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Abstract

Preference-based reinforcement learning (PbRL) is an approach that enables RL
agents to learn from preference, which is particularly useful when formulating
a reward function is challenging. Existing PbRL methods generally involve a
two-step procedure: they first learn a reward model based on given preference
data and then employ off-the-shelf reinforcement learning algorithms using the
learned reward model. However, obtaining an accurate reward model solely from
preference information, especially when the preference is from human teachers,
can be difficult. Instead, we propose a PbRL algorithm that directly learns from
preference without requiring any reward modeling. To achieve this, we adopt
a contrastive learning framework to design a novel policy scoring metric that
assigns a high score to policies that align with the given preferences. We apply our
algorithm to offline RL tasks with actual human preference labels and show that
our algorithm outperforms or is on par with the existing PbRL methods. Notably,
on high-dimensional control tasks, our algorithm surpasses offline RL methods that
learn with ground-truth reward information. Finally, we show that our algorithm
can be successfully applied to fine-tune large language models.

1 Introduction

Deep reinforcement learning has been successful in solving various decision-making tasks where
a well-defined reward function is available [34, 35, 50, 5, 54]. However, in many real-world tasks,
it can be challenging to design a quantitative reward function that accurately reflects the desired
behavior, particularly when the task involves human evaluation. Preference-based RL (PbRL) seeks
to provide an alternative solution by enabling agents to learn from preference information between
pairs of trajectory segments [1, 10]. PbRL has gained considerable interest in recent years as making
a relative judgment is much easier than providing a real-valued score, which makes human feedback
much more viable [39, 38, 52, 45, 56].
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Figure 1: An overview of the difference between our
approach (below) and the baselines (top). Our approach
does not require modeling the reward from the prefer-
ence predictor as our policy optimization algorithm can
learn directly from preference labels.

Figure 2: Predicted reward vs. true reward
on the Hopper environment when using
a reward model from PbRL [27]. The re-
ward model fails to accurately capture the
underlying reward structure.

Recent PbRL methods take a two-step approach: they first learn a reward model from the given
preference dataset and then run off-the-shelf reinforcement learning algorithms on top of the learned
reward model [10, 31, 40]. However, acquiring an accurate reward model only from preference labels,
typically provided by human teachers, poses a significant challenge as it is unclear how to extract
the underlying reward structure from preference. Current methods rely on modeling the reward with
certain specific assumptions, though there are some concerns regarding whether those assumptions
hold in practice [13, 27].

Alternatively, predicting the preference itself is comparatively more straightforward since we have
direct access to training labels, allowing us to leverage powerful techniques from supervised learning.
Building upon this observation, we introduce a PbRL algorithm that bypasses the need for reward
function modeling by directly learning from preference labels. Our approach begins by devising a
policy scoring metric that assigns high scores to policies aligning with the provided preference dataset.
Concretely, the PbRL objective is formulated as a contrastive learning problem, guiding the learned
policy to be closer to more preferred trajectory segments while distancing itself from the less preferred
ones [9, 20]. Furthermore, we enhance the performance of the preference predictors from previous
works by introducing a novel prediction smoothness regularizer. Experiment results on offline RL
settings with actual human preference labels show that the proposed algorithm outperforms or is on
par with the baselines on all of the tasks considered [16]. Notably, in high-dimensional control tasks,
our algorithm outperforms offline RL methods that utilize ground-truth reward information. Moreover,
our preliminary experiments show that our algorithm can be successfully applied for fine-tuning large
language models. Our official code is available at https://github.com/snu-mllab/DPPO.

2 Preliminaries

2.1 Preference-based reinforcement learning

Reinforcement learning considers an environment formulated as a Markov Decision Process (MDP)
defined by a tuple (S,A, T,R, p0, H), where S is a state space, A is an action space, T (s′|s,a) is
the state transition dynamics,R(s,a) is the reward function, p0(s) is the initial state distribution, and
H is the time horizon. The goal of reinforcement learning is to learn a policy π that optimizes the
expected return:

J(π) = Es0∼p0,at∼π(·|st),st+1∼T (·|st,at)

[
H∑
t=0

rt

]
.

Conventional RL assumes the reward information (rt) is given and uses this to optimize their
policy. However, finding a suitable reward metric can be costly in many real-world scenarios.
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For example, if the goal task is to train a robot to scramble an egg, it would be unclear how
to design a reward function that captures all the desired properties. Instead, PbRL assumes the
supervision is given in the form of preference. Concretely, for a pair of trajectory segments (σ0, σ1),
where σi = (si0,a

i
0, s

i
1,a

i
1, . . . , s

i
k,a

i
k), a (human) teacher indicates which segment it prefers. The

preference label y is given as 0 if σ0 is preferred, i.e., σ0 ≻ σ1. In a similar manner, y is set to 1 if σ1

is preferred and 0.5 if the two are equally preferred.

To learn a reward model r̂, prior works assume the preference depends on the value of the underlying
rewards summed over each timestep [10, 6, 31, 40]:

P̂ [σ0 ≻ σ1;ψ] =
exp

(∑k
t=0 r̂

(
s0t ,a

0
t ;ψ
))

exp
(∑k

t=0 r̂ (s
0
t ,a

0
t ;ψ)

)
+ exp

(∑k
t=0 r̂ (s

1
t ,a

1
t ;ψ)

) ,
where ψ denotes the learnable parameters of the reward model. Given a dataset Dpref of preference
triples (σ0, σ1, y), the reward model is trained by minimizing the cross-entropy loss between the
preference predictions and the ground-truth labels:

ℓr̂(ψ;Dpref) = − E
(σ0,σ1,y)∼Dpref

[
(1− y) log P̂

[
σ0 ≻ σ1;ψ

]
+ y log P̂

[
σ1 ≻ σ0;ψ

]]
. (1)

After training, any standard RL algorithm can be used to maximize the expected return under the
learned reward model. Especially in the offline PbRL setting, we assume there exists a small dataset
Dpref with preference labels along with a much larger unlabeled dataset D without any reward or
preference labels [27, 49]. A typical approach involves utilizing Dpref to learn the reward model and
applying the model to label D.

2.2 Contrastive learning

The goal of contrastive learning is to learn representations where similar sample pairs are close to
each other while dissimilar pairs are far apart. For an anchor sample x (e.g., an image), suppose
we have a positive sample x+ (e.g., the same image with data augmentation applied) and a set of
negative samples {x−

i }mi=1 (e.g., samples from other images). To learn an encoder f , contrastive
learning minimizes the following loss:

ℓf
(
x,x+,

{
x−
i

}m
i=1

)
= − log

exp (f (x)
⊺
f (x+))

exp (f (x)
⊺
f (x+)) +

∑m
i=1 exp

(
f (x)

⊺
f
(
x−
i

)) ,
where a dot product of two representations (e.g., f(x)⊺f(x+)) is considered as the similarity score
between the two samples.

3 Learning directly from preference

While prior PbRL approaches adopt a two-step procedure involving the construction of a reward
model using the preference data, the fidelity of the learned reward model in reflecting the original
reward function remains uncertain. The main challenge lies in extracting the underlying rewards
from the given preference. Previous works assume that the preference for a trajectory segment can be
represented as an average of the underlying rewards [10, 21]. However, considering PbRL typically
assumes human teachers provide the preference labels, it is unclear whether human preferences
can also be modeled in this manner. For instance, humans may focus on a specific subset of the
segment while ignoring other parts [24, 27]. Empirically, we find that the reward models learned
from preferences often fail to accurately capture the underlying reward structure, as illustrated in
Figure 2. This issue is problematic since within the current PBRL framework, the quality of the
learned policy relies heavily on the quality of the learned rewards.

Meanwhile, predicting the preference itself is a more straightforward task as we have explicit labels
to train with and can therefore apply powerful tools from supervised learning [18, 11, 36]. Based
on this observation, our goal is to introduce a PbRL algorithm that directly learns with preference
information without the need for reward modeling, as illustrated in Figure 1. To achieve this, we
design a policy scoring metric that yields a high score when a policy aligns with the given preference
dataset. In other words, we assume that a desirable policy should be closer to σ0 than σ1 if σ0 ≻ σ1.
To formulate this property into an optimizable objective, we first define the closeness between a
policy and a trajectory segment.
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Figure 3: An overview of the score calculation process. To score a given policy, (1) the first step is to
calculate the distance between each transition tuple and the policy. (2) Second, these distances are
aggregated to a policy-segment distance through a predefined aggregation function. (3) Finally, we
obtain the score value by contrasting the policy-segment distances according to their preference.

3.1 Policy-segment distance

We define the distance between a policy and a trajectory segment as an aggregation of the distance
between a policy and each transition tuple in the trajectory segment. Concretely, the policy-segment
distance can be expressed as

d
(
π, σi

)
= AGG

(
dsa
(
π, si0,a

i
0

)
, . . . , dsa

(
π, sik,a

i
k

))
,

where dsa denotes the policy-transition tuple distance and AGG denotes an aggregation function.
There can be multiple ways for instantiating dsa. For simplicity, we employ the expected ℓ2 distance
between the policy action and the trajectory action: dsa(π, s,a) = Eã∼π(·|s) [∥ã− a∥2]. Similarly,
we opt to use the mean operator as the aggregation function. To sum up, our policy-segment distance
function becomes

d(π, σi) =
1

k + 1

k∑
t=0

(
E

ã∼π(·|sit)

[∥∥ã− ait
∥∥
2

])
.

3.2 Preference score metric

Using the policy-segment distance defined above, we can now build a score metric that satisfies our
desired property. Given a preference triple (σ0, σ1, y), assume that σ0 is preferred over σ1, i.e., y=0.
We want to assign a high score if a policy is closer to σ0 than σ1. This condition can be expressed in
terms of the policy-segment distance as σ0 ≻ σ1 ⇒ d(π, σ0) < d(π, σ1). To capture this condition
across multiple segment pairs into a single metric, we adopt a contrastive learning formulation:

S(θ;Dpref) = E
(σ0,σ1,y)∼Dpref

[
(1− y) · s

(
πθ, σ

0, σ1
)
+ y · s

(
πθ, σ

1, σ0
)]

(2)

s.t. s
(
π, σi, σj

)
= log

exp
(
−d
(
π, σi

))
exp (−d (π, σi)) + exp (−d (π, σj))

,

where θ denotes the learnable parameters of the policy π. In terms of contrastive learning, we can
interpret exp

(
−d
(
πθ, σ

i
))

as representing the similarity between the policy πθ and the segment σi.
Then, πθ, σ0, and σ1 are each considered the anchor, the positive sample, and the negative sample,
assuming σ0≻σ1. Note that a high score can only be achieved if the policy is closer to more preferred
trajectory segments.

While Equation (2) is sufficient to express our desired property, a minor drawback is that the score
function is indifferent to the increase or decrease of the distances in the same magnitude. To
understand this in detail, let us first denote di = d(πθ, σ

i) for brevity. Then, for a preference triple
(σ0, σ1, y) with y = 0,

s
(
πθ, σ

0, σ1
)
=− d0 − log

(
exp

(
−d0

)
+ exp

(
−d1

))
≈ max

{
0, d0 − d1

}
. (3)
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Figure 4: Predicted preference of overlapping seg-
ments from a single trajectory. In detail, we measure
P̂ [σi ≻ σi+1], where σi = (si,ai, . . . si+k,ai+k).

Algorithm 1 Direct Preference-based Policy
Optimization

Input: Unlabeled dataset D, preference
dataset Dpref, learning rate ηϕ and ηθ, num-
ber of training steps M and N , and regular-
ization parameters λ, ν.
Initialize network parameters ϕ and θ
for step = 1 to M do

Update the predictor parameter:
ϕ← ϕ− ηϕ∇ϕℓP̂ (ϕ;Dpref,D)

end for
for step = 1 to N do

Update the policy parameter:
θ ← θ + ηθ∇θS(θ;D, ϕ, λ)

end for

Therefore, the score value remains the same when the distances increase or decrease in the same
magnitude. In other words, the score for the distances (d0, d1) and (d0 + α, d1 + α) are identical,
indicating there is no penalty when a policy deviates from even the preferred trajectory segment. To
solve this, we add a regularizing factor λ ∈ (0, 1) that decreases the score when the overall scale of
the policy-segment distances increases:

S(θ;Dpref, λ) = E
(σ0,σ1,y)∼Dpref

[
(1− y) · s

(
πθ, σ

0, σ1;λ
)
+ y · s

(
πθ, σ

1, σ0;λ
)]

(4)

s.t. s
(
π, σi, σj ;λ

)
= log

exp
(
−d
(
π, σi

))
exp (−d (π, σi)) + exp (−λd (π, σj))

.

If we set λ smaller than 1 and plug in this new formulation to Equation (3), it is easy to find out that
the score will decrease when the overall distances increase. The resulting score calculation process
for Equation (4) is illustrated in Figure 3.

3.3 Policy optimization with preference predictor

We can directly optimize a policy with preference labels by maximizing the score function in
Equation (4). However, to leverage the unlabeled dataset D, we train a preference predictor using the
labeled dataset Dpref. We formulate this process as a simple binary classification problem and use the
cross-entropy loss to optimize the predictor P̂ :

ℓP̂ (ϕ;Dpref,D) =− E
(σ0,σ1,y)∼Dpref

[
(1− y) log P̂

[
σ0 ≻ σ1;ϕ

]
+ y log P̂

[
σ1 ≻ σ0;ϕ

]]
︸ ︷︷ ︸

Preference Correctness

(5)

+ ν E
(σ,σ′)∼D

[(
P̂ [σ ≻ σ′;ϕ]− 0.5

)2]
︸ ︷︷ ︸

Preference Smoothness

,

where ϕ denotes the learnable parameters of the preference predictor P̂ . The first term resembles
Equation (1), but the difference is that here we directly model the preference predictor instead
of modeling the reward function. The second term is a smoothness regularizer which guides the
predictor to have a similar preference against two largely overlapping segments. Concretely, given σ =
(si,ai, . . . , si+k,ai+k), we sample σ′ from the same trajectory as (si+α,ai+α, . . . , si+α+k,ai+α+k),
where α ∼ N (0,m2) with m ≪ k. We observe that if no smoothness regularization is applied
(ν = 0), the preference can vary significantly between two almost identical segments, as illustrated in
Figure 4. This behavior is undesirable as a human teacher will unlikely be able to even identify the
difference between the two segments.
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Figure 5: DPPO vs. BC for two example trajectory segments on the walker2d-medium-replay dataset
of D4RL Gym. DPPO successfully avoids the behavior from the unpreferred trajectory segment
while BC also clones the unpreferred behavior.

After training the preference predictor with Equation (5), we can train our policy with the unlabeled
dataset D by sampling pairs of trajectory segments and labeling their preferences:

S(θ;D, ϕ, λ) = E
(σ0,σ1)∼D

[
(1− ŷ) · s

(
πθ, σ

0, σ1;λ
)
+ ŷ · s

(
πθ, σ

1, σ0;λ
)]
,

s.t. ŷ = 1

{
P̂
[
σ0 ≻ σ1;ϕ

]
> 0.5

}
.

Algorithm 1 summarizes the full process of our PbRL algorithm. Figure 5 shows an example of
two policies each learned using our algorithm and behavior cloning (BC), which shows that vanilla
BC suffers from imitating the behavior of unpreferred trajectory segments while our algorithm
successfully distances from it. We name our preference-based policy optimization algorithm as
DPPO, an abbreviation for Direct Preference-based Policy Optimization. The sections below evaluate
the performance of DPPO in the offline setting.

4 Experiments

4.1 Offline RL experiment details

Following recent PbRL works, we evaluate our algorithm on the offline setting which assumes a large
unlabeled dataset D is given along with a much smaller preference-labeled dataset Dpref [49, 27].
We evaluate our algorithm on D4RL, a standard benchmark for offline RL, with preference datasets
generated by actual human teachers [16]. We did not experiment on Antmaze, a widely used task in
D4RL, due to a crucial bug in its environment implementation (please refer to Appendix F for more
details). Below is a brief description of the tasks considered in our experiments:

Gym D4RL Gym provides datasets for the Gym locomotion environments where the goal task is to
move forward while maintaining body balance. D4RL Gym contains various types of datasets each
from a different data collection process. Among those datasets, we focus on the medium-replay and
medium-expert datasets, which contain trajectories with the most diverse quality.

Adroit pen Adroit tasks involve controlling a 24-DoF robotic hand to perform tasks such as
grabbing a pen or hammering a nail [44]. Adroit tests if offline RL methods can learn from human
demonstrations on these high-dimensional tasks. We focus on the pen task since standard offline RL
algorithms fail to achieve reasonable performance on other tasks, even with the reward information.

Kitchen Kitchen requires learning a 9-DoF robot manipulation task [19]. Similar to Adroit, the
reward function is sparse and the dataset contains human demonstrations. However, Kitchen requires
solving multiple sub-tasks sequentially (e.g., opening the microwave, then turning off the switch) in a
single episode. While Kitchen has three types of datasets (complete, partial, and mixed), we consider
the latter two as complete only contains successful trajectories with almost identical quality.
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For the Gym hopper, Gym walker2d, and Adroit pen tasks, we utilize publicly available human
preference datasets released by [27]. For the other tasks, we generate a new preference dataset as
there are no preference datasets available. To collect the human preference datasets for each task, we
strictly adhere to the protocol outlined by [27]. This involves defining a set of desirable behaviors
and instructing the human teacher to label preferences accordingly. For example, a desired behavior
in the Hopper environment would be to maintain body balance and prevent falling down. The size of
the resulting preference datasets ranges from 100 to 500 samples, depending on the specific task. For
more details regarding the dataset generation process, please refer to Appendix A.

We consider PreferenceTransformer (PT) as our baseline method, which is a state-of-the-art approach
in offline PbRL [27]. PT employs a transformer network to train the reward model and leverages IQL,
an offline RL algorithm, for policy optimization using the learned rewards [28]. This original version
is denoted as PT+IQL. Considering that the choice of policy optimization algorithm significantly
impacts the performance of reward modeling methods, we also explore using CQL for policy
optimization [30]. This modified version of PT is denoted as PT+CQL. Additionally, we present the
performance of CQL and IQL when utilizing the ground-truth reward information for reference. Note
that these reward-based RL baselines do not provide a fair comparison with our method as they have
access to a much denser supervision signal. For more implementation details regarding the baselines
and our algorithm, please refer to Appendix B. For more experiments including behavior-cloning
baselines, please refer to Appendix C.

4.2 Evaluation results

Table 1: Normalized average return on D4RL Gym tasks, averaged over 5 seeds. ± denotes the
standard deviation.

Learning with task rewards Learning with preference only

Task Name CQL IQL PT+CQL PT+IQL DPPO (Ours)

halfcheetah-medium-replay 45.7 ± 0.6 44.3 ± 0.7 27.1 ± 17.7 42.3 ± 0.5 40.8 ± 0.4
hopper-medium-replay 84.1 ± 14.2 100.5 ± 1.4 49.1 ± 22.0 59.7 ± 25.8 73.2 ± 4.7
walker-medium-replay 80.0 ± 3.4 74.8 ± 3.4 52.8 ± 7.2 43.3 ± 39.8 50.9 ± 5.1

halfcheetah-medium-expert 88.5 ± 9.7 85.2 ± 7.4 77.1 ± 0.9 83.6 ± 3.8 92.6 ± 0.7
hopper-medium-expert 103.7 ± 7.5 84.1 ± 24.1 89.2 ± 14.4 67.8 ± 32.3 107.2 ± 5.2
walker2d-medium-expert 108.4 ± 0.3 107.5 ± 4.4 77.7 ± 1.2 109.8 ± 0.4 108.6 ± 0.1

Average 85.1 82.7 62.2 67.8 78.8

Table 1 shows the evaluation results for the D4RL Gym tasks. DPPO demonstrates superior or
comparable performance to the preference-based learning methods across all considered tasks. In
terms of average performance, our method outperforms the baselines by a large margin with a
minimum of %11p and reaches a performance level similar to the methods that learn with ground-
truth rewards. Also, DPPO exhibits significantly lower variance in performance compared to the
baseline methods like PT+IQL, which suffer from pronounced fluctuations in performance.

Table 2: Normalized average return on D4RL Adroit pen and Kitchen tasks, averaged over 5 seeds.
± denotes the standard deviation.

Learning with task rewards Learning with preference only

Task Name CQL IQL PT+CQL PT+IQL DPPO (Ours)

pen-human 44.2 ± 7.8 53.8 ± 36.9 31.6 ± 3.3 53.0 ± 31.7 76.3 ± 14.4
pen-cloned 42.4 ± 5.1 51.3 ± 37.1 18.3 ± 10.6 42.9 ± 24.4 75.1 ± 7.7

Average 43.3 52.6 25.0 48.0 75.7

kitchen-mixed 10.7 ± 10.8 50.6 ± 6.2 12.3 ± 7.7 48.0 ± 11.9 52.5 ± 3.1
kitchen-partial 12.9 ± 13.0 58.8 ± 6.5 14.1 ± 13.0 40.2 ± 12.3 49.4 ± 5.7

Average 11.8 54.7 13.2 44.1 51.0
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Figure 6: Ablation study results on the hopper-medium-replay dataset. (a) and (b) each shows the
average performance results for DPPO while varying λ and ν.

Table 2 shows the results on the more challenging D4RL Adroit pen and Kitchen tasks. Once
again, DPPO outperforms all the baselines by a large margin. Especially, the performance gap is the
largest in the Adroit pen tasks, where DPPO even surpasses the methods that learn with ground-truth
rewards. A major distinguishing factor between the Adroit pen and the other environments is the
dimensionality of the action space, which amounts to 24, significantly larger than the action spaces
ranging from 3 to 9 in other environments. We conjecture that the value learning approach of the
baseline methods struggles to scale up to the high-dimensional action spaces of Adroit. Furthermore,
DPPO outperforms the baselines on the Kitchen tasks as well, underscoring the scalability of our
method to tackle more complex tasks.

4.3 Ablation studies

We assess the importance of the two crucial components of DPPO, which are the conservativeness
regularizer λ and the smoothness regularizer ν. The ablation results are presented in Figure 6.
The results show that both components are crucial for achieving high performance. Moreover, the
experiments demonstrate that DPPO exhibits a considerable degree of robustness to variations in
the strength of the regularizations. Since our smoothness regularizer can also be easily applied to
reward-modeling baselines, we evaluate how applying this regularizer to the baselines affects the
overall performance in Appendix D. While the smoothness regularizer does improve the performance
of the baselines, the improved performance falls behind DPPO.

4.4 Effect of dataset size
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Figure 7: Average return results of each method while varying the size of the preference dataset.
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Previous works primarily focus on evaluating their algorithms using a fixed preference dataset for each
task [27, 13]. In this section, we evaluate how the size of the preference dataset impacts the overall
performance of PbRL algorithms. Concretely, we vary the size of the preference dataset in the hopper-
medium-replay and hopper-medium-expert tasks and measure the performance of PbRL methods on
each dataset size. The results are shown in Figure 7. We observe that DPPO consistently outperforms
the baseline method on all dataset sizes, displaying higher average performance. Interestingly, on
hopper-medium-replay, we find that the baseline method PT+IQL falls into a unique failure mode
when the dataset size is 200, which is to stand still and not move forward.

4.5 Experiments with scripted teachers

Gym pen Kitchen
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Figure 8: Average performance on the
scripted teacher setting.

Following prior works [10, 31, 32], we additionally
evaluate our algorithm using preference labels gener-
ated by scripted teachers. A scripted teacher is a syn-
thetic teacher who adheres strictly to the task rewards
when making decisions: σ0 ≻ σ1 ⇔

∑k
t=0 r

0
t >∑k

t=0 r
1
t . It is important to note that the scripted

teacher setting is not as realistic as the human teacher
setting, and we include this section for reference pur-
poses. The results in Figure 8 show that our algorithm
continues to outperform the baselines in terms of aver-
age performance, even in this synthetic setting. In detail, the results for DPPO and PT+IQL resemble
the results from the human teacher setting. However, the performance of PT+CQL has dropped
significantly compared to the human teacher setting. This disparity of performance reassures the
observations from [27] that preferences from human teachers and scripted teachers have different
characteristics and should not be treated interchangeably.

4.6 Fine-tuning LLMs with DPPO

Recent works show that PbRL can be used to fine-tune large language models with human preference,
which is commonly termed RLHF (reinforcement learning from human feedback) [52, 39, 4]. In
RLHF, a reward model is trained to predict human preference between two output texts, and then
the learned reward model is employed to fine-tune the language model through off-the-shelf RL
algorithms such as PPO. As from offline RL, we can fine-tune a language model directly with the
preference predictions by replacing PPO with DPPO. This replacement allows removing unnecessary
assumptions required to run reward-based policy optimization techniques like PPO, for example
assuming the reward is given only at the end of the output sequence. To empirically examine if DPPO
can be used to fine-tune large language models, we conducted some preliminary experiments using
human preference datasets to train the preference models and human evaluation to evaluate the tuned
language model. We refer to Appendix E for more details regarding the implementation details and
the experimental setup.

Table 3: RLHF results using DPPO (ours) compared to PPO. The values in the parentheses denote
the gain on average reward compared to the original model.

Fine-tuning method Avg. reward (↑) KL divergence (↓) Human eval.
win rate (↑)

PPO 4.335 (+1.192) 0.0091 0.667
DPPO (Ours) 4.515 (+1.372) 0.0083 0.697

The results in Table 3 show that DPPO can be successfully used to fine-tune large language models
with real human preference, achieving performance comparable to the reward-based RLHF method.
We believe that this result is promising as it shows that DPPO can be used to fine-tune large language
models without the need for reward modeling.
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5 Related works

Preference-based reinforcement learning A long line of works has studied learning agents from
human preference [1, 41, 12, 3, 47]. Notably, [10] showed that we can scale PbRL by learning a
reward model from preference and applying it to off-the-shelf RL algorithms. Several follow-up
works have been proposed building upon this work. For example, a work merges the PbRL framework
with imitation learning by introducing other types of supervision such as demonstrations [21]. Other
works utilize techniques from semi-supervised learning or data augmentation to improve sample
efficiency [31, 40]. Another line of work aims to improve the reward model by removing Markovian
assumptions [13, 27]. Recent works have shown that PbRL can greatly boost the performance
of large-scale language models by finetuning them with human feedback [52, 56, 37, 39, 45, 38].
Similar to our work, [55] leverages the preference information to directly optimize the policy using
the concept of trajectory distance. However, their method requires the two trajectories to start from
the same initial state and to roll out from the current policy being trained, which makes it challenging
to utilize extensive pre-collected data. Concurrent to our work, [25, 43] also explore the idea of
directly optimizing the policy with preference information.

Offline reinforcement learning Offline reinforcement learning methods adopt various techniques
to bias the learned policy towards the given offline dataset. For example, some works directly
regularize the policy to prefer the actions from the dataset [29, 57, 17]. Another line of works
implicitly biases the policy by regularizing the value function [30, 2, 58]. Some works instead start
from a SARSA-style TD-update algorithm to avoid querying values for out-of-distribution actions
[7, 28]. A more recent line of work casts the offline RL problem as a sequence modeling problem,
where a model is learned to generate actions conditional to the given target return [8, 22, 33, 46, 14].
This approach soon gained popularity in the literature due to its high stability and scalability compared
to the more traditional value-based approaches [33, 46].

Contrastive learning A core design choice for contrastive learning is to define the positive and
negative sample pairs. An earlier work utilizes the structure of the data and considers two different
patches from a single sample as a positive pair [53]. The most popular approach is to apply a heavy
data augmentation to a single sample repeatedly to produce positive pairs [9, 20]. The success of these
methods in unsupervised vision representation learning has inspired many follow-up works, such as
application to supervised learning or extension to other domains such as NLP or graph [26, 42, 59].

In the RL domain, there also have been works that leverage contrastive learning to learn unsupervised
representations tailored for RL [51]. Also, a recent work directly casts the contrastive learning
framework as a goal-conditioned RL problem [15].

6 Discussion

Our proposed PbRL algorithm enables agents to learn directly from preference signals, removing the
need for reward modeling. We achieve this by formulating a new policy optimization problem under
the contrastive learning framework. Thorough empirical evaluations on various offline PbRL tasks
with actual human rewards show our method outperforms the baselines in most of the tasks considered.
Interestingly, our algorithm shows better scalability to high-dimensional control tasks when compared
to other RL baselines, including those that learn with ground-truth reward information. Additionally,
our algorithm demonstrates better data efficiency. These results show that directly utilizing preference
signals without reward modeling is a promising direction for PbRL.

A limitation of our work is that label noise, which is likely to exist for human evaluations, is not
modeled in our algorithm. Investigating the effect of label noise stemming from human teachers would
be an interesting direction for future research [23]. Also, our current algorithm does not incorporate
the prediction confidence information, which was excluded as the empirical performance is already
strong compared to the baselines. How to appropriately incorporate the prediction confidence would
also be a meaningful research direction.
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A Human preference datasets

For the D4RL Gym hopper, walker2d, and Adroit pen tasks, we use the human preference datasets
provided by [27]. Each dataset consists of 100 preference triples, except for the Gym ∗-medium-
replay datasets which contain 500 preference triples3. Each trajectory segment is of length 100
(i.e., k=100). For the other tasks such as Gym halfcheetah and Kitchen, we could not find publicly
available human preference datasets. Therefore, we generate new preference datasets with human
evaluation by strictly following the procedure from [27]. The preference labeling process consists of
two steps: sampling a pair of trajectory segments from the dataset and labeling their preference under
some predefined guidelines. For the first step, [27] does not specify how the segments were sampled,
so we first randomly sample two trajectories from the offline dataset and then randomly choose a
segment from each of the two trajectories to form a segment pair. We provide more details of the
labeling process for each task below.

A.1 Gym HalfCheetah

Following the experiment settings from [27], we sample 500 and 100 segment pairs from halfcheetah-
medium-replay and halfcheetah-medium-expert datasets, respectively. We assign the human teachers
(the authors) to make preference decisions under the following guidelines:

• The primary goal for the agent is to move forward as far as possible.

• If the two agents both satisfy the primary goal similarly, the agent that has a more stable
posture is preferred. In other words, prefer the agent that staggers less.

A.2 Franka Kitchen

Franka Kitchen environment provides six available sub-tasks, where the goal is to perform four of
them in a designated order: open the microwave oven, move the kettle to the top left burner, turn on
the light switch, and open the slide cabinet. The other two tasks, which are turning on the burner
switch and opening the hinge cabinet, are dummy tasks without any positive reward. Figure 9 shows
an example of a goal-related task and a dummy task. The robot on the left is moving a kettle, which
is a goal-related task. On the other hand, the robot on the right is turning on a burner, which is a
dummy task.

For each offline dataset (kitchen-partial and kitchen-mixed), we sample 100 pairs of trajectory
segments and label them under the following guidelines:

• An agent that solves more goal-related tasks (in order) is preferred.

• If the two agents solved the same number of goal-related tasks, the agent that solved fewer
dummy tasks is preferred.

• If the two agents solved the same number of goal-related and dummy tasks, the agent that
was working on another goal-related task is preferred.

3For walker-medium-replay, [27] originally uses a preference dataset of size 500, but we subsample 100
samples from this dataset as we find that a smaller dataset suffices for PbRL algorithms to achieve reasonable
performance.
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Figure 9: Example of a goal-related task (left) and a dummy task (right) in Franka Kitchen. The task
on the left is to move a kettle and the task on the right is to turn on a burner.

B Offline RL experiment details

For each method, we evaluate its performance by collecting ten trajectories with online interaction
and measuring the average return. Following the standard protocol of the offline RL literature, we
rescale the average return by 100 · R−Rrandom

Rexpert−Rrandom
, where R denotes the (empirical) average return of

the policy, and Rrandom and Rexpert are the expected returns of a random policy and an online expert
policy, respectively. We provide the implementation details for each PbRL method below.

B.1 PreferenceTransformer (PT)

We use the official implementation from the authors to train the reward model4. Then, for PT+IQL,
we run IQL with the default hyperparameters for each environment using the official code5. Similarly,
for PT+CQL, we run CQL with the default hyperparameters for each environment using the official
code6. Table 4 and Table 5 lists the detailed hyperparameter settings for IQL and CQL.

Table 4: Hyperparameter settings for IQL in PT+IQL.
Task name Learning rate # Layers Hidden layer size τ β Dropout

Gym 3 · 10−4 2 256 0.7 3.0 -
Adroit pen, Kitchen 3 · 10−4 2 256 0.7 0.5 0.1

Table 5: Hyperparameter settings for CQL in PT+CQL.
Task name Learning rate # Layers Hidden layer size α τ Min Q Ver.

Gym 1 · 10−4 3 256 10.0 - 3
Adroit pen 3 · 10−4 3 256 1.0 5.0 2
Kitchen 3 · 10−4 3 256 1.0 5.0 3

B.2 DPPO (Ours)

For the preference predictor, we start from a GPT-2 based transformer architecture from PT and apply
some modifications. First, we removed the preference attention layer proposed by PT. Also, since PT
requires per-step reward predictions, their transformer output is restricted to a scalar value for each

4https://github.com/csmile-1006/PreferenceTransformer
5https://github.com/ikostrikov/implicit_q_learning
6https://github.com/aviralkumar2907/CQL
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timestep. Instead, our preference model outputs a vector embedding per step, which is aggregated
and forwarded into a final MLP layer for the preference score prediction. We train the predictor
for 10,000 update steps on the preference dataset. Table 6 lists more details of the training of the
preference predictor. For policy optimization, we use a 2-layer MLP architecture and update the
policy for 1e6 update steps, following the experimental protocol of IQL. Unlike CQL and IQL which
adopt a stochastic policy model, we use a deterministic policy model as we find that both models have
no difference in empirical performance. More detailed settings for the policy optimization procedure
are specified in Table 7.

Table 6: Hyperparameter settings of the preference predictor training process in DPPO (Ours).
Task name Learning rate # Layers embedding dim ν m

All tasks 1 · 10−4 1 256 1.0 20

Table 7: Hyperparameter settings of the policy optimization process in DPPO (Ours).
Task name Learning rate # Layers layer size λ Dropout

Gym 3 · 10−4 2 256 0.5 0.25
Adroit pen, Kitchen 3 · 10−4 2 256 0.1 0.25

C Offline RL results with more baselines

Our offline RL experiments in the main paper focus on baselines that apply value-based RL algorithms
after modeling the reward, following [27]. However, another interesting line of work in offline RL is
the behavior cloning-based RL algorithms, which typically learn a policy conditional to a target return
or goal [8, 14]. Here, we provide the full experiment results including two behavior cloning-based
baselines: %BC, which performs behavior cloning on trajectories with top-10% return values from
the offline dataset, and RvS [14].

Table 8: Normalized average return on D4RL Adroit pen and Kitchen tasks, averaged over 5 seeds.
± denotes the standard deviation.

Task Name PT+%BC PT+RvS PT+CQL PT+IQL DPPO (Ours)

pen-human 19.4 ± 6.7 -1.8 ± 0.5 31.6 ± 3.3 53.0 ± 31.7 76.3 ± 14.4
pen-cloned 37.4 ± 7.5 -2.2 ± 0.3 18.3 ± 10.6 42.9 ± 24.4 75.1 ± 7.7

Average 28.4 -2.0 25.0 48.0 75.7

kitchen-mixed 40.9 ± 9.0 27.5 ± 9.4 12.3 ± 7.7 48.0 ± 11.9 52.5 ± 3.1
kitchen-partial 53.4 ± 9.0 26.0 ± 4.9 14.1 ± 13.0 40.2 ± 12.3 49.4 ± 5.7

Average 47.2 26.8 13.2 44.1 51.0

The results in Table 8 show that DPPO outperforms the behavior cloning-based baselines on all tasks,
with the performance gap being especially large on the challenging pen tasks.

D Additional ablation on the smoothness regularizer

In recognition of the fact that our novel smoothness regularizer can also be integrated into any
reward-modeling baselines, we assess how its application to the baselines would influence the overall
performance and present results in Table 9.
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Table 9: Normalized average return on D4RL Adroit pen and Kitchen tasks, averaged over 5 seeds.
± denotes the standard deviation.

Task Name PT+CQL PT+CQL+ν PT+IQL PT+IQL+ν DPPO (Ours)

pen-human 31.6 ± 3.3 18.3 ± 17.2 53.0 ± 31.7 53.7 ± 42.3 76.3 ± 14.4
pen-cloned 18.3 ± 10.6 32.7 ± 11.2 42.9 ± 24.4 49.8 ± 32.2 75.1 ± 7.7

Average 25.0 25.5 48.0 51.8 75.7

kitchen-mixed 12.3 ± 7.7 12.0 ± 5.0 48.0 ± 11.9 49.4 ± 5.2 52.5 ± 3.1
kitchen-partial 14.1 ± 13.0 11.4 ± 11.2 40.2 ± 12.3 49.4 ± 5.2 49.4 ± 5.7

Average 13.2 11.7 44.1 49.4 51.0

Although our smoothness regularizer does enhance the baseline methods’ performance, this improved
performance still lags behind our proposed method. This outcome suggests that the process of directly
optimizing the policy through the use of preference information plays a critical role in the overall
performance.

E RLHF experiment details

The fine-tuning procedure of RLHF is similar to the PbRL process discussed in our paper. First,
a preference predictor is trained to assign high scores to texts that are more preferred by human
teachers. Then, the reward for fine-tuning a language model is defined by combining the preference
predictor and a regularizer on policy (language model) shift. Concretely, r := rϕ − ξrKL, where rϕ is
the output of the preference predictor and rKL is the KL divergence between the output distributions
of the fine-tuned model and the original (pretrained) model. This reward function aims to guide the
fine-tuned model to generate outputs that are more preferred by human teachers while not deviating
far from the original model. After defining the reward function, PPO [48] is applied to optimize the
language model to maximize the expected reward. Recent works show that this fine-tuning process
can effectively align the language models with human preference, for example by generating more
helpful and harmless sentences.

We can define a DPPO-style score metric that resembles the reward function from the original RLHF
process as

SRLHF(θ;D, ϕ) := E
σ0,σ1∼πθ(·|x), x∼D

[
(1− ŷ) · s

(
πθ, σ

0, σ1
)
+ ŷ · s

(
πθ, σ

1, σ0
)]

− ξ E
x∼D

[DKL(πθ(· | x), πθ0(· | x))]

s.t. ŷ =1
{
P̂
[
σ0 ≻ σ1;ϕ

]
> 0.5

}
,

where D is a prompt dataset, σi is the output sequence sampled from the fine-tuned language model
πθ, πθ0 is the original pretrained language model, and DKL is the KL divergence. Here we remove
the regularizer λ as the KL divergence term naturally prevents the policy from deviating far from the
preferred sequences. Now we can directly fine-tune the policy by maximizing this score metric.

We evaluate our resulting RLHF algorithm by fine-tuning a pretrained OPT-1.3b language model
which has 1.3 billion trainable parameters [60]. To train the preference predictor, we use the
HH-RLHF dataset which contains 161K pairs of human preference data about helpfulness and
harmlessness [4]. We choose OPT-350m with 350 million trainable parameters as the architecture of
the predictor model. We evaluate our RLHF algorithm by comparing it with the conventional RLHF
that uses the same preference predictor model and performs PPO. Our algorithm was implemented
on DeepSpeed-Chat, an open code base for RLHF training7.

We consider several evaluation metrics to measure the performance of our RLHF algorithm. First,
we calculate the expected reward, which measures the empirical mean of rϕ from the outputs of the
fine-tuned model. Second, we measure the KL divergence between the outputs of the fine-tuned
model and the original model. These two metrics evaluate how well the two competing objectives

7https://github.com/microsoft/DeepSpeedExamples/tree/master/applications/
DeepSpeed-Chat
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(maximizing the alignment with human preference and staying close to the original model) are
optimized. Additionally, we perform an actual human evaluation on whether the fine-tuned models
are more preferred than the original model. In detail, for a randomly sampled prompt from D, we
generate two responses each from the fine-tuned model and the original model. Then, we ask three
human workers to choose which response they prefer more in terms of helpfulness, and designate
the final preferred response by majority voting8. We repeat this trial 300 times for each fine-tuning
method and measure the win rate of the fine-tuned models.

The evaluation results in Table 3 show that our RLHF algorithm achieves a higher average reward
with lower KL divergence from the original model when compared to the conventional RLHF using
PPO. This shows that DPPO exhibits a better trade-off between human preference alignment and
closeness to the original model. Also, DPPO achieves a higher win rate versus the original model
on actual human evaluation, which shows the fine-tuned model from our algorithm is more aligned
with human preference. These results demonstrate that DPPO is a promising approach for addressing
preference-based learning problems in NLP.

F Discussion on the Antmaze environment in D4RL

We acknowledge that many offline RL studies highlight experiment results from the D4RL Antmaze
task to demonstrate the efficacy of their methods in more challenging environments. Yet, it must be
noted that the official implementation of Antmaze has a critical bug in its goal-setting procedure9.
Concretely, the offline datasets of Antmaze assume a multi-goal setting, where a random goal location
is chosen at the start of each episode, while the actual environment (unintentionally) uses a single
fixed goal for every episode. Consequently, the optimal policies with regard to the offline dataset
and the environment differ: According to the offline dataset, the optimal policy is to quickly sweep
through all the goal candidates, while within the environment context, the optimal policy is to move
directly to the solitary fixed goal.

To fix this, we can modify the Antmaze environment to choose a random goal location for each
episode, thereby aligning with the provided offline dataset. Surprisingly, after this modification, we
observe that current offline RL algorithms struggle to achieve meaningful performance:

Table 10: Performance of offline RL algorithms on the original and fixed Antmaze environment.
Orig. Antmaze Fixed Antmaze

Task Name %BC CQL IQL %BC CQL IQL

medium-play-v2 48.7 ± 3.3 44.7 ± 27.8 62.0 ± 4.1 10.5 ± 2.9 9.8 ± 4.8 1.5 ± 1.5
medium-diverse-v2 35.5 ± 6.0 24.4 ± 32.3 66.2 ± 6.3 10.4 ± 3.2 3.1 ± 3.3 1.8 ± 0.8
large-play-v2 12.2 ± 7.5 11.7 ± 11.1 59.8 ± 8.1 11.1 ± 1.4 5.5 ± 3.1 14.5 ± 4.7
large-diverse-v2 10.8 ± 3.6 5.5 ± 9.0 55.2 ± 6.5 8.0 ± 0.8 4.8 ± 1.3 11.2 ± 1.6

Due to this stark difference in the evaluation performance, we decided not to include the Antmaze
results in our main paper. We hope the offline RL community recognizes this problem in future
studies involving Antmaze.

G Resources

All our offline RL experiments were run on a single RTX 3090 GPU with 10 CPU cores (Intel(R)
Xeon(R) Gold 5218R CPU @ 2.10GHz). For the RLHF experiments, we used an A100 GPU with 10
CPU cores (AMD EPYC 7402 24-Core Processor).

8We used Amazon MTurk https://www.mturk.com/ to conduct our human evaluation experiments.
9https://github.com/Farama-Foundation/D4RL/issues/142
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H Broad impact

Our proposed method can be used to train RL agents that better align with human preferences. This
method has the potential to significantly facilitate the deployment of AI services that cater to the
specific requirements of the general public. However, it is essential to recognize that the learned RL
agent can be biased toward certain values (e.g., races, ethnic groups, religions, ...) if the preference
dataset itself exhibits biases toward those values. Therefore, practitioners should exercise caution and
thoroughly examine their preference dataset to identify and address any potential biases.
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