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1 Data1

1.1 Datasets2

In our work, we performed experiments and analysis using three datasets: Toys4K [14], ShapeNet-3

Core.v2 [4], ABC [8], and CO3D [12]. In the following section, we provide comprehensive details4

about each of these datasets.5

Toys4K [14]. This dataset consists of 4,179 object instances in 105 categories. We use the base and6

low-shot splits provided by Stojanov et al. [14]. In particular, the base classes consist of 40 categories7

while the low-shot classes have 55 categories. Objects in this dataset were collected under Creative8

Commons and royalty-free licenses. (Please refer to Table 1 for base/low-shot split compositions).9

ShapeNetCore.v2 [4]. This dataset consists of 52K objects in 55 categories. We partition these10

categories into 25 base and 30 low-shot classes (see Table. 1). The terms of use for ShapeNet are11

specified on their website, which can be accessed at https://shapenet.org/terms.12

ABC [8]. For pretraining our representation learning models, we used a subset of 100K object13

instances from ABC, which contains a total of 750K instances. Note that this dataset lacks categorical14

structures. The dataset is distributed under the MIT license. More licensing information is available15

at https://deep-geometry.github.io/abc-dataset/#license.16

CO3D [12]. We chose the 13 classes out of 51 classes that overlap with Toys4K for17

low-shot validation, detailed in Table 1. The terms of use for CO3D are specified18

at https://ai.facebook.com/datasets/co3d-downloads/.19

1.2 Data Generation20

Software. We used Blender 2.93 [1] with ray-tracing renderer Cycles for data generation and21

rendering.22

Assets. Objects are placed on top of a plane that simulates the ground/floor with PBR materials and23

image-based lighting from HDRI environment maps are used to illuminate scenes. We collected these24

assets from PolyHaven [2]. The list of assets used is shown in Table 2.25

Scene Generation. Given any 3D categorical dataset, we first partition these object categories into26

disjoint sets: base classes and low-shot classes. For each object in the dataset, we preprocess it27

by simulating a rigid body drop using Blender [1]. This simulation process is repeated 16 times,28

allowing us to collect metadata and initial rotational poses for each object. These collected data are29

used in the subsequent stages of scene generation.30
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Figure 1: Rendered scenes for LSME on Toys4k [14]

To generate each scene, we first choose a subset of objects from the dataset. Their initial rotational31

poses are determined by randomly choosing from the preprocessed poses. Objects are then scaled32

and placed into the scene at random locations. We ensure that collisions do not occur by maintaining33

a minimum margin of ∆ > 0 between each pair of objects. We randomize the scene background by34

randomly choosing a pair of PBR material and HDRI environment map from the assets.35

Data Rendering. To render each view of the scenes, we first determine the camera position. The36

camera’s position in the scene is specified by three parameters: θ ∈ [0, 2π], r ∈ [rmin, rmax] > 0,37

and z ∈ [zmin, zmax] > 0 where θ is the rotational angle, r is the distance from the origin in the38

XY-plane, and z denotes the world Z-coordinate of the camera. Note that rmin, rmax, zmin, zmax39

are preset parameters. The world coordinate of the camera is computed by (r cos(θ), r sin(θ), z). To40

determine the camera’s orientation, it is set to point towards a location on the XY-plane that is within41

a small distance ϵ from the mean locations of the objects in the scene. This is done by rotating the42

camera in the world XY and YZ-planes. We then randomize illumination intensity, consistently for43

all the views of each scene.44

Generated Data for LSME. We generated 1K scenes for each of support and query sets, with45

each scene consisting of 20 views. The data generated for LSME evaluation can be found46

at https://tinyurl.com/3a9r83z9. Additionally, the code for data generation is available on our47
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ShapeNetCore.v2 Toys4k CO3D
Base Low-shot Base Low-shot Low-shot
chair piano candy boat TV
table train flower lion mouse
bathtub file dragon whale car
cabinet pistol apple cupcake toaster
lamp motorcycle guitar train microwave
car printer tree pizza donut
bus mug glass marker orange
cellular rocket cup cookie sandwich
guitar skateboard pig sandwich bicycle
bench bed cat octopus banana
bottle ashcan chair monkey bowl
laptop washer ice-cream fries motorcycle
jar bowl hat violin pizza
loudspeaker bag deer mouse mushroom
bookshelf mailbox penguin closet
faucet pillow ball tractor
vessel earphone fox submarine
clock camera dog butterfly
airplane basket knife pear
pot remote laptop bicycle
rifle stove pen dolphin
display microwave mug bunny
knife microphone plate coin
telephone cap chess piece radio
sofa dishwasher cake grapes

keyboard frog banana
tower ladder cow
helmet keyboard donut
birdhouse sofa stove
can trashcan sink

dinosaur orange
bottle saw
elephant chicken
pencil hamburger
key piano
monitor light bulb
hammer spade
screwdriver crab
robot sheep
bread toaster

lizard
motorcycle
mouse
pc mouse
bus
helicopter
microwave
cell battery
drum
panda
TV
car
helmet
fridge
bowl

Table 1: Split composition of ShapeNetCovre.v2, Toys4K and CO3D

GitHub repository at https://github.com/rehg-lab/LSME. Detailed parameters for scene generation48

can be found in Table 3.49

1.3 Data Augmentation for Contrastive Training50

To augment the data, we applied various transformations, including random horizontal flips and51

brightness and color jittering. Following [13], we employed random object masking, where the52

object instance mask was used to eliminate the background. Additionally, we applied rotations and53

translations to the foreground object and incorporated background randomization techniques.54
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PBR HDRI
Carpet001 Aft Lounge
Carpet005 Anniversary Lounge
Carpet006 Balcony
Carpet007 Cabin
Carpet008 Cayley Interior
Carpet009 Children’s Hospital
Carpet013 Colorful Studio
Carpet014 Entrance Hall
Fabric024 Fireplace
Fabric025 Hotel Room
Fabric028 Kiara Interior
Marble012 Lapa
Planks001 Lebombo
Planks009 Lythwood Lounge
Planks011 Lythwood Room
Planks013 Moonlit Golf
Planks014 Music Hall
Planks018 Photo Studio
Terrazzo001 Reading Room
Tiles001 Roof Garden
Tiles027 Small Empty House
Tiles071 Spiaggia Di Mondello
Tiles072 St Fagans Interior
WoodFloor005 Umhlanga Sunrise
WoodFloor028 Wooden Lounge

Table 2: List of assets used in data generation.

Parameter Value
Camera r [1.0, 1.1)
Camera z [0.3, 0.5)
Camera jittering ϵ 0.01
Object scale [0.35, 0.45)
Object location [−0.5, 0.5)
Illumination intensity [0.6, 0.8)
Object margin ∆ 0.4

Table 3: Data rendering parameters.

1.4 More Data Visualizations55

Figure 1 showcases additional examples of rendered scenes from the Toys4K dataset [14]. These56

examples highlight the diversity found in the background, illumination conditions, and object poses57

within the scenes.58

In Figure 2, we demonstrate the instance mask prediction of the FreeSOLO [15] model finetuned on59

1K scenes of ABC. The quality of the predicted masks is essential to solving LSME.60

2 Additional Experiments61

2.1 Evaluation Metric Details62

We evaluate the performance of the baselines using the following metrics: 1) support assignment63

accuracy (SA) which quantifies the percentage of accurately identifying the novel instance within64

the scene, and 2) low-shot accuracy (LSA) for measuring low-shot performance, and 3) mean65

intersection-over-union (mIoU) for instance segmentation as detailed below. For each episode,66

SA =
1

Ns

Ns∑
i=1

1{ôi = oi}
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Figure 2: Segmentation prediction results on Toys4K [14] using FreeSOLO [15] fine-tuned on ABC
model

Table 4: Results on low-shot recognition on the Toys4k dataset in single object setting. All methods
consistently experience a significant drop in accuracy when being evaluated on the harder data
variants.

DINOv1-S/8 DINOv2-S/14 DINOv2-B/14

Variants 1-shot
5-way

1-shot
10-way

1-shot
5-way

1-shot
10-way

1-shot
5-way

1-shot
10-way

Inst-SObj 95.80±0.46 92.37±0.42 95.75±0.44 93.06±0.41 96.50±0.43 94.22±0.37

Categ-SObj 73.06±0.96 60.73±0.76 77.11±0.89 66.62±0.78 79.69±0.99 69.55±0.77

Categ-SObj-PoseVar 68.84±1.04 57.45±0.77 73.07±1.03 61.44±0.80 75.18±1.04 66.30±0.79

where o, ô, and Ns are ground truth object, predicted object, and the number of support objects67

respectively (e.g. in the 1-shot-5-way setup Ns = 5 since there are 5 support objects in the episode.)68

LSA =
1

Nq

Nq∑
i=1

Nw∑
k=1

1{ŷik = yik}

where ŷ and y are predicted and ground truth labels respectively. The number of query objects is69

denoted as Nq while Nw is the number of classes (e.g. in the 1-shot-5-way setup, Nw = 5 since there70

are 5 novel classes.)71

mIoU =

N∑
i=1

m̂i ∩mi

m̂i ∪mi

where m, m̂, and N denote the ground truth mask, predicted mask, and number of objects respectively.72

2.2 Main Manuscript Results73

In this section, we report the confidence intervals of the experiment results in the main manuscript74

(Please see Tables 4, 5, 6, 7, and 8). We evaluate our models with 500 episodes and 15 query scenes75

for each episode.76

2.3 Other Low-shot Setups77

Table 9 presents the results of DINOv2 ViT B/14, both pre-trained and fine-tuned on ABC, in various78

low-shot setups, including 1-shot-5-way, 5-shot-5-way, 1-shot-10-way, and 5-shot-10-way under79

LSME setting on Toys4k.80

While the support assignment accuracy (SA) remains consistent across all low-shot setups, the81

low-shot accuracy shows a notable improvement in the 5-shot scenarios with an approximate 16%82

increase in low-shot accuracy in both 5-way and 10-way setups.83
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Table 5: Results on low-shot recognition on the Toys4k dataset in multi-object setting. All methods
consistently experience a significant drop in low-shot accuracy when mutual exclusivity is required,
and further decrease when instance segmentation is involved.

DINOv1
ViT S/8

DINOv2
ViT S/14

DINOv2
ViT B/14

CLIP-Img
ViT B/16

ImageBind
ViT H/16

Variants LSA SA LSA SA LSA SA LSA SA LSA SA

Categ-MObj 56.99
±0.97

N/A 56.95
±0.99

N/A 57.92
±1.04

N/A 56.76
±1.01

N/A 60.49
±1.00

N/A

Categ-MObj
-SuppAssign

40.21
±1.10

51.68
±1.95

41.26
±1.15

52.28
±1.86

43.21
±1.21

54.96
±1.89

41.22
±1.16

51.64
±1.87

45.91
±1.25

58.58
±2.00

LSME 36.44
±1.08

46.92
±2.04

37.08
±1.05

48.16
±1.87

39.24
±1.17

50.88
±1.91

38.25
±1.14

48.96
±2.03

38.85
±1.14

50.24
±1.98

Table 6: Performance of DINOv2 and our method fine-tuned on Toys4k and ABC on Toys4k under
LSME setting. All methods use ViT B/14 as the backbone and our method is initialized with
pretrained DINOv2 weights. Training on ABC improves the performance significantly, surpassing
the model that was trained on the base classes of Toys4k with the same number of scenes.

Method LSA SA
DINOv2 39.24±1.17 50.88±1.91

Ours-DINOv2-Toys 43.62±1.29 53.44±1.89

Ours-DINOv2-ABC 47.70±1.26 61.32±1.86

Representation Learning Models: We use pre-trained backbones, (e.g. DINOv1 [3], DINOv2 [11])84

contrastive training strategy with a momentum encoder[7]. Given two views of the same scene,85

v1 and v2, we first use the instance mask associated with each object in the scene to eliminate the86

background and other objects. Subsequently, we extract the query object feature by performing a87

forward pass of the image encoder on v1. For each query feature, we minimize the InfoNCE [10] loss88

function.89

Lq = − log
exp(q · k+/τ)

exp(q · k+/τ) +
∑

k−
exp(q · k−/τ)

The positive sample k+ is the feature of the same object in v2 while the negative set {k−} consists of90

object features from the memory queue as in MoCo-v2 [6] and different objects from the same scene.91

For each input view pair, we ensure to only train on objects that are visible in both views (e.g. with92

instance segmentation area greater than some threshold σ = 30 pixels).93

In our approach, we omit the projector and predictor components present in most contrastive learning94

approaches [7, 7, 5] since we found empirically that this gave better performance. We trained our95

model using AdamW optimizer with initial learning rate 5e−6 and weight decay 0, batch size 32 on 396

RTX 2080 GPUs for 50 epochs. Training took approximately 5 hours in clock time. Our pretrained97

weights can be found at https://tinyurl.com/3a9r83z9 and the training code is on our GitHub repository98

at https://github.com/rehg-lab/LSME. All pre-trained weights for other models are directly loaded99

from the corresponding released codebases.100

Segmentation Models: We finetuned the pretrained FreeSOLO [15] model on 1K scenes of ABC101

dataset with instance mask annotations. To obtain the predicted instance masks for low-shot, we102

performed a forward pass of the fine-tuned model on our low-shot data. From the output masks, we103

retained the ones with a confidence score above 0.5. To handle overlapping masks, we merged those104

with an IoU greater than 0.7. Finally, we employed the Hungarian matching algorithm [9] to associate105

each predicted mask with its corresponding ground truth mask. We finetuned FreeSOLO with batch106

size 6 on 3 RTX 2080 GPUs for 30K epochs.107
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Table 7: Performance of different methods on Toys4k under Categ-SObj-PoseVar and Categ-MObj
settings. These settings solve a similar problem, with Categ-MObj having object occlusions present
in both support and query objects. Performance of all methods drops significantly when faced with
occlusion cases.

Method DINOv1 S/8 DINOv2 S/14 DINOv2 B/14
Categ-SObj-PoseVar 68.84 ±1.04 73.07 ±1.03 75.18 ±1.04

Categ-MObj 56.99 ±0.97 56.95 ±0.99 57.92 ±1.04

Table 8: The performance of different methods under LSME setting on Toys4k with two object
segmenters. The quality of the instance masks plays a significant role in the low-shot and shot
assignment performance for all methods.

Method mIoU DINOv1 S/8 DINOv2 S/14 DINOv2 B/14
Support Query LSA SA LSA SA LSA SA

FreeSOLO [15] 0.74 0.76 30.05
±0.84

38.932
±1.92

32.03
±0.90

41.72
±2.01

33.22
±0.99

44.04
±1.90

FreeSOLO-ABC 0.85 0.86 36.44
±1.08

46.92
±2.04

37.08
±1.05

48.16
±1.87

39.24
±1.17

50.88
±1.91

Table 9: Results on low-shot recognition on the Toys4k dataset in multi-object setting. All methods
consistently experience a significant drop in low-shot accuracy when mutual exclusivity is required,
and further decrease when instance segmentation is involved.

DINOv2
ViT B/14

DINOv2
ViT B/14-ABC

Low-shot Setup LSA SA LSA SA
1-shot-5-way 39.24±1.17 50.88±1.91 47.70±1.26 61.32±1.86

5-shot-5-way 55.03±0.99 50.22±0.99 63.52±1.02 60.60±1.13

1-shot-10-way 28.32±0.73 51.32±1.46 35.66±0.82 61.10±1.30

5-shot-10-way 43.26±0.70 50.62±0.69 51.72±0.75 60.85±0.74
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