2. There exists δ > 0 such that
∫
∥ω∥>δ

(
ρ2(ω)−ρ1(ω)

ρ1(ω)

)2
dω < ∞.

Proof of Theorem 2. Recall that the spectral densities of Kl are

ρl(ω) =
σ2
l α

2νl

l

(α2
l + ∥ω∥2)νl+

p
2

, ρ(ω) =

L∑
l=1

wl
σ2
l α

2νl

l

(α2
l + ∥ω∥2)ν+ p

2

, ρ̃(ω) =

L∑
l=1

ω̃l
σ̃2
l α̃

2νl

l

(α̃2
l + ∥ω∥2)νl+

p
2

.

To apply the integral test, first, let r = 2(ν1 +
p
2 ), then

ρ(ω)∥ω∥r =

L∑
l=1

wl
σ2
l α

2νl

l ∥ω∥r

(α2
l + ∥ω∥2)νl+

p
2

ω→∞−−−−→ w1σ
2
1α

2ν1

l ,

that is, bounded away from both 0 and ∞ as ω → ∞. Then we check the relative difference between
the spectral densities ρ and ρ̃. Observe that when,

ρ(ω) =

L∑
l=1

wl
σ2
l α

2νl

l

(α2
l + ∥ω∥2)νl+

p
2

=

∑L
l=1 wlσ

2
l α

2νl

l Πj ̸=l(α
2
j + ∥ω∥2)νj+

p
2

ΠL
l=1(α

2
l + ∥ω∥2)νl+

p
2

=:

∑L
l=1 wlσ

2
l α

2νl

l pl(ω)

ΠL
l=1(α

2
l + ∥ω∥2)νl+

p
2

,

where pl := Πj ̸=l(α
2
j + ∥ω∥2)νj+

p
2 . Similarly,

ρ̃(ω) =

∑L
l=1 w̃lσ̃

2
l α̃

2ν
l p̃l(ω)

ΠL
l=1(α̃

2
l + ∥ω∥2)νl+

p
2

,

where p̃l := Πj ̸=l(α̃
2
j + ∥ω∥2)νj+

p
2 . Observe that when ∥ω∥ → ∞,

ΠL
l=1(α̃

2
l + ∥ω∥2)νl+

p
2

ΠL
l=1(α

2
l + ∥ω∥2)νl+

p
2

=
ΠL

l=1

(
1 +

α̃2
l

∥ω∥2

)νl+
p
2

ΠL
l=1

(
1 +

α2
l

∥ω∥2

)νl+
p
2

=
1 +O(∥ω∥−2)

1 +O(∥ω∥−2)
= 1 +O(∥ω∥−2).

Furthermore, let γl =
∑

j ̸=l(νj + p
2 ), then pl(ω) = O(∥ω∥2γl) where γ1 > γ2 · · · > γL and

γl − γl−1 ≥ 1. As a result, the leading term that dominates
∑L

l=1 wlσ
2
l α

2νl

l pl(ω) is w1σ
2
1α

2ν1
1 p1(ω),

as ∥ω∥ → ∞. Moreover,
∑L

l=1 wlσ
2
l α

2νl

l pl(ω) = ∥ω∥2γ1
(
w1σ

2
1α

2ν1
1 +O(∥ω∥−2)

)
since 2γl −

2γ1 ≥ 2, ∀l > 1.

Now we can analyze the relative difference:∣∣∣∣ρ(ω)− ρ̃(ω)

ρ(ω)

∣∣∣∣ = ∣∣∣∣ ρ̃(ω)ρ(ω)
− 1

∣∣∣∣ =
∣∣∣∣∣
∑L

l=1 w̃lσ̃
2
l α̃

2νl

l p̃l(ω)∑L
l=1 wlσ2

l α
2νl

l pl(ω)

ΠL
l=1(α̃

2
l + ∥ω∥2)νl+

p
2

ΠL
l=1(α

2
l + ∥ω∥2)νl+

p
2

− 1

∣∣∣∣∣
=

∣∣∣∣∣
∑L

l=1 w̃lσ̃
2
l α̃

2νl

l p̃l(ω)∑L
l=1 wlσ2

l α
2νl

l pl(ω)
(1 +O(∥ω∥−2))− 1

∣∣∣∣∣
=

∣∣∣∣∥ω∥2γ1(w̃1σ̃
2
1α̃

2ν1
1 +O(∥ω∥−2)

∥ω∥2γ1(w1σ2
1α

2ν1
1 +O(∥ω∥−2)

(1 +O(∥ω∥−2))− 1

∣∣∣∣
=

∣∣∣∣ w̃1σ̃
2
1α̃

2ν1
1

w1σ2
1α

2ν1
1

(1 +O(∥ω∥−2))(1 +O(∥ω∥−2))− 1

∣∣∣∣
=

∣∣∣∣ w̃1σ̃
2
1α̃

2ν1
1

w1σ2
1α

2ν1
1

− 1 +O(∥ω∥−2)

∣∣∣∣ .
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As a result, if w1σ
2
1α

2ν1
1 = w̃1σ̃

2
1α̃

2ν1
1 ,

∫
ω∈Rp:∥ω∥>1

∣∣∣∣ρ(ω)− ρ̃(ω)

ρ(ω)

∣∣∣∣2 dω ≈
∫
ω∈Rp:∥ω∥>1

1

∥ω∥4
dω < ∞,

when p = 1, 2, 3, so K ≡ K̃. That is, none of the parameters are identifiable, while the parameter
that might be identifiable is w1σ

2
1α

2ν1
1 , also known as the microergodic parameter.

Now we turn to the case for p ≥ 5. By Anderes (2010), it suffices to anaylize the principal irregular
terms for K. For the spectral density of each individual kernel component, the principal irregular
term is

Gνl
(ω) =

−π

22νl sin(νlπ)Γ(νl)Γ(νl + 1)
ω2νl =: Clω

2νl .

Furthermore,

Kl(x+ h, x′) = σ2
l Gνl

(|αlh|)− νlσ
2
l Gνl+1(|αlh|) + ιl(|αlh|),

where ιl(t) = p(|h|)+o(Gνl+1(|h|)) as |h| → 0 and p is a polynomial with even degree. By linearity,
we have

K(x+ h, x′) =

L∑
l=1

wlKl(x+ h, x′)

=

L∑
l=1

wl

(
σ2
l Gνl

(|αlh|)− νlσ
2
l Gνl+1(|αlh|) + ιl(t)

)
= w1σ

2
1Gν1(|α1h|)− w1ν1σ

2
1Gν1+1(|α1h|) + w2σ

2
2Gν2(|α2h|) + ι(t),

where ι(t) = p(|h|)+ o(Gν2+1(|h|)) as |h| → 0. They by Theorem 4 of Anderes (2010), there exists
consistent estimators for w1σ

2
1α

2ν1
1 and w2σ

2
2α

2ν2
2 − ν1w1σ

2
1α

2(ν1+1)
1 when 0 < 2(2ν2 − 2ν1) < p,

that is 0 < 4 < p. This completes the proof.

3 Proof of Corollary 1

We first state a Lemma for comparing MSE of two best linear predictor with two spectral density.

Lemma 3 (Stein (1993)). Suppose Z is a zero mean stationary process in Rd and x1, x2, . . . is
a dense sequence of points in a bounded subset of Rd. x0 is a point in the bounded set but not
the sequence. Let Ẑ(x0, n, ρ) be the best linear predictor of Z(x0) based on Z(x1), . . . , Z(xn)

assuming ρ is the spectral density for Z. e(x0, n, ρ) := Z(x0) − Ẑ(x0, n, ρ). If there exists c>0,
such that

lim
|ω|→∞

ρ1(ω)

ρ0(ω)
= c

and ρ0 satisfies condition 1 in Lemma 2, then

lim
n→∞

Eρ0
e(x0, n, ρ1)

2

Eρ0e(x0, n, ρ0)2
= 1

Proof of Corollary 1. For K1 = Mat(w1σ
2
1 , α1, ν1), by Theorem 2, K1 ≡ K since the microergodic

parameters match.

Regarding MSE, let ρ be the spectral density of the mixture kernel K, and ρ1 be the spectral density
of the first mixing component K1. We assume ρ1 as the true spectral density. Then by the proof of
Theorem 2,

lim
|ω|→∞

ρ(ω)

ρ1(ω)
=

w1σ
2
1α

2ν1
1

w1σ2
1α

2ν1
1

= 1,

then the MSE of GP with K1 is asymptocially equal to the MSE of GP with K.
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4 Proof of Corollary 2

We first state a Lemma regarding the equivalence of Gaussian measure with nuggets.

Lemma 4 (Tang et al. (2022)). Let S be a closed set, GS(m,K) denotes the Gaussian measure of
the random field on S with mean function m and covariance function K. Let w(s) be a mean square
continuous process on S under GS(m1,K1) and χ be a dense sequence of points in S. Then

1. if τ21 ̸= τ22 , then Gχ(m1,K1, τ
2
1 ) ⊥ Gχ(m2,K2, τ

2
2 ).

2. if τ21 = τ22 , then Gχ(m1,K1, τ
2
1 ) ≡ Gχ(m2,K2, τ

2
2 ) if and only if GS(m1,K1) ≡ GS(m2,K2).

Proof of Corollary 2. We denote the adjusted kernel with noise of K and K̃ as Kτ and K̃τ̃ .

From Lemma 4(1), where we set m1 = m2 = 0, if τ2 ̸= τ̃2, then Kτ ̸≡ K̃τ̃ . If τ2 = τ̃2, then
Kτ ≡ K̃τ̃ if and only if K ≡ K̃. Then the previous results in Theorem 2 holds.

5 Additional theorem - mixture of Matérn kernels with the same smoothness

Here we introduce a special scenario for Theorem 4 where all component in the mixture kernel
have same smoothness. The simulation study for the following theorems are included in Section 7:
simulation 4.

Theorem 4. For K =
∑L

l=1 Kl where Kl = Mat(σ2
l , αl, ν),then

(i) When p = 1, 2, 3, the only identifiable parameter is
∑L

l=1 wlσ
2
l α

2ν
l .

(ii) When p > 4, the only identifiable parameters are
∑L

l=1 wlσ
2
l α

2ν
l and

∑L
l=1 wlσ

2
l α

2ν+2
l .

As a consequence, none of the parameters are identifiable.

Proof. The proof is similar to the proof of Theorem 2. Recall that the spectral densities of Kl are

ρl(ω) =
σ2
l α

2ν
l

(α2
l + ∥ω∥2)ν+ p

2

, ρ(ω) =

L∑
l=1

wl
σ2
l α

2ν
l

(α2
l + ∥ω∥2)ν+ p

2

, ρ̃(ω) =

L∑
l=1

ω̃l
σ2
l α

2ν
l

(α2
l + ∥ω∥2)ν+ p

2

.

To apply the integral test, first, let r = 2(ν + p
2 ), then

ρ(ω)∥ω∥r =

L∑
l=1

wl
σ2
l α

2ν
l ∥ω∥r

(α2
l + ∥ω∥2)ν+ p

2

ω→∞−−−−→
L∑

l=1

wlσ
2
l α

2ν
l ,

that is, bounded away from both 0 and ∞ as ω → ∞. Then we check the relative difference between
the spectral densities ρ and ρ̃. Observe that

ρ(ω) =

L∑
l=1

wl
σ2
l α

2ν
l

(α2
l + ∥ω∥2)ν+ p

2

=

∑L
l=1 wlσ

2
l α

2νΠj ̸=l(α
2
j + ∥ω∥2)ν+

p
2

ΠL
l=1(α

2
l + ∥ω∥2)ν+ p

2

=:

∑L
l=1 wlσ

2
l α

2νpl(ω)

ΠL
l=1(α

2
l + ∥ω∥2)ν+ p

2

,

where pl := Πj ̸=l(α
2
j + ∥ω∥2)ν+

p
2 . Observe that

|pl(ω)| ≥ ∥ω∥2(L−1)(ν+ p
2 ) (1)

pl(ω)

∥ω∥2(L−1)(ν+ p
2 )

= Πj ̸=l

(
1 +

α2
j

∥ω∥2

)ν+ p
2

= 1 +O(∥ω∥−2). (2)
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Now we can analyze the relative difference:

∣∣∣∣ρ(ω)− ρ̃(ω)

ρ(ω)

∣∣∣∣ =
∣∣∣∣∣∣∣
∑L

l=1 wlσ
2
l α

2νpl(ω)

ΠL
l=1(α

2
l +∥ω∥2)ν+

p
2
−

∑L
l=1 w̃lσ

2
l α

2νpl(ω)

ΠL
l=1(α

2
l +∥ω∥2)ν+

p
2∑L

l=1 wlσ2
l α

2νpl(ω)

ΠL
l=1(α

2
l +∥ω∥2)ν+

p
2

∣∣∣∣∣∣∣
=

∣∣∣∣∣
∑L

l=1 wlσ
2
l α

2νpl(ω)−
∑L

l=1 w̃lσ
2
l α

2νpl(ω)∑L
l=1 wlσ2

l α
2νpl(ω)

∣∣∣∣∣
≤ 1∑L

l=1 wlσ2
l α

2ν

∣∣∣∣∣
∑L

l=1 wlσ
2
l α

2νpl(ω)−
∑L

l=1 w̃lσ
2
l α

2νpl(ω)

∥ω∥2(L−1)(ν+ p
2 )

∣∣∣∣∣
=

1∑L
l=1 wlσ2

l α
2ν

∣∣∣∣∣
L∑

l=1

wlσ
2
l α

2ν(1 +O(∥ω∥2)−
L∑

l=1

w̃lσ
2
l α

2ν(1 +O(∥ω∥2)

∣∣∣∣∣
=

1∑L
l=1 wlσ2

l α
2ν

∣∣∣∣∣
L∑

l=1

wlσ
2
l α

2ν −
L∑

l=1

w̃lσ
2
l α

2ν +O(∥ω∥−2)

∣∣∣∣∣ .
As a result, if

∑L
l=1 wlσ

2
l α

2ν =
∑L

l=1 w̃lσ
2
l α

2ν ,∫
ω∈Rp:∥ω∥>1

∣∣∣∣ρ(ω)− ρ̃(ω)

ρ(ω)

∣∣∣∣2 dω ≈
∫
ω∈Rp:∥ω∥>1

1

∥ω4∥
dω < ∞,

when p = 1, 2, 3, so K ≡ K̃. That is, none of the parameters are identifiable, while the parameter
that might be identifiable is

∑L
l=1 wlσ

2
l α

2ν
l , also known as the microergodic parameter.

Now we turn to the case for p ≥ 5. The proof is similar to the proof of Theorem 2: it suffices
to analyze the principal irregular terms for K. For the spectral density of each individual kernel
component, the principal irregular term is

Gν(ω) =
−π

22ν sin(νπ)Γ(ν)Γ(ν + 1)
ω2ν =: Clω

2ν .

Furthermore,
Kl(x+ h, x′) = σ2

l Gν(|αlh|)− νσ2Gν+1(|αlh|) + ι(|αlh|),
where ι(t) = p(|h|) + o(Gν+1(|h|)) as |h| → 0 and p is a polynomial with even degree. By linearity,
we have

K(x+ h, x′) =

L∑
l=1

wlKl(x+ h, x′)

=

L∑
l=1

wl

(
σ2
l Gν(|αlh|)− νσ2

l Gν+1(|αlh|) + ι(t)
)

=

L∑
l=1

wlσ
2
l Gν(|αlh|)−

L∑
l=1

νwlσ
2
l Gν+1(|αlh|) + ι(t),

where ι(t) = p(|h|) + o(Gν+1(|h|)) as |h| → 0. They by Theorem 4 of Anderes (2010), there exists
consistent estimators for

∑L
l=1 wlσ

2
l α

2ν
l and

∑L
l=1 wlσ

2
l α

2(ν+1)
l when 0 < 2(2(ν + 1)− 2ν) < p,

that is 0 < 4 < p. This completes the proof.

6 Proof of Theorem 3

(i) is a direct corollary of Theorem 3 of Bachoc et al. (2022), where σiiσjjρij = Aijσ
2 and αij =

1
α

for any i, j = 1, · · · ,m.

Now we prove (ii). Let θ be the microergodic parameter of K0, that is, K0 ≡ K̃0 ⇐⇒ θ = θ̃, where
K̃0 is characterized by θ̃. Let ρ0 and ρ̃0 be the spectral densities of K and K̃0, then the matrix
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spectral densities of K and K̃ are P := Aρ0 and P̃ := Ãρ̃0. By the assumption, that is, there exists
constants b, c1, c2 > 0 and γ ∈ W[−b,b]m such that c1γ2(ω) ≤ ρ0(ω) ≤ c2γ

2(ω), we claim that
there exists q1, q2 > 0 such that

q1γ
2(ω)Im ≤ P (ω) ≤ q2γ

2(ω)Im, ∀ω ∈ Rp. (3)

From the assumption,

P (ω) = Aρ0 ≤ c2γ
2(ω)A ≤ c2 eig1(A)γ2(ω),

where eig1(A) is the largest eigenvalue of A. Similarly, c1 eigm(A)γ2(ω)Im ≤ P (ω) where
eigm(A) > 0 is the smallest eigenvalue of A, which is positive by the positive definiteness of
A. Then claim (3) holds where q1 := c1 eigm(A) and q1 := c2 eig1(A). Now we can prove (ii). If
θA = θ̃Ã, then for any i, j = 1, · · · ,m,∫

Rp

1

γ4(ω)

(
Pij(ω)− P̃ij(ω)

)2
dω =

∫
Rp

1

γ4(ω)

(
Aijρ0(ω)− Ãij ρ̃0(ω)

)2
dω

=

∫
Rp

1

γ4(ω)

(
θAij

ρ0(ω)

θ
− θ̃Ãij

ρ̃0(ω)

θ̃

)2

dω

=

∫
Rp

1

γ4(ω)

(
θAij

ρ0(ω)

θ
− θAij

ρ̃0(ω)

θ̃

)2

dω

= (θAij)
2

∫
Rp

1

γ4(ω)

(
ρ0(ω)

θ
− ρ̃0(ω)

θ̃

)2

dω

< ∞,

where the last inequality holds from the assumption that θ is the microergodic parameter of K0. As a
result, by Theorem 2 of Bachoc et al. (2022), θA is the microergodic parameter of K.

7 Experiment details

7.1 Simulation 1

In the first simulation, we examined a mixture kernel defined as follows: K =
∑3

l=1 wlKl, wherein
Kl represents the Matérn kernel with parameters (σ2

l , αl, νl). For this simulation, we assigned the
values ν1 = 1/2, ν2 = 3/2, ν3 = 5/2 for the smoothness parameter.

The weights for each kernel component, represented as (w1, w2, w3), were chosen as
(0.03, 0.33, 0.63). This set-up presents the case where despite w1 being the smallest, which is
associated with the kernel that exhibits the least smoothness, our result further substantiates our claim
about the dominance of the kernel with the lowest smoothness over the influence of weights. In
terms of the scale parameters, for (σ2

1 , σ
2
2 , σ

2
3), we picked (3, 3, 3). We selected (α1, α2, α3) to be

(1, 1, 1). This uniform selection across the components aids in isolating the effect of the smoothness
and weights in our analysis.

7.2 Simulation 2

In the second simulation, we consider the following mixture kernel: K =
∑3

l=1 wlKl, where Kl

is the Matérn kernel with parameter (σ2
l , αl, νl). For this simulation, the values for the smoothness

parameter, ν, were set as ν1 = 1/2, ν2 = 3/2, ν3 = 5/2. Regarding the choice of the weight
parameters (w1, w2, w3), we selected (0.1, 0.3, 0.6) to reflect the difference in contribution of each
kernel to the overall mixture. Although the weight of the Matérn 1/2 kernel (w1) is small, it still
remains dominant due to its lesser smoothness. This setup allowed us to test our hypothesis that
smoothness plays a more significant role than weight in determining the identifiability of parameters.
(σ2

1 , σ
2
2 , σ

2
3) are set to (16, 4, 1), and (α1, α2, α3) are set to (4, 2, 1). This variation further facilitated

the examination of our proposition that the parameters associated with the least smooth kernel
converge to their true values, while others do not.

In this scenario, we generate X ∈ R2 from an equal-spaced sequence ranging from −10 to 10, with
a random variation sampled from unif(− 1

5n ,
1
5n ). The sample size, n, takes on values from the set

6



20, 50, 100, 500. For each sample size, we replicate the simulation 100 times. Subsequently, Y is
simulated from N(0,K + ϵ). We consider ϵ as a fixed value (ϵ = 0.1) and include it for numerical
robustness. This ϵ is also added in the training process. For parameter initialization, we initialize
w = (0.2, 0.3, 0.5), σ2 = (5.0067, 10, 15) and α = (0.7615, 0.4702, 0.3280). These initial values
were close to the true parameters, yet sufficiently distinct to illustrate the efficacy of the learning
process. Here we use the SGD optimizer with 0.005 learning rate and 1000 epochs. All parameter
estimates are summarised in the Figure S1.

Figure S1: All parameter estimation in simulation 2.

We further examined the simulation in a larger sample size and also used a different optimizer
L-BFGS (learning rate 0.5 for n = 50, 500, 1.0 for n = 100). The results are consistent with the
previous results.

7.3 Simulation 3

In the third simulation, we consider the following mixture kernel: K = AK0, where K0 is the
Matérn kernel with parameter (α, σ2, ν). For this simulation, we set ν = 1/2. The ground truth for
the parameters is assigned as follows: the matrix A is set as [[5, 1][1, 5]], which serves as a symmetric,
positive-definite structure to facilitate the properties of the covariance matrix; σ2 is set to 10, and α is
set to 1.

7



Figure S2: Parameter estimation in simulation 2 with larger sample size.

Figure S3: Parameter estimation in simulation 2 with L-BFGS optimizer.

In this simulation, we generate X ∈ R2 from an equal-spaced sequence ranging from −10 to 10,
with a random variation sampled from unif(− 1

5n ,
1
5n ). The sample size, n, takes on values from the

set 50, 100, 200, 400. For each sample size, we replicate the simulation 100 times. Subsequently, Y
is simulated from N(0,K + ϵ). We consider ϵ as a fixed value (ϵ = 0.5). This ϵ is also added in the
training process. In terms of parameter initialization, we elect to start with A as an identity matrix,
σ2 = 1 and α = 10. The initialization of A as an identity matrix ensures a simple, non-informative
starting point, while the initial σ2 and α are chosen to be significantly distinct from the ground truth
to assess the robustness of the learning process. Here we use the SGD optimizer with 0.001 learning
rate and 2000 epochs. The parameter estimates of A are summarised in the Figure S4.

7.4 Additional simulation (Simulation 4) for mixture of Matérn kernels with the same
smoothness

In this additional simulation 4, we aim to evaluate the parameter identifiability in a GP with a
mixture kernel consisting of Matérn kernels with the same smoothness. We denote the mixture as
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Figure S4: Parameter estimation in simulation 3.

K =
∑L

l=1 wlKl, where Kl is a Matérn kernel with parameters (σ2
l , αl, ν). Our theorem suggests

that only the microergodic parameter
∑L

l=1 wlσ
2
l αl might be identifiable, while other parameters are

not identifiable. Consequently, we will evaluate the parameter estimation by comparing it with the
true value for different training sample sizes.

Here we use mixture of three Matérn 1/2 kernels. We generate X ∈ R2 from an equal-spaced se-
quence with values ranging from −10 to 10, with a random variation sampled from unif(− 1

10n ,
1

10n ).
The sample size n takes values from 20, 50, 100, 500. For each sample size, we replicate the sim-
ulation 100 times. Subsequently, we simulate Y from a normal distribution with a mean of 0 and
covariance matrix K + ϵ. We treat ϵ as a fixed value (ϵ = 0.1) and include it for numerical ro-
bustness. This ϵ is also added in the training process. The ground truth parameters are given as
w = (0.2, 0.3, 0.5), σ2 = (16, 4, 1) and α = (2, 1, 4). Here the weight and sigma are set to true
value, (α1, α2, α3) are set to (4, 2, 1). The motivation behind our specific parameter initialization
strategy is to intentionally introduce some degree of initial discrepancy. This approach allows us to
critically observe the convergence behavior of the parameters. Here we use the Adam optimizer with
0.01 learning rate and 1000 epochs.

Figure S5: Parameter estimation in simulation 4. (A) Only the microergodic parameter
∑L

l=1 wlσ
2
l αl

might be identifiable (B-D) All other parameters (σ2
l , αl, wl)

L
l=1 are not identifiable.

Our results offer compelling evidence that, in the case of a mixture kernel consisting of three Matérn
1/2 kernels, only the MLE of the microergodic parameter

∑L
l=1 wlσ

2
l α

2ν
l converges to the true value

(Figure S5A). The MLEs of all other parameters do not demonstrate convergence to their corre-
sponding true values (Figure S5B-D). This result underscores the importance of understanding the
identifiability of parameters in such mixture kernels and highlights the need for careful consideration
when interpreting the estimated parameters in Gaussian process models. When treating mixture kernel
consist of same smoothness, we could not interprete every single model. All parameter estimates are
summarised in Figure S6.
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Figure S6: All parameter estimation in simulation 4.

7.5 Application 1

In application 1, we focus on image analysis. We employ a hand-written zero from the MNIST
dataset (LeCun et al. (1998)). In this application, we use mixture kernel with Matérn kernels of
smoothness 1/2, 3/2 and 5/2 and compare its performance with Matérn 1/2 kernel. For both kernels,
we used the SGD optimizer with learning rate 1e−05. The training epochs are 40000. During both the
training and prediction stages, we introduced a term, ϵ, into the covariance computation to guarantee
its positive-definiteness. For both kernels, we set ϵ to 0.01. For mixture kernel, the parameters are
initialized as (w1, w2, w3) = (1/3, 1/3, 1/3), (σ2

1 , σ
2
2 , σ

2
3) = (1, 1, 1) and (α1, α2, α3) = (1, 1, 1).

Here the estimated parameters for mixture kernel are (w1, w2, w3) =
(9.9954e−01, 2.3194e−04, 2.3194e−04), (σ2

1 , σ
2
2 , σ

2
3) = (1.2148e+02, 4.9960e+01, 4.9256e+01),

(α1, α2, α3) = (1.3941e−01, 1.1203e−02, 1.1020e−02). The estimated parameters for Matérn 1/2
kernel are α = 3.0639e−02,σ2 = 2.7927e+02.

7.6 Application 2

In application 2, we focus on the Moana Loa CO2 dataset (Tans and Keeling (2023)). In this
application, we compare the performance of Matérn mixture 1/2+3/2, 1/2+3/2+5/2, 3/2+5/2
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and three single Matérn kernels (1/2, 3/2, 5/2). We use sklearn package (Pedregosa et al. (2011)) for
this analysis. The the parameters are initialized as (σ2

1 , σ
2
2 , σ

2
3) = (10, 500, 500) and (α1, α2, α3) =

(4, 0.1, 0.1) for both single kernel and mixture kernel. Other parameters remain default in sklearn.
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