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A Experimental Details646

In this section, we elaborate on our training and evaluation details, prompt templates, and more647

qualitative examples for analysis.648

A.1 Datasets649

Our experiments are conducted on a challenging suite of three diverse visual reasoning tasks, including650

outside knowledge VQA, visual entailment, and visual spatial reasoning. For each task, we select the651

following dataset respectively.652

Visual Question Answering v2 [23] (VQA v2) is a large-scale benchmark containing over 1653

million images from the COCO dataset and more than 250,000 human-generated question-answer654

pairs. The dataset is designed to test the ability of machine learning models to understand both the655

visual content of an image and the meaning behind natural language questions. The questions in VQA656

v2 cover a wide range of topics and are often open-ended, requiring models to reason and generalize657

about the world. VQA v2 has been widely used to evaluate the performance of state-of-the-art models658

in the field of computer vision and natural language processing.659

Augmented Outside Knowledge VQA [82] (A-OKVQA) contains about 25k questions paired660

with both multiple choice (MC) answer options. Unlike most existing VQA datasets, the questions in661

A-OKVQA cannot often be answered by querying the knowledge base, but rather involve some type662

of commonsense reasoning and outside knowledge about the situation portrayed in the image.663

Outside Knowledge VQA [57] (OK-VQA) includes more than 14,000 questions that require664

external knowledge to answer. The answers are provided in free-text direct answer form. Both665

A-OKVQA and OK-VQA sample images from the COCO dataset, with no overlapping.666

e-SNLI-VE [17] dataset is an extended version of SNLI-VE dataset [103], which contains about667

190k question pairs and human-annotated natural language explanations for the ground-truth labels.668

The text premise provides a statement about the contents of the image. The task is to determine669

whether the statement is true or false based on the image content.670

Visual Spatial Reasoning [48] (VSR) consists of 65 spatial relations (e.g., under, in front of, facing,671

etc.) of instances in images. VSR has more than 10k question pairs, associated with 6940 images672

from MS COCO [47].673

A.2 Finetuning Details674

We adopt pretrained BLIP [44]2 and OFA [95]3 as VLMs, and freeze their parameters without675

updating. The finetuning only happens on the language model part. The training set of each dataset is676

used for finetuning. We use the whole training set unless otherwise specified in low-data finetuning677

discussion.678

We use an AdaFactor optimizer [85] at the learning rate of 1e-4 for all Cola-FT experiments. The679

batch size is by default set to 16, though we find Cola-FT insensitive to batch size. We finetune and680

evaluate the models on NVIDIA V100 or A100 GPUs. The finetuning ranges from 1 hour to about681

15 hours, varying by the dataset.682

Following the common experiment protocols, we employ a teacher forcing and greedy decoding683

strategy for finetuning.684

A.3 Evaluation Details685

As specified, we use the validation or test set multiple choice accuracy as the evaluation metric. In686

A-OKVQA, we report val/test accuracy, and val accuracy in e-SNLI-VE, test (zero-shot split)687

accuracy in VSR. For simplicity and consistency, we evaluate ablation experiments on A-OKVQA688

2BLIP: https://github.com/salesforce/BLIP
3OFA: https://huggingface.co/OFA-Sys
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validation set. Following the common experiment protocols [27, 67], we report the single run results689

for performance comparison.690

The exemplars at the inference of Cola-Zero are randomly sampled from the training set, i.e.,691

supposedly help the LM learn the input data distribution and output format but do not leak relevant692

information to the evaluation question.693

A.4 A-OKVQA Direct Answer Results694

In addition to MC accuracy, we present the direct answer (DA) accuracy of models on the A-OKVQA695

validation set in Tables 6 and 7.696

FLAN-T5-Small FLAN-T5-Base FLAN-T5-XL FLAN-T5-XXL

Cola-FT 56.5 60.6 64.1 65.4
Cola-Zero (2-shot) 30.3 34.6 57.6 61.0
Cola-Zero (0-shot) 28.6 36.0 55.0 59.3

Table 6: A-OKVQA validation set DA performance. Extension of Figure 5.

1-shot 2-shot 3-shot 4-shot

Cola-Zero 60.2 61.0 60.7 59.2

Table 7: Cola-Zero in-context few-shot learning DA performance on A-OKVQA validation set.
Extension of Figure 6.

A.5 Qualitative Examples697

In this section, we provide more qualitative examples on A-OKVQA (Figure 8), e-SNLI-VE (Fig-698

ure 9), and VSR (Figure 10) datasets.699

Due to the large span of the three figures, for better visibility, we put the detailed description directly700

in each figure’s caption part. We illustrate how Cola-FT and Cola-Zero process the VLMs answers in701

each example. Overall, in these examples, we can observe that even if BLIP and OFA provide wrong702

answers, Cola can still present the correct answer based on the captions provided by OFA and BLIP,703

as well as the choice set. This may illustrate how Cola amazingly accomplishes visual reasoning704

tasks via coordinating BLIP and OFA.705

A.6 Failure Cases706

In Figure 11, we provide a few failed cases to analyze the specific behavior of Cola.707

The leftmost example’s correct answer is kayaking, but there are no hints from OFA and BLIP’s708

answers and captions. Therefore Cola-Zero incorrectly provides the answer OFA without sufficient709

information as hints, while surprisingly Cola-FT answered correctly from OFA’s boating answer.710

The left example again has insufficient information from captions. While BLIP answers no and OFA711

answers yes, Cola-FT chooses to answer maybe, which looks natural but unfortunately picks the712

wrong choice.713

The right example’s captions contain enough information this time. But both Cola-FT and Cola-714

Zero are misled by BLIP’s wrong answer no parking.715

The rightmost example also has insufficient information from captions. In this situation, Cola has no716

choice but to believe either BLIP or OFA’s answer, but it mistakenly prefers BLIP’s wrong answer.717

A.7 Prompt Templates718

Across three datasets, the prompt template is roughly the same, with minor differences mainly in719

the format of the questions and choices. We list the prompt templates adopted in A-OKVQA and720

e-SNLI-VE/VSR in Table 8 and Table 9, respectively.721
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Question Why might people sit 
here? 

The room can be 
described as what? 

In what type of location 
are they playing with the 
body board? 

What is in front of the 
monitor? 

OFA caption colorful umbrellas on the 
riverwalk

living room layout and 
decor medium size how to 
decorate a small living 
room dining combo mant

person, left, and person 
look at a painting of a 
great white shark. 

a desk with a computer, a 
lamp, a laptop, and a plant.

BLIP 
caption

a colorful umbrella 
umbrella with colorful 
umbrellas 

a dining room table with a 
glass table and chairs 

a man holding a surfboard 
while another man is 
standing next to him 

a desk with a computer 
and a lamp

Choices ['to testify', 'to rest', 'to 
shop', 'get tattoo'] 

['tidy', 'messy', 'on fire', 
'destroyed'] 

['room', 'beach', 'park', 
'store'] 

['keyboard', 'phone', 
'mouse', 'headphones'] 

OFA answer to eat living room bedroom a keyboard
BLIP answer yes dining room beach monitor
Cola-Zero 
answer

to rest tidy beach keyboard

Cola-FT 
answer

to rest tidy room keyboard

Figure 8: A-OKVQA qualitative examples. Leftmost: LM doesn’t use BLIP and OFA’s answers,
but may observe from captions to derive the correct final answer. Left: As shown on the left, LM
does not follow the wrong answers from OFA and BLIP but gets the correct answers from captions.
Right: With both OFA and BLIP answering incorrectly, LM derives the correct one from both VLMs’
captions and answers. Rightmost: After assessing the questions, answers, and captions, LM goes
with OFA’s answer and rewrites it to match the expression in the choices. The correct choices are
underlined. Cola-Zero answers are given in zero-shot settings.

VQA Prompt Template
Answer the following multiple-choice question by OFA and BLIP’s description and their answers
to the visual question. OFA and BLIP are two different vision-language models to provide clues.

OFA’s description: <OFA caption>
BLIP’s description: <BLIP caption>

Q: <Question>

OFA’s answer: <OFA answer>
BLIP’s answer: <BLIP answer>

Choices: <Choices to the question>

A:
Table 8: VQA prompt template for the LM, for VQA v2 / OK-VQA / A-OKVQA. The LM is
instructed to coordinate VLMs. Each question set defines visual context, question with choices, and
plausible answers.

A.8 Parameter-efficient Finetuning722

To further reduce the computation cost in model adaptation, we explored parameter-efficient finetuning723

(PEFT) techniques to reduce finetuning parameter counts. Specifically, we use (IA)3 [49], which724

finetunes an overhead of 1 million parameters, equivalent to 0.01% of the full parameters of FLAN-725

T5-XXL.726

Compared to full finetuning, (IA)3 requires more iterations to converge. The performance of a727

(IA)3 finetuned FLAN-T5-XXL model is on par with a fully finetuned FLAN-T5-Small (80 million728
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Question Does the image describe " 
A professional daredevil "?

Does the image describe " 
the dog is a shitz " ?

Does this image describe 
"Two twenty-somethings 
prepare to catch salmon 
while other older men 
catch catfish" ? 

Does this image describe 
"A little girl gets hit by a 
woman riding a bike" ? 

OFA caption person doing a flip on a 
mountain bike

a dog jumping out of the 
water.

men repairing fishing nets 
on the beach in zanzibar, 
tanzania

a man and a woman on a 
tandem bike 

BLIP 
caption

a man doing a trick on a 
bike in the air

a dog jumping over rocks 
in the water 

a man sitting on a boat 
with a fishing net net 

a man and woman riding a 
bicycle in a parking lot 

Choices ['yes', 'maybe', 'no'] ['yes', 'maybe', 'no'] ['yes', 'maybe', 'no'] ['yes', 'maybe', 'no']

OFA answer yes no yes yes
BLIP answer yes no yes no
Cola-Zero 
answer

yes no no no

Cola-FT 
answer

maybe maybe maybe no

Figure 9: e-SNLI-VE qualitative examples. Leftmost: As the connection to daredevil is not obvious
in BLIP and OFA’s captions, although Cola-Zero is misled, Cola-FT correctly answers maybe. Left:
Similar to the left example, Cola-FT answer correctly as no obvious connections are seen from the
captions to this question. Right: Similar to the left example, the fact of catch catfish is not reasonable
from the captions, Cola-FT picks the correct answer maybe. Rightmost: As girl gets hit is not obvious
in BLIP and OFA’s captions and answers, Cola-Zero and Cola-FT both follow BLIP to choose the
correct answer no. The correct choices are underlined. Cola-Zero answers are given in zero-shot
settings.

parameters) counterpart (Figure 5). Notably, the former is associated with more computation and729

memory footprint as a consequence of more parameters in the forward pass.730

A.9 Extended Ablation Studies731

Do caption labels offer useful information to LLM? How would more prompt variations affect732

the performance of Cola? We tested Cola-Zero with and without caption labels on A-OKVQA733

validation set, observing a slight decrease in performance when without them (70.39% w/t vs. 69.97%734

w/o). More ablative experiments showed that removing the VLM’s answer labels led to a substantial735

drop in performance (70.39% w/t vs. 67.62% w/o). Removing the model characteristic descriptions736

also led to a decrease (70.39% w/t vs. 68.37% w/o).737

Do longer image captions improve reasoning performance? On A-OKVQA validation set, we738

tested longer image descriptions (>50 tokens) but found no gain compared to Cola or single VLMs.739

Longer captions decreased FLAN-T5+OFA’s accuracy by 0.61% and FLAN-T5 with BLIP by 0.69%740

on the A-OKVQA validation set. Cola (captions <30 tokens) reached 77.73%, outperforming741

individual VLMs. Longer captions lacked meaningful visual context, possibly due to short text and742

image pairs in their training datasets. This experiment reaffirms Cola’s effectiveness in aggregating743

individual VLM functionalities.744

B Extended Related Works745

B.1 Finetuning Large Language Models746

Large language models [7, 64, 5] pretrained on massive amounts of unstructured data have gradually747

demonstrated great performance by finetuning on additional task-specific instances. Finetuning748
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Question Does this image describe 
"The truck contains the 
elephant" ? 

Does this image describe 
"The bed is under the 
handbag" ? 

Does this image describe 
"The couch is behind the 
hot dog" ? 

Does this image describe 
"The bowl contains the 
banana" ? 

OFA caption an elephant being 
transported on a truck in 
sri lanka

a black and white tuxedo 
cat with a white nose, 
yellow eyes, and white 

person enjoying a meal by 
the fire 

bananas and mangoes in a 
bowl

BLIP 
caption

a truck with a large 
elephant in the back of it 

a black cat laying on a bed 
with a pillow 

a man sitting on a couch 
with a plate of food 

a bowl of fruit is shown in 
this bowl 

Choices ['yes', 'no'] ['yes', 'no'] ['yes', 'no'] ['yes', 'no'] 

OFA answer yes no yes yes
BLIP answer no no yes no
Cola-Zero 
answer

no no no yes

Cola-FT 
answer

yes no no yes

Figure 10: VSR qualitative examples. Leftmost: As OFA caption mentioned elephant being
transported and OFA provides the correct answer, Cola-FT follows OFA’s choice. Left: As OFA and
BLIP provide the same answer, Cola-Zero and Cola-FT follow the choice. Right: As the captions
do not provide obvious information, even BLIP and OFA provide the same answer, Cola-Zero and
Cola-FT are not misled to the wrong choice. Rightmost: As the captions provide strong clue bananas
in a bowl, although BLIP’s answer is incorrect, Cola-Zero and Cola-FT still choose the correct answer.
The correct choices are underlined. Cola-Zero answers are given in zero-shot settings.

Question What are the people doing 
in the water? 

Does the image describe " 
The man is making a 
vase"?

What kind of zone is this 
bike parked in? 

Does this image describe 
"The motorcycle is beside 
the truck" ? 

OFA caption black and white photo of a 
man on a bike looking at a 
canoe in the river 

person on the potter's 
wheel

a city made by people 
bucharest

men walking past a truck 
in kabul, afghanistan. 

BLIP 
caption

a man and woman on a 
bike in a park 

a man is sitting on a chair 
and is using a wheel 

a bicycle parked next to a 
pedestrian crossing sign 

a man walking down the 
street in a city 

Choices ['surfing', 'fishing', 
'kayaking', 'swimming'] 

['yes', 'maybe', 'no'] ['temporary', 'pedestrian', 
'no parking', 'handicap'] 

['yes', 'no']

OFA answer boating yes pedestrian yes
BLIP answer swimming no no parking no
Cola-Zero 
answer

OFA no no parking no

Cola-FT 
answer

kayaking maybe no parking no

Figure 11: Failed cases. The correct choices are underlined. Cola-Zero answers are given in zero-shot
settings.

a large language model can be considerably more sample efficient than re-training from scratch,749

although acceptable performance may still require a considerable quantity of data [88]. Recent750
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e-SNLI-VE / VSR Prompt Template
Answer the following multiple-choice question by OFA and BLIP’s description and their answers
to the visual question. OFA and BLIP are two different vision-language models to provide clues.

OFA’s description: <OFA caption>
BLIP’s description: <BLIP caption>

Q: does the image describe <hypothesis> ?

OFA’s answer: <OFA answer>
BLIP’s answer: <BLIP answer>

e-SNLI-VE Choices: [yes, no, maybe]
VSR Choices: [yes, no]

A:
Table 9: e-SNLI-VE/VSR prompt template for the LM. The LM is instructed to coordinate VLMs.
Each question set defines visual context, hypothesis, and plausible answers.

Accuracy # Finetuning Params
Finetuning 77.73 11B (100%)

PEFT, (IA)3 63.76 1M (0.01%)

Table 10: (IA)3 [49] parameter-efficient tuning (PEFT) performance. We finetune a FLAN-T5-
XXL model on the A-OKVQA training set and evaluate it on the A-OKVQA validation set.

works have finetuned task-specific models that demonstrate amazing capabilities in many real-world751

applications, such as Copilot for program synthesis [9].752

B.2 Instruction-based Learning753

Recent advances in the capabilities of language models have piqued researchers’ curiosity in the field754

of instruction-based learning [22, 58, 80, 20]. The core of instruction-based learning is to explore755

the knowledge of the language model itself. In contrast to prompt learning to stimulate the language756

model’s ability to complete blanks, instruction tuning more focuses on activating the language model’s757

comprehension by giving obvious instructions to models and expecting correct feedback. Earlier758

work [61] finetune BART [40] using instructions and few-shot examplars in question answering,759

text classification, and text modification. Their findings suggest that few-shot instruction tuning760

improves performance on unseen tasks. [60] finetunes GPT-2 Large and also observes that few-shot761

examplar instruction tuning could improve performance. [78] finetunes T5-11B with more diverse762

instruction templates and observe similar improvements in zero-shot learning. More recent work [99]763

performs large-scale experiments with a 137B FLAN-T5 model and instruction-tune it on over 60764

datasets verbalized via instruction templates. They observe FLAN-T5 substantially improves over765

zero-shot GPT-3 (175B) on 20 of 25 evaluation datasets. OpenAI also releases InstructGPT [64]766

based on GPT-3 [7], it makes use of human annotations to steer desired model behavior through both767

instruction tuning and reinforcement learning of human feedback. They discover that InstructGPT is768

favored by humans over unmodified GPT-3.769

B.3 Visual Reasoning770

Beyond the uni-modal reasoning tasks such as question answering (QA) [93, 35, 11, 73, 72, 19,771

68, 14, 89, 21, 116, 109, 6], visual reasoning requires models to not only understand and interpret772

visual information but also to apply high-level cognition to derive rational solutions [34, 29, 3,773

53, 54, 77, 110]. Several tasks have been introduced to address visual reasoning, such as visual774

question answering (VQA) [1], in which models are expected to provide answers to questions775

related to an image and visual entailment (VE) [103], where the model is required to determine776
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the similarity or relationship between a given image and a description. Classic visual reasoning777

methods have employed an image encoder and a text encoder, along with a reasoning block that778

utilizes attention mechanisms [111, 65, 112, 96], neuro-symbolic methods [107, 55, 106], or external779

knowledge [56, 24, 10] to perform reasoning.780

Recent progress in large pre-trained models has led to the development of language models (LMs)781

that possess exceptional commonsense reasoning capabilities [71, 13, 12, 70]. These models can782

potentially replace the reasoning block in visual reasoning tasks, and LMs’ lack of perception can783

be compensated by incorporating multiple vision-language models (VLMs) trained on different784

domains [69, 95, 44]. For example, PICa [105] converts the image into captions that GPT-3 [7]785

can understand, and adapts GPT-3 to solve the VQA task in a few-shot manner by providing a few786

in-context VQA examples. However, there is still a lack of research on how to harness the collective787

power of these complementary VLMs for visual reasoning tasks.788

B.4 Model Ensembling789

Model ensembling is a powerful machine learning technique that combines the predictions of multiple790

models to improve the overall performance of a given task [16]. Classic model ensembling methods791

include simple averaging, weighting the predictions based on model performance, and stacking the792

models. By combining the predictions of multiple models, ensembling can reduce the variance and793

bias of the final predictions, resulting in a more robust and accurate model [76]. Ensemble methods794

have been shown to perform well in a wide range of tasks, including image classification, natural795

language processing, and time series forecasting. However, when it turns to multimodal tasks such as796

visual reasoning, a simple combination is not applicable to heterogeneous models as their inputs and797

outputs vary.798

The Mixture-of-Experts (MoE) [84, 75, 115, 39, 41] can be conceptualized as a model ensemble799

strategy implemented at the level of network architecture. MoE-based multi-modal models [28] excel800

in leveraging the specific strengths of each expert, thereby delivering the performance that often801

outstrips that of any individual expert. In these networks, the credibility of each expert’s output is802

dynamically weighted, facilitating a comprehensive and nuanced response to multimodal tasks.803

However, even within this sophisticated framework, challenges can arise, particularly when managing804

heterogeneous pre-trained multimodal models. To address this problem, an innovative approach805

known as Socratic Models (SMs) [113] has been proposed. SMs employ prompt engineering to guide806

these diverse models through multimodal discussions, effectively combining their varied knowledge.807

This method promotes a more harmonious and effective integration of different models, enhancing808

the ensemble’s ability to handle complex tasks.809

With a similar goal, [46] proposes a closed-loop iterative consensus optimization method to utilize810

the strengths of individual models. However, previous methods do not fully explore the potential of a811

centralized solution or adapt to the separate functionalities of different models, particularly in the812

visual reasoning scenario. Recent studies, such as CICERO [59], have shown that language models813

possess strong capabilities in coordinating multiple agents, which inspires us to reorganize pre-trained814

multimodal models with a focus on the language models.815

Broader Impact816

This study inherits ethical risks of biases from pretrained VLMs and LMs, depending on their training817

data. We suggest the users consider the possible biases in reasoning and prompt the model to interpret818

its predictions in natural languages when necessary.819
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