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Abstract

Finding the proper depth d of a graph convolutional network (GCN) that pro-
vides strong representation ability has drawn significant attention, yet nonetheless
largely remains an open problem for the graph learning community. Although
noteworthy progress has been made, the depth or the number of layers of a cor-
responding GCN is realized by a series of graph convolution operations, which
naturally makes d a positive integer (d ∈ N+). An interesting question is whether
breaking the constraint of N+ by making d a real number (d ∈ R) can bring
new insights into graph learning mechanisms. In this work, by redefining GCN’s
depth d as a trainable parameter continuously adjustable within (−∞,+∞), we
open a new door of controlling its signal processing capability to model graph
homophily/heterophily (nodes with similar/dissimilar labels/attributes tend to be
inter-connected). A simple and powerful GCN model TEDGCN, is proposed to
retain the simplicity of GCN and meanwhile automatically search for the optimal d
without the prior knowledge regarding whether the input graph is homophilic or
heterophilic. Negative-valued d intrinsically enables high-pass frequency filtering
functionality via augmented topology for graph heterophily. Extensive experiments
demonstrate the superiority of TEDGCN on node classification tasks for a variety
of homophilic and heterophilic graphs.

1 Introduction

Graph convolutional network (GCN) [28, 50, 19, 47] has exhibited superb power in a myriad of
graph learning tasks, such as knowledge graph reasoning [56, 53, 54, 52, 36], network alignment
[63, 64, 68, 74, 20, 35, 67], multi-network mining [65, 73, 42, 13, 27, 17], networked time series
imputation [51, 25, 55, 16], node recommendation [26, 2, 3], and many more. Since the representation
capability of GCN is largely determined by its depth, i.e., the number of graph convolution layers,
tremendous research efforts have been made on finding the optimal depth that strengthens the model’s
ability for downstream tasks. Upon increasing the depth, the over-smoothing issue arises: a GCN’s
performance is deteriorated if its depth exceeds a certain threshold [28]. It is found in [32] that a graph
convolution operation is a special form of Laplacian smoothing [48]. Thus, the similarity between
the graph node embeddings grows with the depth so that these embeddings eventually become
indistinguishable. Various techniques have been developed to alleviate this issue, e.g., applying
pairwise normalization can make distant nodes dissimilar [69], and dropping sampled edges during
training slows down the growth of embedding smoothness as the depth increases [43].

Other than the over-smoothing issue due to a large GCN depth, another fundamental phenomenon
widely existing in real-world graphs is homophily and heterophily. In a homophilic graph, nodes with
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similar labels or attributes tend to be inter-connected, while in a heterophilic graph, connected nodes
usually have distinct labels or dissimilar attributes. Most graph neural networks (GNNs) are developed
based on the homophilic assumption [66], while models able to perform well on heterophilic graphs
often need special treatment and complex designs [4, 76, 62]. Despite the achievements made by
these methodologies, little correlation has been found between the adopted GNN model’s depth and
its capability of characterizing graph heterophily.

For almost any GNN model, the depth needs to be manually set as a hyper-parameter before training,
and finding the proper depth usually requires a considerable amount of trials or good prior knowledge
of the graph dataset. Since the depth represents the number of graph convolution operations and
naturally takes only positive integer values, little attention has been paid to the question of whether
a non-integer depth is realizable, and if yes, whether it is practically meaningful, and what kind of
unique advantages it can bring to current graph learning mechanisms.

This work revisits the GCN depth from spectral and spatial perspectives and explains the intrinsic
connections between the following key ingredients in graph learning: (i) the depth of a GCN, (ii) the
spectrum of the graph signal, and (iii) the homophily/heterophily of the underlying graph. Firstly,
through eigen-decomposition of the symmetrically normalized graph Laplacian, we present the
connection between graph homophily/heterophily and the eigenvector frequencies. Secondly, by
introducing the concept of eigengraph, we show the graph topology is equivalent to a weighted
linear combination of eigengraphs, and the weights determine the GCN’s capability of capturing ho-
mophilic/heterophilic graph signals. Thirdly, we reveal that the eigengraph weights can be controlled
by GCN’s depth, so that an automatically tunable depth parameter is needed to adjust the eigengraph
weights into the designated distribution in match of the underlying graph homophily/heterophily.

To realize the adaptive GCN depth, we extend its definition from a positive integer to an arbitrary real
number with theoretical feasibility guarantees from functional calculus [45]. With a trainable depth
parameter, we propose a simple and powerful model, Trainable Depth-GCN (TEDGCN), with two
variants. Extensive experiments demonstrate TEDGCN’s ability of automatically searching for the
optimal depth, and it is found that negative-valued depth plays the key role in handling heterophilic
graphs. Systematical investigation on the optimal depth is conducted via various real-world and
synthetic datasets. It in turn inspires the development of a novel graph augmentation methodology.
With clear geometric interpretability, the augmented graph structure possesses supreme advantages
over the raw input topology, especially for graphs with heterophily. The main contributions of this
paper are summarized as follows:

• Analysis. The intrinsic relationship between the negative GCN depth and graph heterophily
is discovered; In-depth geometric and spectral explanations are presented.

• Problem. A novel problem of automatic GCN depth tuning for graph homophily/heterophily
detection is formulated. To our best knowledge, this work presents the first trial to make
GCN’s depth negative and trainable by redefining it on the real number domain.

• Model. A simple and powerful model TEDGCN with two variants (TEDGCN-S and
TEDGCN-D) is proposed. A novel graph augmentation method is discussed.

• Experiments. Our model achieves superior performance on semi-supervised node classifi-
cation tasks on 11 graph datasets.

2 Preliminaries

Notations. We utilize bold uppercase letters for matrices (e.g., A), bold lowercase letters for column
vectors (e.g., u) and lowercase letters for scalars (e.g., α). We use the superscript ⊤ for the transpose
of matrices and vectors (e.g., A⊤ and u⊤). An attributed undirected graph G = {A,X} contains an
adjacency matrix A ∈ Rn×n and an attribute matrix X ∈ Rn×q with the number of nodes n and the
dimension of node attributes q. D denotes the diagonal degree matrix of A. The adjacency matrix
with self-loops is given by Ã = A+ I (I is the identity matrix), and all variables derived from Ã are
decorated with symbol ˜, e.g., D̃ represents the diagonal degree matrix of Ã. Md stands for the d-th
power of matrix M, while the parameter and node embedding matrices in the d-th layer of a GCN
are denoted by W(d) and H(d).
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Figure 1: Decompose the symmetrically normalized adjacency matrix into three eigengraphs.

Graph convolutional network (GCN) and simplified graph convolutional network (SGC). The
layer-wise message-passing and aggregation of GCN [28] is given by

H(d+1) = σ(D̃− 1
2 ÃD̃− 1

2H(d)W(d)), (1)

where H(d)/H(d+1) stands for the embedding matrix (H(0) = X) in the d-th/(d+ 1)-th layer; W(d)

is the trainable parameter matrix; and σ(·) is the non-linear activation function. With σ(·) removed in
each layer, SGC [59] is obtained as below:

H(d) = S̃dXW, (2)

where S̃ = D̃− 1
2 ÃD̃− 1

2 , and the parameter of each layer W(i) are compressed into one trainable
W =

∏d−1
i=0 W(i).

Graph Laplacian and spectrum. In graph theory, graph Laplacian L = D−A and its symmetrically
normalized correspondence Lsym = I−D− 1

2AD− 1
2 possess critical properties of the underlying

graph G. Lsym has eigenvalues [λ1, λ2, . . . , λn], where λi ∈ [0, 2),∀i ∈ {1, 2, . . . , n} [11].1 Here,
they are put in the ascending order: 0 = λ1 ≤ λ2 ≤ · · · ≤ λn < 2. It can be eigen-decomposed
as: Lsym = UΛU⊤, where U = [u1,u2, . . . ,un] is the eigenvector matrix (ui ⊥ uj ,∀i ̸= j), and
Λ is the diagonal eigenvalue matrix. For each eigenvector ui, we have uiu

⊤
i ∈ Rn×n. As we will

show in Section 3, this n × n matrix can be viewed as the weighted adjacency matrix of a graph
with possible negative edges, which we name as the i-th eigengraph of G. Accordingly, Lsym can be
written as the linear combination of all eigengraphs weighted by the corresponding eigenvalues [11]:

Lsym = λ1u1u
⊤
1 + . . .+ λiuiu

⊤
i + . . .+ λnunu

⊤
n , (3)

where the first eigenvalue λ1 = 0 [46]. Thus, for SGC, we have

S̃ = I− L̃sym = Ũ(I− Λ̃)Ũ⊤ =

n∑
i=0

(1− λ̃i)ũiũ
⊤
i . (4)

A SGC with d layers requires d consecutive graph convolution operations, which involves the
multiplication of S̃ by d times. Due to the orthogonality of Ũ, namely, Ũ⊤Ũ = I, we obtain

S̃d = Ũ(I− Λ̃)Ũ⊤Ũ(I− Λ̃)Ũ⊤ . . . Ũ(I− Λ̃)Ũ⊤ = Ũ(I− Λ̃)dŨ⊤ =

n∑
i=1

(1− λ̃i)
dũiũ

⊤
i , (5)

where 1− λ̃i ∈ (−1, 1], and the depth d of SGC serves as the power of S̃’s eigenvalues. S̃d can be
viewed as the sum of eigengraphs ũiũ

⊤
i weighted by coefficients (1− λ̃i)

d.

Graph homophily and heterophily. Various homophily/heterophily measures are developed
to capture how edges tend to link nodes with the same labels and similar attributes, such as
edge homophily[1, 76, 75, 37], node homophily[41], and class homophily[34]. Without the loss
of generality, we focus on one mostly used homophily metric, the edge homophily: h(G) =∑

i,j,A[i,j]=1⟨y[i]=y[j]⟩∑
i,j A[i,j] ∈ [0, 1], where ⟨x⟩ = 1 if x is true and 0 otherwise. A graph is more

homophilic for h(G) closer to 1 or more heterophilic for h(G) closer to 0.
1This work focuses on connected graph without bipartite components (i.e., a connected component which is

a bipartite graph).
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3 Model

Overview. Firstly, we establish the intrinsic relationship between graph spectrum and graph het-
erophily. Secondly, we show how the positive/negative depth d of a GCN affects the eigengraph
weights which in turn impacts the algorithm’s capability to capture homophilic/heterophilic graph
signals. Thirdly, with the help of functional calculus [45], we present the theoretical feasibility
of extending the domain of d from N+ to R. Finally, by making d a trainable parameter, we
present our model TEDGCN and its variants, which are capable of automatically detecting the
homophily/heterophily of the input graph and finding the optimal depth.

Eigenvector frequency and entry deviation. The frequency of graph Laplacian eigenvector ui

reflects how much the j-th entry ui[j] deviates from the k-th entry ui[k] for each connected node pair
vj and vk in G [46]. This deviation is measured by the set of zero crossings of ui: Z(ui) := {e =
(vj , vk) ∈ E : ui[j]ui[k] < 0, j ̸= k}, where E is the set of edges in graph G. Larger/smaller |Z(ui)|
indicates higher/lower eigenvector frequency. A zero-crossing also corresponds a negative weighted
edge in an eigengraph. Due to the widely existing positive correlation between λi and |Z(ui)| [46],
large/small eigenvalues mostly correspond to the high/low frequencies of the related eigenvectors.
As illustrated by the toy example of n = 3 in Figure 1, for λ1 = 0, we have |Z(u1)| = 0, and
eigengraph u1u

⊤
1 is fully-connected; negative edge weights exist in the 2nd and 3rd eigengraphs,

indicating more zero crossings (|Z(u2)| = 1 and |Z(u3)| = 2) and higher eigenvector frequencies.

Entry deviation and graph heterophily. Reflected by entry deviations, eigenvector frequency and
zero-crossings determine the number of negatively weighted edges (ui[j]ui[k] < 0, j ̸= k) in a
corresponding eigengraph uiu

⊤
i . For a GCN/SGC, conducting message-passing along negatively

weighted edges makes the embeddings of the connected node pairs (vj , vk) dissimilar. Naturally,
higher embedding dissimilarity is more likely to render different label predictions between the node
pair, and this generates heterophily. Thus, eigenvectors with higher frequencies and accordingly
higher entry deviations contribute more to heterophilic graph signals, and vice versa.

Graph heterophily and GCN’s depth. Based on above analyses, high frequency eigenvectors and
their corresponding eigengraphs have advantage on capturing graph heterophily. A graph neural
network should be able to give high frequency eigengraphs larger weights when modeling heterophilic
graphs, whereas low frequency ones should carry larger weights when dealing with homophilic graphs.
The weights of eigengraphs are controlled by GCN/SGC’s depth d as follows. For a SGC of depth d,
the weight of the i-th eigengraph is (1− λ̃i)

d, and changing the depth d of SGC adjusts the weights
of different eigengraphs. Therefore, depth d controls the model’s capability of effectively filtering
low/high-frequency signals for graph homophily/heterophily.

Redefined GCN’s depth. A question is naturally raised: instead of manually setting the depth d,
can d be built into the model as a trainable parameter? If yes, a proper set of the eigengraph weights
matching the graph homophily/heterophily can be automatically reached by finding the optimal d in
an end-to-end fashion during training.

Differentiable variables need continuity, which requires the extension of depth d from the discrete
positive integer domain (N+) to the continuous real number domain R. According to functional
calculus [45], applying an arbitrary matrix function f on a graph Laplacian Lsym is equivalent to
applying the same function only on the eigenvalue matrix Λ:

f(Lsym) = Uf(Λ)U⊤ = U

f(λ1) · · · 0
...

. . .
...

0 · · · f(λn)

U⊤, (6)

which also applies to L̃sym and S̃. Armed with this, we seek to realize an arbitrary depth SGC via a
power function as f(S̃) = S̃d = Ũ(I− Λ̃)dŨ⊤ =

∑n
i=1(1− λ̃i)

dũiũ
⊤
i (d ∈ R). However, since

λ̃i ∈ [0, 2), we have (1− λ̃i) ≤ 0 when 1 ≤ λ̃i < 2, and for (1− λ̃i) taking zero or negative values,
(1 − λ̃i)

d is not well-defined or involving complex-number-based calculations for a real-valued d

(e.g.,(−0.5)
3
8 ) [45]. Moreover, even for integer-valued ds under which (1− λ̃i)

d is easy to compute,
the behavior of (1 − λ̃i)

d is complicated versus λ̃i and diverges when λ̃i = 1 for negative ds, as
shown in Figure 2a. Thus, the favored weight distribution may be hard to obtain by tuning d.
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To avoid such complications and alleviate the difficulties for manipulating the eigengraph
weights, a transformation function g(·) operating on the graph Laplacian Lsym or L̃sym is
in need to shift g(λi) or g(λ̃i) into a proper value range so that its power of a real-valued
d is easy to obtain and well-behaved versus λi or λ̃i. Without the loss of generality, our
following analysis focuses on Lsym and λi. There may exist multiple choices for g(·) sat-
isfying the requirements. In this work, we focus on the following transformation function:
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Figure 2: Eigengraph weight versus eigenvalue for (a)
SGC and (b) TEDGCN-S under different depth ds.

Ŝ = g(Lsym) =
1

2
(2I− Lsym). (7)

This choice of g(·) holds three properties:
(1) Positive eigenvalues. Since we have
Lsym’s i-th eigenvalue λi ∈ [0, 2), the
corresponding eigenvalue of Ŝ is g(λi) =
1
2 (2 − λi) ∈ (0, 1]. Thus, the d-th power
of g(λi) is computable for any d ∈ R.
(2) Monotonicity versus eigenvalues λ. As
shown in Figure 2b, g(λi)

d = (1− 1
2λ)

d is
monotonically increasing/decreasing when
λ varies between 0 and 2 under nega-
tive/positive depth. (3) Geometric inter-
pretability. Filter Ŝ can be expressed as:

Ŝ = UΛ̂U⊤ = U(I− 1

2
Λ)U⊤ =

1

2
I+

1

2
(I− Lsym) =

1

2
(I+D− 1

2AD− 1
2 ). (8)

As shown in Figure 3, in the spatial domain, Ŝ is obtained via 3 operations on adjacency matrix A:
normalization, adding self-loops, and scaling all edge weights by 1

2 (a type of lazy random walk [39]),
while S̃ in vanilla GCN/SGC contains 2 operations: adding self-loops and normalization.

With the help of transformation g, the depth d is redefined on real number domain, and the message
propagation process of depth d can be realized via the following steps: (1) Eigen-decompose Lsym;
(2) Calculate Ŝd via weight g(λi)

d and the weighted sum of all eigengraphs: Ŝd = UΛ̂dU⊤ =∑n
i=1 g(λi)

duiu
⊤
i (3) Multiply Ŝd with original node attributes X.
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Figure 3: The difference between S̃ (left) for
GCN/SGC and Ŝ (right) for TEDGCN.

Negative depth explained. First, an intuitive
explanation of negative d can be obtained from
the perspective of matrix inverse and message
diffusion process when d takes integer values.
Since Ŝ−1Ŝ = UΛ̂−1U⊤UΛ̂1U⊤ = I, Ŝ−1

is the inverse matrix of Ŝ. In diffusion dynamics,
X can be viewed as an intermediate state gen-
erated in a series of message propagation steps.
ŜX effectively propagates the message one-step
forward, while Ŝ−1 can cancel the effect of Ŝ on
X and recover the original message by moving
backward: Ŝ−1ŜX = X. Accordingly, Ŝ−1X
traces back to the message’s previous state in
the series. Non-integer d indicates the back- or forward propagation can be a continuous process.
Second, as the depth becomes negative, it primarily keeps the eigengraphs of high frequency (See
Figure 2b), which have more negative edges. Therefore, it is equivalent to turning some positive
edges in the original graph into negative edges in the augmented graph, which in turn makes node
embeddings dissimilar in the message-passing process and thus naturally handles the heterophilic
graphs (See Figure 1). More discussions on the impact of negative depth in spatial domain are
presented in Section 4.4.

TEDGCN-S algorithm. By further making d a trainable parameter, we present our model, Trainable
Depth-GCN-Single (TEDGCN-S), whose final node embedding matrix is given by

H = σ(ŜdXW), (9)
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where σ(·) is the nonlinear activation function; W is a trainable parameter matrix; and d is the
trainable depth parameter. As observed from Figure 2b, weight distribution of different frequen-
cies/eigengraphs is tuned via d: (1) for d = 0, the weight is uniformly distributed among all frequency
components (g(λi)

d = 1), which implies that no particular frequency is preferred by the graph
signal; (2) for d > 0, weight g(λi)

d decreases with the corresponding frequency, which indicates
the low frequency components are favored so that TEDGCN-S effectively functions as a low-pass
filter and therefore captures graph homophily; (3) for d < 0, high frequency components gains
amplified weights so that TEDGCN-S serves as a high-pass filter capturing graph heterophily. During
training, TEDGCN-S tunes its frequency filtering functionality to suit the underlying graph signal by
automatically finding the optimal d.

TEDGCN-D algorithm. During optimization, TEDGCN-S embraces a single depth d unified for all
eigengraphs and selects its preferences for either homophily or heterophily. However, TEDGCN-S
requires a full eigen-decomposition of Lsym, which can be expensive for large graphs. Additionally,
the high and low frequency components in a graph signal may not be mutually exclusive, namely, there
exists the possibility for a graph to simultaneously possess homophilic and heterophilic counterparts.
Therefore, we propose the second variant of TEDGCN: TEDGCN-D (Dual), which introduces two
separate trainable depths, dh and dl, to gain more flexible weighting of the high and low frequency
related eigengraphs respectively. Arnoldi method [30] is adopted to conduct EVD on Lsym and
obtain the top-K largest and smallest eigen-pairs (λi,ui)s. By denoting Ul = U[:, 0 : K] and
Uh = U[:, n−K : n] (Ul and Uh ∈ Rn×K ), we define a new diffusion matrix Ŝdual(dl, dh,K) as

Ŝdual(dl, dh,K) = UlΛ̂
dl

l U⊤
l +UhΛ̂

dh

h U⊤
h , (10)

where Λ̂l ∈ RK×K and Λ̂h ∈ RK×K are diagonal matrices of the top-K smallest and largest
eigenvalues.2 The final node embedding of TEDGCN-D is presented as

H = σ(Ŝdual(dl, dh,K)XW), (11)

where depths dl and dh are trainable; and W is a trainable parameter matrix. We make TEDGCN-D
scalable on large graphs by choosing K ≪ n, so that Ŝdual(dl, dh,K) approximates the full diffusion
matrix by covering only a small subset of all eigengraphs. For small graphs, we use K = ⌊n

2 ⌋ to
include all eigengraphs, and Ŝdual(dl, dh,K) thus gains higher flexibility than Ŝ with the help of the
two separate depth parameters instead of a unified one.

Complexity Analysis. TEDGCN has two major steps: (1) conduct eigen-decomposition of Â; (2)
train a one-layer GCN on the augmented graph Ŝd. For Step (1), naive eigen-decomposition has a time
complexity of O(n3). However, by adopting the Lanczos method [30] and only keeping the top-K
largest/smallest eigenvalues in TEDGCN-D, the time complexity can be reduced to O(nK2 +mK)
[24], where m is the number of edges and K << n. For Step (2), via dense matrix multiplications,
computing the approximated Ŝd takes O(nK2 + n2K), and conducting message propagation takes
O(n2q + nqc), where q and c denote the dimension of node feature vectors and the number of node
classes. Potential improvements of efficiency: since the diffusion matrix in Subsection 4.4 of the
augmented graph is sparse for known real-world graphs, the complexity of Step (2) can also be
further simplified: the O(n2K) term can be reduced to O(|Eaug|K ), where Eaug is the edge set of
the augmented graph.

Differences with ODE-based GNNs. Previous attempts on GNNs with continuous diffusion are
mostly inspired by graph diffusion equation, an Ordinary Difference Equation (ODE) characterizing
the dynamical message propagation process versus time. In contrast, our framework starts from
discrete graph convolution operations without explicitly involving ODE. CGNN [60] aims to build
a deep GNN immune to over-smoothing by adopting the neural ODE framework [9]. But its time
parameter t is a non-trainable hyper-parameter predefined within the positive domain, which is the
key difference with TEDGCN. A critical CGNN component for preventing over-smoothing, restart
distribution (the skip connection from the first layer), is not needed in our framework. Moreover,
CGNN applies the same depth to all frequency components, while TEDGCN-D has the flexibility
to adopt two different depths respectively to be adaptive to high and low frequency components.
GRAND [8] introduces non-Eular multi-step schemes with adaptive step size to obtain more precise
solutions of the diffusion equation. Its depth (i.e., the total integration time) is continuous but still

2Case λi = 2, namely g(λi) = 0, is excluded since it corresponds to the existence of bipartite components.
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predefined/non-trainable and only admits positive values. DGC [58] decouples the SGC depth into
two predefined non-trainable hyper-parameters: a positive real-valued T controlling the total time and
a positive integer-valued Kdgc corresponding to the number of diffusion steps. However, realizing
negative depth in DGC is non-applicable since the implementation is through propagation by Kdgc

times, rather than through an arbitrary real-valued exponent d on eigengraph weights in TEDGCN.

4 Experiment

In this section, we evaluate the proposed TEDGCN on the semi-supervised node classification task
on both homophilic and heterophilic graphs.

4.1 Experiment Setup

Datasets. We use 11 datasets for evaluation, including 4 homophilic graphs: Cora [28], Citeseer
[28], Pubmed [28] and DBLP [6], and 7 heterophilic graphs: Cornell [41], Texas [41], Wisconsin
[41], Actor [41], Chameleon [44], Squirrel [44], and cornell5 [15]. We collect all datasets from
the public GCN platform Pytorch-Geometric [15]. For Cora, Citeseer, Pubmed with data splits in
Pytorch-Geometric, we keep the same training/validation/testing set split as in GCN [28]. For the
remaining 8 datasets, we randomly split every dataset into 20/20/60% for training, validation, and
testing.

Baselines and metrics. Here, we compare our model with 7 baseline methods, including 4 classic
GNNs: GCN [28], SGC [59], APPNP [29] and ChebNet [12], and 3 GNNs tailored for heterophilic
graphs: FAGCN [5], GPRGNN [10] and H2GCN [76]. Accuracy (ACC) is used as the evaluation
metric. We report the average ACCs with the standard deviation (std) for all methods, each obtained
by 5 runs with different initializations.

Additional contents. In Appendix, we provide more contents related to experiments including (1) the
statistics of all datasets (Appendix A.1); (2) experimental results on synthetic graphs with controllable
edge homophily/heterophily levels to demonstrate the effectiveness of negative depth (Appendix A.2);
(3) comparison with additional methods including ACM-GCN [37, 38], LINKX [34], BernNet [22],
GBK-GNN [14] , HOG-GCN [57], Geom-GCN [41] and GloGNN [33] under the commonly used
fully-supervised setting that training/validation/testing set split is 48/32/20% for training, validation,
and testing based on the results reported in the original papers (Appendix A.3); (4) implementation
details (Appendix A.4); and (5) visualization of node embeddings w.r.t. d (Appendix A.5).

4.2 Node Classification

The semi-supervised node classification performances on homophilic graphs and heterophilic graphs
are shown in Table 1 and Table 2 respectively.

Homophilic graphs. From Table 1, it is observed that different methods have similar performance on
homophilic graphs. TEDGCN-S achieves the best accuracies on two datasets: Cora and DBLP. On
the remaining two datasets, TEDGCN-S is only 1.1% and 0.4% below the best baselines (APPNP
on Citeseer and SGC on Pubmed). For TEDGCN-D, it obtains similar performance as the other
methods, even though it only uses the top-K largest/smallest eigen-pairs.

Table 1: Performance comparison (mean±std accuracy (%)) on homophilic graphs.

Datasets Cora Citeseer Pubmed DBLP
GCN 80.8±0.8 70.5±0.6 78.8±0.6 84.1±0.2
SGC 80.9±0.4 70.8±0.8 79.6±0.4 84.1±0.2

APPNP 81.0±1.0 71.9±0.4 79.3±0.2 83.0±0.5
GPRGNN 82.0±0.7 69.3±0.9 78.6±0.7 84.5±0.3
FAGCN 80.3±0.4 71.7±0.8 78.5±0.9 82.4±0.7
H2GCN 78.8±1.0 70.5±1.0 77.9±0.3 82.4±0.3
ChebNet 78.8±0.5 71.1±0.4 78.1±0.8 83.1±0.1

TEDGCN-S 82.5±1.1 70.8±0.7 79.2±0.2 84.7±0.3
TEDGCN-D 82.4 ±0.7 70.6 ±0.6 77.9 ±0.3 84.2±0.2

Heterophilic graphs. Our TEDGCN-S or TEDGCN-D outperforms every baseline on all het-
erophilic graphs, as shown in Table 2. These results demonstrate that without manually setting the
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Table 2: Performance comparison (mean±std accuracy (%)) on heterophilic graphs.

Datasets Texas Cornell Wisconsin Actor Squirrel Chameleon cornell5
GCN 55.9±3.4 44.3±4.4 51.4±2.2 27.5±0.5 35.8±1.3 55.2±1.8 67.9±0.2
SGC 58.7±3.1 43.8±4.4 47.3±2.1 28.0±0.8 37.2±1.8 55.3±1.0 67.4±0.5

APPNP 55.1±3.7 51.5±2.4 58.0±3.1 32.8±0.8 29.5±0.9 46.7±0.8 68.3±0.5
GPRGNN 61.3 ±5.8 53.3±4.6 71.0±4.8 33.6±0.4 34.1±1.0 55.0±3.9 67.3±0.3
FAGCN 60.2±7.8 54.8±7.4 60.1±5.2 32.3±0.5 31.2±1.6 50.4±1.9 68.3±0.7
H2GCN 68.8±6.5 61.4±4.4 69.9±5.3 33.9±0.3 30.4±0.9 48.8±1.9 68.4±0.2
ChebNet 76.2±2.9 66.7±3.9 75.4±3.5 34.3±0.5 31.8±0.5 49.6±1.8 OOM

TEDGCN-S 77.6±5.9 72.0±5.8 82.0±2.6 35.3±0.7 38.2±1.2 55.7±1.3 68.5±0.4
TEDGCN-D 77.1 ±2.5 72.0 ±2.8 81.5 ±2.4 27.6 ±0.8 44.2±0.9 56.9±0.9 70.0±0.2
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Figure 4: Node classification accuracy w.r.t. the trainable depth d on four datasets: Cora, Citeseer,
Actor and Squirrel. (the optimal d, accuracy) is annotated (e.g., (-0.027, 36.9%) for Actor).

model depth and without the prior knowledge of the input graph (i.e., whether the input graph is
homophilic or heterophilic), TEDGCN has the capability of automatically detecting the underlying
graph heterophily. We have an interesting observation: on 3 large datasets, Squirrel, Chameleon, and
cornell5, even with only a small portion of the eigengraphs, TEDGCN-D is able to achieve better
performance than TEDGCN-S with the complete set of eigengraphs. This suggests that the graph
signal in some real-world graphs might be dominated by a few low and high frequency components,
and allowing two independent depth parameters in TEDGCN-D brings the flexibility to capture the
low and high frequencies at the same time.

4.3 Trainable Depth

A systematic study is conducted on the node classification performance w.r.t. the trainable depth d.
Optimal depth. In Figure 4, the optimal depths and their corresponding classification accuracies
are annotated. For two homophilic graphs, Cora and Citeseer, the optimal depths are positive
(5.029 and 3.735) in terms of the best ACCs, while for two heterophilic graphs, Actor and Squirrel,
the optimal depths are negative (−0.027 and −3.751). These results demonstrate that our model
can indeed automatically capture graph heterophily/homophily by finding the suitable depth to
suppress or amplify the relative weights of the corresponding frequency components. Namely,
high/low frequency components are suppressed for homophilic/heterophilic graphs respectively.

Table 3: The performance of one-layer
vanilla GCN over the augmented Ŝd.

Datasets Texas Cornell Wisconsin
GCN 55.9 44.3 51.4

TEDGCN-S 77.6 72.0 82.0
TEDGCN-D 77.1 72.0 81.5
GCN (Ŝd) 75.9 72.7 83.4

Close to zero depth. For the two homophilic graphs in Fig-
ures 4a and 4b, sharp performance drop is observed when
depth d approaches 0, since the eigengraphs gain close-to-
uniform weights. For the heterophilic Actor dataset, its
optimal depth −0.027 is close to 0, as shown in Figure 4c.
In addition, the performance of TEDGCN-D (27.6%) is
similar to that of GCN (27.5%), both of which are much
worse than TEDGCN-S (35.3%). This result indicates
that Actor is a special graph where all frequency compo-
nents have similar importance. Due to the absence of the intermediate frequency components between
the high- and low-end ones, the performance of TEDGCN-D is severely impacted. For vanilla GCN,
the suppressed weights of the high frequency components deviate from the near-uniform spectrum
and thus lead to low ACC on this dataset.
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4.4 Graph Augmentation and Geometric Insights

It is especially interesting to analyze what change a negative depth brings to the spatial domain and
how such change impacts the subsequent model performance.

Graph augmentation via negative depth. By picking the optimal depth d according to the best
performance on the validation set, a new diffusion matrix Ŝd is obtained. With the optimal d fixed,
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Figure 5: The weights of eigengraphs w.r.t. eigenvalues on the augmented diffusion matrix Ŝd and
original Ŝ.

(a) Texas (b) Cornell (c) Wisconsin

Figure 6: The difference between the augmented diffusion matrix and the original one Ŝd − Ŝ.

substituting the normalized adjacency matrix D̃− 1
2 ÃD̃− 1

2 in Eq. (1) by Ŝd is equivalent to applying
the vanilla GCN to a new topology. This topology effectively plays the role of a structural aug-
mentation for the original graph. The impact of such augmentation on performance is tested on 3
heterophilic graphs: Texas, Cornell and Wisconsin, as shown in Table 3. Apparently, for the vanilla
GCN, the performance obtained with this new topology is superior over that with the raw input
graph: it dramatically brings 20%-30% lifts in ACC. Moreover, the augmented topologies also make
vanilla GCN outperform TEDGCN-S and TEDGCN-D on 2 out of the 3 datasets. By nature, the
augmented graph is a re-weighted linear combination of the eigengraphs, and its topological structure
intrinsically assigns higher weights to eigengraphs corresponding to higher frequencies, as shown in
Figure 5.

Geometric properties. To further understand how the topology of Ŝd with a negative optimal d differs
from that of Ŝ and why the performance is significantly boosted, heat maps of (Ŝd− Ŝ)s are presented
in Figure 6. First, the dark red diagonal line in the heat map indicates the weights of self-loops are
significantly strengthened in the augmented graph, and as a result, in consistency with the previous
findings [71], the raw node attributes make more contributions in predicting their labels. These
strengthened self-weights also play the similar role as restart distribution or skip connections [60]
preventing the node embeddings becoming over-smoothed. In addition, there is a horizontal line and
a vertical line (light yellow line marked by dashed ovals) in each heat map in Figure 6, correspond to
the hub node in the graph, namely the node with the largest degree. Interestingly, the connections
between this node and most other nodes in the graph experience a negative weight change. Therefore,
the influence of the hub node on most other nodes are systematically reduced. Consequently, the
augmentation amplifies the deviations between node embeddings and facilitates the characterization
of graph heterophily.
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5 Related Works

Graph convolutional network (GCN). GCN models can be mainly divided into two categories: (1)
spectral graph convolutional networks and (2) spatial convolutional networks. In (1), Spectral CNN
[7] borrows the idea from convolutional neural network [18] to construct a diagonal matrix as the
convolution kernel. ChebNet [12] adopts a polynomial approximation of the convolution kernel. GCN
[28] further simplifies the ChebNet via the first order approximation. Recently, [22, 4, 57] propose
more advanced filters as the convolution kernel. Most works in (2) follow the message-passing
mechanism. GraphSAGE [19] iteratively aggregates features from local neighborhood. GAT [50]
applies self-attention to the neighbors. APPNP [29] deploys personalized pagerank [49] to sample
nodes for aggregration. MoNet [40] unifies GCNs in the spatial domain.

The depth of GCN and over-smoothing. A large amount of works focus on the over-smoothing
issue. Its intrinsic cause is demystified: a linear GCN layer is a Laplacian smoothing operator [32, 59].
PairNorm [69] forces distant nodes to be distinctive by adding an intermediate normalization layer.
Dropedge [43], DeepGCN [31], AS-GCN [23], and JK-net [61] borrow the idea of ResNet [21]
to dis-intensify smoothing. DeeperGXX [70] adopts a topology-guided graph contrastive loss for
connected node pairs to obtain discriminative representations. Most works aim to build deep GCNs
(i.e., d is a large positive integer) by reducing over-smoothing, while TEDGCN extends the depth
from N+ to R and explores the negative depth.

Node classification on homophilic and heterophilic graphs. GCN/GNN models mostly follow
the homophily assumption that connected nodes tend to share similar labels [28, 50, 19]. Recently,
heterophilic graphs, in which neighbors often have disparate labels, attract lots of attention. Geom-
GCN [41] and H2GCN [76] extend the neighborhood for aggregation. FAGCN [5] and GPRGNN
[10] adaptively integrate the high/low frequency signals with trainable parameters. Alternative
message-passing mechanisms have been proposed in HOG-GCN [57] and CPGNN [75]. The latest
related works include ACM-GCN [37, 38], LINKX [34], BernNet [22], GloGNN [33] and GBK-GNN
[14]. Other works can be found in a recent survey [72].

6 Conclusion and Future Work

To our best knowledge, this work presents the first effort to make GCN’s depth become negative and
trainable by redefining it on the real number domain. We unveil the intrinsic connection between
negative GCN depth and graph heterophily. A novel problem of automatic GCN depth tuning
for graph homophily/heterophily detection is formulated, and we propose a simple and powerful
solution named TEDGCN with two variants (TEDGCN-S and TEDGCN-D). An effective graph
augmentation method is also discussed via the new understanding on the message propagation
mechanism generated by the negative depth. Superior performance of our method is demonstrated
via extensive experiments with semi-supervised node classification on 11 graph datasets. The new
insights on GCN’s depth obtained by our work may open a new direction for future research on
spectral and spatial GNNs. Our paper studies the depth of graph convolutional network and graph
spectrum, which has no negative ethical impacts on society. Since TEDGCN requires to conduct
eigen-decomposition of the graph Laplacian, it is not directly applicable to inductive and dynamic
graph learning problems. In addition, there may exist other options for the transformation functions
such as the pseudoinverse of the Laplacian. We leave these for future exploration.
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A Appendix

The appendix is structured as follows:

• Subsection A.1 presents the statistics of datasets used in the Experiment Section (Section
4) in the main contents.

• Subsection A.2 presents the experimental results on synthetic datasets with controllable
homophily/heterophily level.

• Subsection A.3 compares TEDGCN with some latest methods on a different split (48%,
32%, 20%) for training, validation and testing of benchmark datasets. In this subsection, we
also compare all methods (15 baselines and TEDGCN) under a unified setting on Texas,
Cornell, Wisconsin and Actor datasets.

• Subsection A.4 introduces the details of the implementation of TEDGCN.
• Subsection A.5 is a visualization of node embeddings w.r.t. different depths (d values) on

both homophilic (Cora) and heterophilic (Texas) graphs.

A.1 The Statistics of Datasets

Table 4: The statistics of datasets.
Datasets Cora Citeseer Pubmed DBLP Texas Wisconsin Cornell Actor Chameleon Squirrel cornell5
#Nodes 2,708 3,327 19,717 17,716 183 251 183 7,600 2,277 5,201 18,660
#Edges 10,556 9,104 88,648 105,734 325 515 298 30,019 62,792 396,846 158,1554

#Features 1,433 3,703 500 1,639 1,703 1,703 1,703 932 2,325 2,089 4,735
#Classes 7 6 3 4 5 5 5 5 5 5 5

A.2 Experiments on Synthetic Datasets

Table 5: Performance comparison of TEDGCN and a 2-layer SGC on synthetic datasets. (%)
Homophily Level h(G) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SGC 44.8 53.2 58.3 67.9 73.0 77.6 81.6 83.5 90.7
TEDGCN 67.3 68.5 60.3 72.3 78.3 78.6 82.7 84.0 91.5
Optimal d -3.24 -0.75 -0.60 0.74 0.94 1.01 2.69 2.98 3.58

To better demonstrate the relation between the negative depth d and edge homophily/heterphily, we
construct synthetic datasets with different homophily levels. The synthetic graphs are generated via
scheme adopted in ACM-GCN [38]. Specifically, there are 5 classes, each with 400 nodes. For a
fixed homophily level h(G) (e.g., h(G) = 0.1), the node degree δv is sampled for each node via
multinomial distribution. With the sampled δv , h(G)δv intra-class edges and (1− h(G))δv inter-class
edges are randomly generated. We compare TEDGCN with a two-layer SGC. The results on the
synthetic datasets with different homophily levels are presented in Table 5. We can observe that (1)
as the homophily level h(G) decreases, the optimal d turns from positive to negative; and (2) under
low homophily levels, the performance of TEDGCN is significantly better than SGC.

A.3 More Baselines and Unified Setting

Table 6: Performance comparison (mean±std accuracy)(%) on benchmark datasets.
Datasets Texas Cornell Wisconsin Actor Squirrel Chameleon Cora Pubmed Citeseer
BerNet 82.70±2.70 81.35±4.05 87.05±2.54 34.46±0.77 34.02±1.14 47.01±1.60 87.51±0.63 85.35±0.57 76.82±0.94
LINKX 74.60±8.37 77.84±5.81 75.49±5.72 36.10 ±1.55 61.81±1.80 68.42±1.38 84.64±1.13 87.86±0.77 73.19±0.99

GloGNN 84.32±4.15 83.51±4.26 87.06±3.53 37.35±1.30 57.54±1.39 69.78±2.42 88.31±1.13 89.62±0.35 77.41± 1.65
ACM-GCN 87.84±4.40 85.14±6.07 88.43±3.22 36.63±0.84 55.19±1.49 69.14±1.91 87.91±0.95 90.00±0.52 77.32± 1.70
TEDGCN-S 90.32±4.71 85.81±4.21 88.63±4.51 37.40±1.11 48.43±1.42 67.02±1.91 88.41±1.73 85.34±2.11 77.42± 1.30
TEDGCN-D 91.41±3.62 86.53±3.80 91.42±4.22 29.03±1.03 62.02±3.03 67.33±1.71 87.90±1.31 84.84±1.21 77.81 ± 1.72

Under fully-supervised setting, we compare TEDGCN with ACM-GCN, LINKX, BernNet and
GloGNN with the standard split of 48%/32%/20%. We directly use the performances of ACM-GCN,
LINKX and GloGNN reported in the ACM-GCN paper. For BernNet, we obtain its performance
by running its open-sourced code. The results are shown in Table 6. It is observed that the latest
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methods, such as ACM-GCN and GloGNN do perform strongly. However, our model achieves
the best classification accuracy on 7 out of the 9 datasets, which demonstrates the effectiveness of
TEDGCN.

We also compare all methods (15 baselines and TeDGCN) under a unified setting. Since some methods
do not report their performances on some datasets in their original paper and have not made their
code publicly available, we compare all methods’ performances on 4 commonly used heterophilic
graph datasets: Texas, Cornell, Wisconsin and Actor, under the same public 48%/32%/20% split for
training, validation and testing.

Table 7: Performance comparison (mean) on benchmark datasets.
Datasets Texas Cornell Wisconsin Actor

GCN 54.05 53.78 50.39 28.78
SGC 45.80 43.72 45.13 27.52
GAT 57.30 54.59 54.31 28.99

APPNP 58.92 51.12 58.84 31.83
GPRGNN 81.35 78.11 82.55 35.16
FAGCN 76.49 76.76 79.61 34.82
H2GCN 79.73 78.38 82.55 36.71
ChebNet 82.14 72.16 78.82 36.04
BerNet 82.70 81.35 87.05 34.46
LINKX 74.60 77.84 75.49 36.10

GloGNN 84.32 83.51 87.06 37.35
ACM-GCN 87.84 85.14 88.43 36.63
GeomGCN 66.76 60.54 64.51 31.59
GBK-GNN 70.27 75.68 68.63 36.12
HOG-GCN 85.17 84.32 86.67 36.82
TeDGCN-S 90.32 85.81 88.63 37.40
TeDGCN-D 91.41 86.53 91.42 29.03

From Table 7, we can observe that TeDGCN-S/TeDGCN-D outperforms all the remaining baselines.

A.4 Implementation Details

We set the learning rate to 0.005 or 0.01, the decaying weight for the learning rate to 5e−4, the number
of training epochs to 500. The K largest/smallest eigenvalues for TEDGCN-D is max{1000, 0.1n},
where n is the number of nodes in the input graph. For all baselines, the parameters are set according
to their original papers. All experiments are run on a Tesla-V100 GPU. Since this work is conducted
during internship in Visa Research and the code can not be made public according to the policy of Visa
Research. If you have any questions about the implementation, please email yucheny5@illinois.edu
to get some help.

A.5 Visualization of Node Embeddings w.r.t. Negative Depth d

We conduct a visualization of node embedding generated by TEDGCN under different depths for
homophilic (Cora) and heterophilic (Texas) graphs. As shown in Figure 7, for Cora, when d = 5,
the nodes in different classes form clearly distinguishable clusters (ACC=82.4%). When the depth
decreases from a positive value d = 5 (ACC=82.4%) to a negative value d = −2 (ACC=29.5%), the
nodes belonging to different classes/colors mix with each other, and the clearly clustered structure
does not exist anymore. However, for Texas shown in Figure 8, when decreasing the depth from
d = 4 (ACC=50%) to d = −0.35 (ACC=80%), the clusters of different classes/colors become well-
separated. Especially, the purple nodes spread randomly all over the embedding space when d = 4
but concentrate in one cluster when d = −0.35. The spatial distribution of the node embeddings
reveals that TEDGCN with positive and negative depths respectively models graph homophily and
heterophily in a proper way.
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(a) d = −2, ACC=29.5% (b) d = 0, ACC=46.6% (c) d = 5, ACC=82.4% (d) GCN, ACC=81.0%

Figure 7: Visualization of node embeddings by t-SNE on Cora (homophilic).

(a) d = −0.35, ACC=80.0% (b) d = 2, ACC=59.0% (c) d = 4, ACC=50.0% (d) GCN, ACC=55.0%

Figure 8: Visualization of node embeddings by t-SNE on Texas (heterophilic).
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