
A Supplementary Material

In the supplementary material, we provide additional information and details in A.1. This section
covers the introduction of data, key parameter settings, comparisons with baselines, optimization
methods, and the algorithm process of our method. Furthermore, A.2 presents supplementary
experiments for our model, including visualization experiments and replication studies. Additionally,
we discuss the reasons behind utilizing hypergraphs as the temporal encoder in A.3. Finally, the
limitations and broader impacts of our work are discussed in A.4.

A.1 Data and Implementation Details

Data. The statistical information of the aforementioned four real-world datasets is presented in
Table 4. These datasets primarily consist of daily spatio-temporal statistics in the United States.
Specifically, the PeMS08 and METR-LA datasets were collected from 7 roads in the San Bernardino
area and the road network of Los Angeles County, respectively. On the other hand, the NYC Taxi
and NYC Citi Bike datasets were obtained from New York City.

Parameters. The latent representation dimensionality (d) and the customized parameter (d′) are both
set to 64 and 16, respectively. The number of hyperedges (HT , HS , HM) is set to 8, 10, and 16,
respectively. We perform 2 dynamic routing iterations. Additionally, the balance ratio (λ) for Lr and
Lkl is set to 0.1, and the total mask ratio (rt) is set to 0.25.

Table 4: Statistical Information of Experimental Datasets.
Dataset Data Record # Node Time Steps Sample Rate Sample Date

PEMS08 traffic flow 170 17856 5min 1/Jul/2016 - 31/Aug/2016
METR-LA traffic speed 207 34272 5min 1/Mar/2012 - 30/Jun/2012
NYC Taxi taxicab records 266 4368 30min 1/Apr/2016 - 30/Jun/2016

NYC Citi Bike bike orders 250 4368 30min 1/Apr/2016 - 30/Jun/2016

Baselines. We selected 13 methods as baselines and categorized them into distinct groups:

Hybrid spatio-temporal prediction method:

• DMVSTNET [44]: This framework for demand forecasting utilizes RNNs, convolutional networks,
and fully connected layers. RNNs capture temporal correlation, convolutional networks handle
spatial correlation, and fully connected layers address regional semantic correlation.

Spatio-temporal prediction method based on GNNs:

• STGCN [48]: It employs convolution operations to model both temporal and spatial dependencies.
• GWN [40]: This method utilizes a learnable graph structure to capture spatial dependencies and

incorporates the diffuse convolution technique to capture temporal dependencies.
• GWN* [40]: To evaluate the effectiveness of GWN, we utilize long-term time series data as input.

Our evaluation focuses on predicting the data for the next hour using the data from the preceding
two weeks. We employ a simple linear layer to process the long-term features in this prediction.

• TGCN [54]: In this method, both RNNs and GNNs are employed to model temporal dependence
and capture spatial correlation, respectively.

• MTGNN [39]: This method utilizes a learnable graph structure to model associations between
multiple variables. It incorporates dilated convolution and skip connections to jointly capture
spatio-temporal dependencies.

• MSDR [25]: This model proposes a variant of RNNs to make full use of historical time step
information, and combines GNNs to model long-range spatio-temporal dependence.

• STMGCN [11]: This method is a spatio-temporal framework designed for demand forecasting. It
incorporates region association from various aspects and combines the power of RNNs and GNNs
to effectively model both spatial and temporal relations.

• CCRNN [46]: This is an approach specifically designed for traffic demand prediction. It leverages
multiple layers of GNNs, each assigned with different adjacency matrices, to capture hierarchical
spatial associations. RNNs are employed to establish temporal dependencies within the network.

1

• STSGCN [32]: This work captures spatio-temporal correlations by constructing a local spatio-
temporal graph, enabling the synchronous modeling of these correlations.

• STFGNN [22]: This work proposes a data-driven approach that utilizes a gated convolution method
to generate spatio-temporal graphs. By learning spatial and temporal dependencies, the approach
effectively captures the correlations within the data.

Attention-based spatio-temporal prediction method:

• ASTGCN [13]: It utilizes attention and GNNs to capture spatio-temporal periodic dependencies.
• STWA [4]: It integrates location-specific and time-varying parameters into the attention network to

effectively capture dynamic spatio-temporal correlations.

Spatio-temporal prediction via differential equation:

• STGODE [10]: This method captures spatial dependencies by enhancing GNNs through the use of
ordinary differential equations. Additionally, temporal dependencies are modeled using a dilated
temporal convolutional network.

A.1.1 Optimization Method

In the GPT-STframework, multiple temporal encoders (Section 4.1) and spatial encoders (Section 4.2)
are stacked together to generate the final embeddings. The architecture includes two temporal
encoders followed by a spatial encoder, forming a spatio-temporal (ST) encoding block. The final
embeddings are generated by passing the data through two spatio-temporal encoding blocks.

During the pre-training phase, the predictions Ŷ ∈ RR×T×F are computed by applying a linear layer
to the hidden dimension. To optimize the parameters, the absolute error loss function is utilized,
following the approach employed in prior works such as [55, 1].

Lr =
1

RTFrt

R∑
r=1

T∑
t=1

F∑
f=1

|(1− Mr,t,f)(Xr,t,f − Ŷr,t,f)| (9)

Let X represent the input, consisting of F features across R regions in the previous T time slots. The
two layers of the MLP network discussed in Sec 4.3 can be formalized as follows:

Qr,t = σ(σ(Ep
r,tW

p
r + bp

r)W
p
t + bp

t) (10)

In the given formulation, Wp
r ∈ Rd×d and bp

r ∈ Rd represent the region-specific parameters, while
Wp

t ∈ Rd×d and btp ∈ Rd are the time-dynamic parameters created as in Equation 4. The predictions
q ∈ RHs×R×T are obtained from Q through a linear layer followed by a softmax function. The KL
divergence loss function Lkl can be formulated as follows:

Lkl =

R∑
r=1

T∑
t=1

HS∑
i=1

c̄i,r,t · (log c̄i,r,t − log qi,r,t) (11)

In this case, c̄ ∈ RHs×R×T is considered as the ground truth classification result. To balance the
contribution of the two loss functions, we introduce a parameter λ to adjust their ratio, as follows:

L = Lr + λLkl (12)

In the downstream task stage, we utilize the pre-trained embeddings ζ ∈ RR×T×d along with the
raw data representation E′ = X̄ · e0 (without any mask operation) as the input for the downstream
model. To fuse these two inputs, we employ a simple gated fusion layer proposed by [55], which can
be formalized as follows:

H = z · ζ + (1− z) · E; z = δ(ζWh,1 + EWh,2 + bh) (13)

In the given formulation, Wh,1, Wh,2 ∈ Rd×d and bh ∈ Rd are learnable parameters. The variable
z represents the gate operation, and δ(·) denotes the sigmoid activation function. It is important
to note that we prevent the backpropagation of ζ at this stage. By fusing ζ and E′ using the gated
fusion layer, downstream models can leverage the knowledge gained during the pre-training stage
for improved predictions. The specific optimization methods employed may vary depending on the
downstream models, such as mean absolute error [1, 25] or Huber loss [22, 32].

2

A.1.2 Algorithm Process

Algorithm 1 represents the process of the adaptive mask strategy described in Section 4.3. On the
other hand, Algorithm 2 illustrates the algorithmic process during the pre-training stage.

Algorithm 1: Adaptive Mask Strategy
Input: ST data X ∈ RR×T×F , maximum epoch number E, total mask ratio rt, number of X elements J
Output: mask matrix M ∈ RR×T×F

1 for e = 1 to E do
2 Calculate the classification results q from X according to Sec 4.3
3 Calculate adaptive mask ratio ra by ra = (e/E)γ

4 Calculate the number of masked elements by mt = Jrt, and then obtain the adaptive masked number
ma and random masked number mr by ma = Jra; mr = mt −ma

5 Randomly select n categories from the classification list until the total number of elements of these
categories is greater than ma. Mask all the elements of the first n− 1 categories, and randomly mask
the elements of the n-th category with the residual masked number in ma

6 Randomly mask the remaining elements with random masked number mr

7 end

Algorithm 2: Learning Process of GPT-ST Framework
Input: Spatio-temporal data X ∈ RR×T×F , mask matrix M ∈ RR×T×F , dynamic routing iterations

number R, maximum epoch number E, learning rate η
Output: Trained parameters in Θ

1 Initialize all parameters in Θ
2 for e = 1 to E do
3 Calculate approximate classification results q according to Eq 10 and then generate the mask matrix M

according to Alg 1
4 Mask the elements in X with M and then calculate the initial representation E of the masked traffic data

for each region in each time slot
5 Calculate the raw temporal features dt according to Eq 4 and initialize the free-form region embedding

matrices cr
6 Encode the temporal traffic pattern with Γ by integrating customized parameters dt and cr into the

temporal hypergraph neural network according to Eq 3
7 Generate the normalized region embedding v and calculate the transferred information v̄i|r,t ∈ Rd from

each region r to each cluster center (hyperedge) i according to Eq 5
8 for rn = 0 to R do
9 Perform the dynamic routing algorithm to characterize the semantic similarities between the regions

(low-level capsules) and the spatial cluster centroids (high-level capsules) according to Eq 6
10 end
11 Generate the final cluster embedding s̄ for cross-class relationships learning
12 Generate the personalized high-level hypergraph structure and conduct it on the reshaped embedding s̃

to generate ŝ to model inter-classes relationships according to Eq 7
13 Conduct the customized low-level hypergraph structure to propagate the clustered embeddings ŝ back to

the regional embeddings Ψ according to Eq 8
14 Make predictions Ŷ and calculate the absolute error loss Lr according to Eq 9
15 Calculate the KL divergence loss Lkl based on Eq 11
16 Calculate the final loss L according to Eq 12
17 for θ ∈ Θ do
18 θ = θ − η · ∂L/∂θ
19 end
20 end
21 return all parameters Θ

A.2 Additional experiments

A.2.1 Visualization Study

Figure 9 presents the reconstruction results of the model during the pre-training stage. In the figure,
gray, red, and blue lines respectively represent the masked signals, predicted values, and visible

3

signals. The results demonstrate that GPT-ST can accurately predict the masked signals based on the
visible signals, regardless of whether a random mask or an adaptive mask is used. Furthermore, it
can be observed that the masked signals generated by the adaptive strategy exhibit greater temporal
consistency compared to those generated by the random strategy. This is because the category
attribute of a region is less likely to change within a short period of time. The continuous mask and
cluster mask are effective in increasing the difficulty of the reconstruction task, enabling GPT-ST to
learn robust spatio-temporal representations even with low masking ratios.

Figure 10 summarizes the enhancement effect of your model on downstream baselines. The figure
showcases the predicted performance of four baselines on the PEMS08 dataset, where the blue, green,
and red lines respectively represent the ground truth, the original performance, and the enhanced
performance of the baselines. With the assistance of GPT-ST, the prediction performance of the
baseline models experiences significant improvements on certain subsets, as highlighted by the
red box. This confirms that the pre-trained model, equipped with customized parameter learners
and mechanisms for encoding intra- and inter-class spatial patterns, can provide a discriminative
and semantic representation for downstream tasks. As a result, it effectively compensates for the
limitations of different baselines.

0 100 200 300 400 500 600
Time of Day

100

200

300

400

500

600

Tr
af

fic
 fl

ow

y_mask
y_pred
y_unmask

(a) Case A for Ran mask

0 100 200 300 400 500 600
Time of Day

100

200

300

400

500

600

Tr
af

fic
 fl

ow

y_mask
y_pred
y_unmask

(b) Case A for Ada mask

2000 2100 2200 2300 2400 2500 2600
Time of Day

50

100

150

200

250

300

350

400

Tr
af

fic
 fl

ow

y_mask
y_pred
y_unmask

(c) Case B for Ran mask

2000 2100 2200 2300 2400 2500 2600
Time of Day

50

100

150

200

250

300

350

400

Tr
af

fic
 fl

ow

y_mask
y_pred
y_unmask

(d) Case B for Ada mask

Figure 9: Visualization experiments of reconstruction performance in the pre-training stage.

GPST

(a) STGCN

GPST

(b) TGCN

GPST

(c) GWN

GPST

(d) MSDR

Figure 10: Visualization experiments of different baselines in the downstream stage.

A.2.2 Replication Study

In this section, the deviation of GPT-ST’s performance over random parameter initialization is
investigated. The statistical results are presented in Table 5. For each performance evaluation on
the PEMS08 dataset, we randomly selected 5 seeds. The results indicate that GPT-ST exhibits
strong adaptability to different parameter initialization settings, consistently providing stable and
high-quality spatio-temporal representations for downstream models.

Table 5: Replication study on PEMS08 dataset.
Model MAE RMSE MAPE Model MAE RMSE MAPE

STGCN 17.99±0.14 28.56±0.18 11.22±0.24 GWN 15.37±0.28 24.61±0.26 9.74±0.15
w/ GPT-ST 16.40±0.16 26.27±0.29 10.62±0.20 w/ GPT-ST 14.77±0.05 24.19±0.08 9.52±0.07
ASTGCN 18.05±0.30 27.76±0.47 11.40±0.26 TGCN 21.47±0.04 31.82±0.03 16.06±0.25

w/ GPT-ST 16.83±0.50 26.40±0.71 10.78±0.45 w/ GPT-ST 17.33±0.08 26.50±0.11 12.39±0.11
MTGNN 15.34±0.04 24.55±0.09 9.72±0.04 STSGCN 17.96±0.10 28.19±0.20 11.65±0.17

w/ GPT-ST 14.96±0.05 24.47±0.10 9.66±0.04 w/ GPT-ST 16.28±0.07 26.05±0.09 10.51±0.08
STFGNN 17.20±0.07 27.55±0.18 11.09±0.10 STGODE 17.81±0.06 27.64±0.08 11.33±0.07

w/ GPT-ST 15.90±0.03 25.86±0.06 10.42±0.16 w/ GPT-ST 15.89±0.16 25.05±0.16 10.59±0.32
MSDR 16.52±0.16 25.70±0.19 10.69±0.35 STWA 15.80±0.22 25.16±0.36 10.15±0.20

w/ GPT-ST 15.96±0.06 25.09±0.08 10.33±0.08 w/ GPT-ST 15.30±0.05 24.64±0.12 9.99±0.16

4

A.3 Analysis of Hypergraph as Temporal Encoder

Existing time encoders in spatio-temporal prediction schemes, such as recurrent neural networks
(RNNs), temporal convolutional networks (TCNs), and attention mechanisms, have certain limitations.
RNNs are prone to losing long-term information due to the vanishing gradient problem. TCNs
can only capture temporal information within a limited neighborhood defined by the size of the
convolution kernel. Although attention mechanisms consider the interrelationship between time steps,
their computational efficiency decreases significantly when the length of the time series (T) is large,
resulting in a time complexity of O(T 2). These limitations hinder the ability of existing approaches
to effectively capture and model the temporal dynamics in spatio-temporal data.

To address the aforementioned limitations, we propose to utilize the hypergraph neural network
as a temporal encoder for time-dependent modeling. A hypergraph is composed of multiple sets
of hyperedges, where each hyperedge serves as a learnable information hub connecting time-step
information with different weights. By treating different hyperedges as a means of integrating
temporal relationships across different dimensions, the hypergraph neural network offers a flexible
control over complexity by adjusting the number of hyperedges. This approach allows for modeling
long-term temporal dependencies while maintaining low computational costs. The hypergraph neural
network combines the advantages of capturing temporal dynamics effectively and efficiently, making
it a promising solution for spatio-temporal prediction tasks.

A.4 Limitations and Broader Impacts

The proposed GPT-ST has demonstrated its effectiveness in improving the prediction performance
of downstream models. However, it also has two main limitations: i) Task-specific pre-training:
GPT-ST requires pre-training for each specific downstream task. This is because different prediction
tasks often have distinct data formats and distributions, necessitating task-specific pre-training. For
instance, a GPT-ST pre-trained on task A cannot be directly applied to task B. ii) Increased time
cost: Both the pre-training process and the enhancement process in the downstream task stage add
to the prediction time cost. These additional computations can impact real-time applications or
scenarios with stringent time constraints. In future research, we aim to explore more generalized and
versatile spatio-temporal pre-training frameworks, along with lightweight algorithms, to address the
task-specific pre-training requirement and further reduce the computational overhead.

5

	Introduction
	Related Work
	Preliminaries
	Methodology
	Customized Temporal Pattern Encoding
	Hierarchical Spatial Pattern Encoding
	Hypergraph Capsule Clustering Network
	Cross-Cluster Relation Learning

	Cluster-aware Masking Mechanism

	Evaluation
	Experimental Setting
	Main Results (RQ1)
	Model Ablation Study (RQ2)
	Investigation on Clustering Effect (RQ3)
	Model Efficiency Study (RQ4)
	Model Hyperparameter Experiment (RQ5)

	Conclusion
	Supplementary Material
	Data and Implementation Details
	Optimization Method
	Algorithm Process

	Additional experiments
	Visualization Study
	Replication Study

	Analysis of Hypergraph as Temporal Encoder
	Limitations and Broader Impacts

