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Abstract

This paper presents FreD, a novel parameterization method for dataset distillation,
which utilizes the frequency domain to distill a small-sized synthetic dataset from
a large-sized original dataset. Unlike conventional approaches that focus on the
spatial domain, FreD employs frequency-based transforms to optimize the fre-
quency representations of each data instance. By leveraging the concentration of
spatial domain information on specific frequency components, FreD intelligently
selects a subset of frequency dimensions for optimization, leading to a significant
reduction in the required budget for synthesizing an instance. Through the selec-
tion of frequency dimensions based on the explained variance, FreD demonstrates
both theoretical and empirical evidence of its ability to operate efficiently within
a limited budget, while better preserving the information of the original dataset
compared to conventional parameterization methods. Furthermore, based on the
orthogonal compatibility of FreD with existing methods, we confirm that FreD
consistently improves the performances of existing distillation methods over the
evaluation scenarios with different benchmark datasets. We release the code at
https://github.com/sdh0818/FreD.

1 Introduction

The era of big data presents challenges in data processing, analysis, and storage; and researchers have
studied the concept of dataset distillation [20, 26, 14] to resolve these challenges. Specifically, the
objective of dataset distillation is to synthesize a dataset with a smaller cardinality that can preserve
the performance of original large-sized datasets in machine learning tasks. By distilling the key
features from the original dataset into a condensed dataset, less computational resources and storage
space are required while maintaining the performances from the original dataset. Dataset distillation
optimizes a small-sized variable to represent the input, not the model parameters. This optimization
leads the variable to store a synthetic dataset, and the variable is defined in the memory space with the
constraint of limited capacity. Since dataset distillation involves the optimization of data variables
with limited capacity, distillation parameter designs, which we refer to as parameterization, could
significantly improve corresponding optimization while minimizing memory usage.

Some of the existing distillation methods, i.e. 2D image dataset distillations [24, 14, 3, 25, 27],
naively optimize data variables embedded on the input space without any transformation or encoding.
We will refer to distillation on the provided input space as spatial domain distillation, as an opposite
concept of frequency domain distillation that is the focus of this paper. The main drawback of spatial
domain distillation would be the difficulty in specifying the importance of each pixel dimension on the
spatial domain, so it is necessary to utilize the same budget as the original dimension for representing
a single instance. From the perspective of a data variable, which needs to capture the key information
of the original dataset with a limited budget, the variable modeling with whole dimensions becomes a
significant bottleneck that limits the number of distilled data instances. Various spatial domain-based
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parameterization methods [7, 10] have been proposed to overcome this problem, but they are either
highly vulnerable to instance-specific information loss [7] or require additional training with an
auxiliary network [10].

This paper argues that the spatial domain distillation has limitations in terms of 1) memory efficiency
and 2) representation constraints of the entire dataset. Accordingly, we propose a novel Frequency
domain-based dataset Distillation method, coined FreD, which contributes to maintaining the task
performances of the original dataset based on the limited budget. FreD employs a frequency-based
transform to learn the data variable in the transformed frequency domain. Particularly, our proposed
method selects and utilizes a subset of frequency dimensions that are crucial for the formation of
an instance and the corresponding dataset. By doing so, we are able to achieve a better condensed
representation of the original dataset with even fewer dimensions, which corresponds to significant
efficiency in memory. Throughout the empirical evaluations with different benchmarks, FreD shows
consistent improvements over the existing methods regardless of the distillation objective utilized.

2 Preliminary

2.1 Basic Notations

This paper primarily focuses on the dataset distillation for classification tasks, which is a widely
studied scenario in the dataset distillation community [20, 26]. Given C classes, let X ∈ Rd denote
the input variable space, and Y = {1, 2, ..., C} represent the set of candidate labels. Our dataset
is D = {(xi, yi)}Ni=1 ⊆ X × Y . We assume that each instance (x, y) is drawn i.i.d from the data
population distribution P . Let a deep neural network ϕθ : X → Y be parameterized by θ ∈ Θ. This
paper employs cross-entropy for the generic loss function, ℓ(x, y; θ).

2.2 Previous Researches: Optimization and Parameterization of Dataset Distillation

Dataset Distillation Formulation. The goal of dataset distillation is to produce a cardinality-
reduced dataset S from the given dataset D, while maximally retaining the task-relevant information
of D. The objective of dataset distillation is formulated as follows:

min
S

E(x,y)∈P [ℓ(x, y; θS)] where θS = argmin
θ

1

|S|
∑

(xi,yi)∈S

ℓ(xi, yi; θ) (1)
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Figure 1: Comparison of different parameter-
ization strategies for optimization of S.

However, the optimization of Eq. (1) is costly and
not scalable since it is a bi-level problem [26, 17].
To avoid this problem, various proxy objectives are
proposed to match the task-relevant information of
D such as gradient [26], features [25], trajectory [3],
etc. Throughout this paper, we generally express
these objectives as LDD(S,D).

Parameterization of S. Orthogonal to the inves-
tigation on objectives, other researchers have also
examined the parameterization and corresponding
dimensionality of the data variable, S. By param-
eterizing S in a more efficient manner, rather than
directly storing input-sized instances, it is possible to
distill more instances and enhance the representation
capability of S for D [7, 10]. Figure 1 divides the
existing methods into three categories.

As a method of Figure 1b, HaBa [10] proposed a
technique for dataset factorization, which involves
breaking the dataset into bases and hallucination net-
works for diverse samples. However, incorporating
an additional network in distillation requires a sepa-
rate budget, which is distinct from the data instances.

As a method of Figure 1c, IDC [7] proposed the uti-
lization of an upsampler module in dataset distillation
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to increase the number of data instances. This parameterization enables the condensation of a single
instance with reduced spatial dimensions, thereby increasing the available number of instances. How-
ever, the compression still operates on the spatial domain, which results in a significant information
loss per instance. Please refer to Appendix A.1 for the detailed literature reviews.
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(a) Statistical properties of dataset on spatial and frequency domain.
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Figure 2: Visualization of the information concentrated property. (a) On the frequency domain, a
large proportion of both amplitude (left) and explained variance ratio (right) are concentrated in a
few dimensions. (b) The magnitude of the gradient for LDD(S,D) is also concentrated in a few
frequency dimensions. We utilize trajectory matching for LDD(S,D). A brighter color denotes a
higher value. Best viewed in color.

3 Methodology

3.1 Motivation

The core idea of this paper is to utilize a frequency domain to compress information from the spatial
domain into a small number of frequency dimensions. Therefore, we briefly introduce the frequency
transform, which is a connector between spatial and frequency domains. Frequency-transform
function, denoted as F , converts an input signal x to the frequency domain. It results in the frequency
representation, f = F(x) ∈ Rd1×d2 .2 The element-wise expression of f with x is as follows:

fu,v =

d1−1∑
a=0

d2−1∑
b=0

xa,b ϕ(a, b, u, v) (2)

Here, ϕ(a, b, u, v) is a basis function for the frequency domain, and the form of ϕ(a, b, u, v) differs by
the choice of specific transform function, F . In general, an inverse of F , F−1, exists so that it enables
the reconstruction of the original input x, from its frequency components f i.e. x = F−1(F(x)).
A characteristic of the frequency domain is that there exist specific frequency dimensions that
encapsulate the major information of data instances from the other domain. According to [1, 21],
natural images tend to exhibit the energy compaction property, which is a concentration of energy
in the low-frequency region. Consequently, it becomes feasible to compress the provided instances
by exclusively leveraging the low-frequency region. Remark 1 states that there exists a subset of
frequency dimensions that minimize the reconstruction error of a given instance as follows:
Remark 1. ([16]) Given d-dimension data instance of a signal x = [x0, ..., xd]

T , let f =
[f0, ..., fd]

T be its frequency representation with discrete cosine transform (DCT), i.e. f = DCT (x).
Also, let f (k) denote the k elements of f while other elements are 0. Then, the minimizer of the
reconstruction error ∥x−DCT−1(f (k))∥2 is [f0, , , , fk, 0, ...0].

Figure 2a supports the remark. When we apply a frequency transform to an image, we can see that
the coefficients in the low-frequency region have very large values compared to the coefficients in
other regions. Also, as shown in Remark 1, the reconstructed image is quite similar to the original
image while only utilizing the lowest frequency dimensions. Beyond the instance level, The right
side of Figure 2a represents that certain dimensions in the frequency domain exhibit a concentration
of variance. It suggests that the frequency domain requires only a small number of dimensions to

2Although some frequency transform handles the complex space, we use the real space for brevity.
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Figure 3: (a)-(f) The log of explained variance ratio on each frequency domain dimension (surface)
and the degree of overlap between D and S for the top-200 dimensions (floor). The parenthesis is L2

difference of explained variance ratio between D and S. (g) It can be observed that trained S mostly
preserves the top-k explained variance ratio dimensions of D, regardless of k.

describe the total variance of a dataset. On the other hand, the spatial domain does not exhibit this
behavior; poor quality of reconstruction, and a similar variance ratio across all dimensions.

To investigate whether this tendency is maintained in the dataset distillation, we conducted a frequency
analysis of various dataset distillation losses LDD(S,D). Figure 2b shows the magnitude of gradient
for LDD(S,D) i.e. ∥∇SLDD(S,D)∥. In contrast to the spatial domain, where the gradients w.r.t the
spatial domain are uniformly distributed across each dimension; the gradients w.r.t frequency domain
are condensed into certain dimensions. This result suggests that many dimensions are needed in the
spatial domain to reduce the loss, but only a few specific dimensions are required in the frequency
domain. Furthermore, we compared the frequency domain information of D and S which were
trained with losses from previous research. As shown in Figures 3a to 3f, the distribution of explained
variance ratios in the frequency domain is very similar across different distillation losses. Also, Figure
3g shows that trained S mostly preserves the top-k explained variance ratio dimensions of D in the
frequency domain, regardless of k and the distillation loss function. Consequently, if there exists a
frequency dimension on D with a low explained variance ratio of frequency representations, it can be
speculated that the absence of the dimension will have little impact on the optimization of S.

3.2 FreD: Frequency domain-based Dataset Distillation

We introduce the frequency domain-based dataset distillation method, coined FreD, which only
utilizes the subset of entire frequency dimensions. Utilizing FreD on the construction of S has several
advantages. First of all, since the frequency domain concentrates information in a few dimensions,
FreD can be easy to specify some dimensions that preserve the most information. As a result, by
reducing the necessary dimensions for each instance, the remaining budget can be utilized to increase
the number of condensed images. Second, FreD can be orthogonally applied to existing spatial-based
methods without constraining the available loss functions. Figure 4 illustrates the overview of FreD
with the information flow. FreD consists of three main components: 1) Synthetic frequency memory,
2) Binary mask memory, and 3) Inverse frequency transform.

Synthetic Frequency Memory F . Synthetic frequency memory F consists of |F | frequency-label
data pair, i.e. F = {(f (i), y(i))}|F |

i=1. Each f (i) ∈ Rd is initialized with a frequency representation
acquired through the frequency transform of randomly sampled (x(i), y(i)) ∼ D, i.e. f (i) = F(x(i)).

Binary Mask Memory M . To filter out uninformative dimensions in the frequency domain, we
introduce a set of binary masks. Assuming the disparity of each class in the frequency domain, we
utilize class-wise masks as M = {M (1), ...,M (C)}, where each M (c) ∈ {0, 1}d denotes the binary
mask of class c. To filter out superfluous dimensions, each M (c) is constrained to have k non-zero
elements, with the remaining dimensions masked as zero. Based on M (c), we acquire the class-wise
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Figure 4: Visualization of the proposed method, Frequency domain-based Dataset Distillation, FreD.

filtered frequency representation, M (c) ⊙ f (i), which takes k frequency coefficients as follows:

M (c)
u,v ⊙ f (i) =

{
f
(i)
u,v if M (c)

u,v = 1

0 otherwise
(3)

PCA-based variance analysis is commonly employed for analyzing the distribution data instances.
This paper measures the informativeness of each dimension in the frequency domain by utilizing

the Explained Variance Ratio (EVR) of each dimension, which we denote as ηu,v =
σ2
u,v∑

u′,v′ σ2
u′,v′

.

Here, σ2
u,v is the variance of the u, v-th frequency dimension. We construct a mask, M (c)

u,v, which
only utilizes the top-k dimensions based on the ηu,v to maximally preserve the class-wise variance of
D as follows:

M (c)
u,v =

{
1 if ηu,v is among the top-k values
0 otherwise

(4)

This masking strategy is efficient as it can be computed solely using the dataset statistics and does
not require additional training with a deep neural network. This form of modeling is different from
traditional filters such as low/high-pass filters, or band-stop filters, which are common choices in
image processing. These frequency-range-based filters pass only certain frequency ranges by utilizing
the stylized fact that each instance contains varying amounts of information across different frequency
ranges. We conjecture that this type of class-agnostic filter cannot capture the discriminative features
of each class, thereby failing to provide adequate information for downstream tasks, i.e. classification.
This claim is supported by our empirical studies in Section 4.3.

Inverse Frequency TransformF−1. We utilize the inverse frequency transform,F−1, to transform
the inferred frequency representation to the corresponding instance on the spatial domain. The
characteristics of the inverse frequency transform make it highly suitable as a choice for dataset
distillation. First, F−1 is a differentiable function that enables the back-propagation of the gradient
to the corresponding frequency domain. Second, F−1 is a static and invariant function, which does
not require an additional parameter. Therefore, F−1 does not require any budget and training that
could lead to inefficiency and instability. Third, the transformation process is efficient and fast. For
d-dimension input vector, F−1 requires O(d log d) operation while the convolution layer with r-size
kernel needs O(dr). Therefore, in the common situation, where log d < r, F−1 is faster than the
convolution layer.3 We provide an ablation study to compare the effectiveness of each frequency
transform in Section 4.3 and Appendix D.8.

Learning Framework. Following the tradition of dataset distillation [20, 26, 7], the training and
evaluation stages of FreD are as follows:

F ∗ = argmin
F

LDD(S̃,D) where S̃ = F−1(M ⊙ F ) (Training) (5)

θ∗ = argmin
θ
L(S̃∗; θ) where S̃∗ = F−1(M ⊙ F ∗) (Evaluation) (6)

3There are several researches which utilize this property to replace the convolution layer with a frequency
transform [2, 12, 15].
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Algorithm 1 FreD: Frequency domain-based Dataset Distillation

1: Input: Original dataset D; Number of classes C; Frequency transform F ; Distillation loss LDD;
Dimension budget per instance k; Number of frequency representations |F |; Learning rate α

2: Initialize F = ∅
3: for c = 1 to C do
4: F (c) ← {(F(x(i)), y(i))}

|F |
C
i=1 from a class-wise mini-batch {(x(i), y(i))}

|F |
C
i=1 ∼ D(c)

5: Initialize M (c) by Eq. (4) of the main paper
6: end for
7: repeat
8: F ← F − α∇LDD(F−1(M ⊙BF ), BD) from a mini-batch BD ∼ D and BF ∼ F
9: until convergence

10: Output: Masked frequency representations M ⊙ F

where M ⊙ F denotes the collection of instance-wise masked representation i.e. M ⊙ F =

{(M (y(i))(f (i)), y(i))}|F |
i=1. By estimating F ∗ from the training with Eq (5), we evaluate the ef-

fectiveness of F ∗ by utilizing θ∗, which is a model parameter inferred from training with the
transformed dataset, S̃ = F−1(M ⊙ F ∗). Algorithm 1 provides the instruction of FreD.

Budget Allocation. When we can store n instances which is d-dimension vector for each class, the
budget for dataset distillation is limited by n × d. In FreD, we utilize k < d dimensions for each
instance. Therefore, we can accommodate |F | = ⌊n( dk )⌋ > n instances with the same budget. After
the training of FreD, we acquire M ⊙ F ∗, which actually shares the same dimension as the original
image. However, we only count k non-zero elements on each f because storing 0 in d− k dimension
is negligible by small bytes. Please refer to Appendix E.3 for more discussion on budget allocation.

3.3 Theoretic Analysis of FreD

This section provides theoretical justification for the dimension selection of FreD by EVR, η. For
validation, we assume that F is linearly bijective.

Proposition 1. Let domain A and B be connected by a linear bijective function, W . The sum of η
over a subset of dimensions in domain A for a dataset X is equal to the sum of η for the dataset
transformed to domain B using only the corresponding subset of dimensions.

Proposition 1 claims that if two different domains are linearly bijective, the sum of EVR that utilizes
only specific dimensions remains the same even when transformed into a different domain. In other
words, if the sum of EVR of specific dimensions in the frequency domain is high, this value can be
maintained when transforming a dataset only with those dimensions into the other domain.

Corollary 1. Assume that two distinct domains, B and C, are linearly bijective with domain A by
WB and WC . let X be a dataset in domain A, and XB and XC be the datasets transformed to
domains B and C, respectively. Let V ∗

B,k and V ∗
C,k be the set of k dimension indexes that maximize η

in each domain. Let η∗B,k and η∗C,k be the corresponding sum of η for each domain. If η∗B,k ≥ η∗C,k,
then the sum of η for WV ∗

B,k
XB is greater than that of WV ∗

C,k
XC .
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Figure 5: Empirical evidence for EVR-based selection.

Corollary 1 claims that for multiple do-
mains that have a bijective relationship
with a specific domain, if a certain do-
main can obtain the high value of sum
of EVR with the same number of dimen-
sions, then when inverse transformed,
it can improve the explanation in orig-
inal domain. Based on the informa-
tion concentration of the frequency do-
main, FreD can be regarded as a method
that can better represent the distribution
of the original dataset, D, based on S.
PCA, which sets the principal components of the given dataset as new axes, can ideally preserve η.
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Table 1: Test accuracies (%) on SVHN, CIFAR-10, and CIFAR-100. "IPC" denotes the number of
images per class. "#Params" denotes the total number of budget parameters. The best results and the
second-best result are highlighted in bold and underline, respectively.

SVHN CIFAR-10 CIFAR-100

IPC 1 10 50 1 10 50 1 10 50
#Params 30.72k 307.2k 1536k 30.72k 307.2k 1536k 30.72k 307.2k 1536k

Coreset Random 14.6 ±1.6 35.1 ±4.1 70.9 ±0.9 14.4 ±2.0 26.0 ±1.2 43.4 ±1.0 4.2 ±0.3 14.6 ±0.5 30.0 ±0.4
Herding 20.9 ±1.3 50.5 ±3.3 72.6 ±0.8 21.5 ±1.3 31.6 ±0.7 40.4 ±0.6 8.4 ±0.3 17.3 ±0.3 33.7 ±0.5

Input-sized
parameterization

DC 31.2 ±1.4 76.1 ±0.6 82.3 ±0.3 28.3 ±0.5 44.9 ±0.5 53.9 ±0.5 12.8 ±0.3 25.2 ±0.3 -
DSA 27.5 ±1.4 79.2 ±0.5 84.4 ±0.4 28.8 ±0.7 52.1 ±0.5 60.6 ±0.5 13.9 ±0.3 32.3 ±0.3 42.8 ±0.4
DM - - - 26.0 ±0.8 48.9 ±0.6 63.0 ±0.4 11.4 ±0.2 29.7 ±0.2 43.6 ±0.4

CAFE+DSA 42.9 ±3.0 77.9 ±0.6 82.3 ±0.4 31.6 ±0.8 50.9 ±0.5 62.3 ±0.4 14.0 ±0.2 31.5 ±0.2 42.9 ±0.2
TM 58.5 ±1.4 70.8 ±1.8 85.7 ±0.1 46.3 ±0.8 65.3 ±0.7 71.6 ±0.2 24.3 ±0.2 40.1 ±0.4 47.7 ±0.2
KIP 57.3 ±0.1 75.0 ±0.1 80.5 ±0.1 49.9 ±0.2 62.7 ±0.3 68.6 ±0.2 15.7 ±0.2 28.3 ±0.1 -

FRePo - - - 46.8 ±0.7 65.5 ±0.4 71.7 ±0.2 28.7 ±0.1 42.5 ±0.2 44.3 ±0.2

Parameterization
IDC 68.1 ±0.1 87.3 ±0.2 90.2 ±0.1 50.0 ±0.4 67.5 ±0.5 74.5 ±0.1 - - -

HaBa 69.8 ±1.3 83.2 ±0.4 88.3 ±0.1 48.3 ±0.8 69.9 ±0.4 74.0 ±0.2 33.4 ±0.4 40.2 ±0.2 47.0 ±0.2
FreD 82.2 ±0.6 89.5 ±0.1 90.3 ±0.3 60.6 ±0.8 70.3 ±0.3 75.8 ±0.1 34.6 ±0.4 42.7 ±0.2 47.8 ±0.1

Entire original dataset 95.4 ±0.1 84.8 ±0.1 56.2 ±0.3

Increment of
decoded instances

IDC ×5 ×5 ×5 ×5 ×5 ×5 - - -
HaBa ×5 ×5 ×5 ×5 ×5 ×5 ×5 ×5 ×5
FreD ×16 ×8 ×4 ×16 ×6.4 ×4 ×8 ×2.56 ×2.56

Binary Mask

Baseline (TM)

Ours (FreD)

(a) Class: Airplane

Binary Mask

Baseline (TM)

Ours (FreD)

(b) Class: Automobile

Binary Mask

Baseline (TM)

Ours (FreD)

(c) Class: Horse

Figure 6: Visualization of the binary mask, condensed image from TM, and the transformed images
of FreD on CIFAR-10 with IPC=1 (#Params=30.72k). Binary masks and trained synthetic images are
all the same size. The size of mask and baseline image were enlarged for a better layout.

However, PCA, being a data-driven transform function, cannot be practically utilized as a method for
dataset distillation. Please refer to Appendix E.1 for supporting evidence of this claim.

Figure 5a shows the sum of η in descending order in both the spatial and frequency domains. First,
we observe that as the number of selected dimensions in the frequency domain increases, frequency
domain is much faster in converging to the total variance than the spatial domain. This result shows
that the EVR-based dimension selection in the frequency domain is more effective than the selection
in the spatial domain. In terms of training, Figure 5b also shows that the performance of a dataset
constructed with a very small number of frequency dimensions converges rapidly to the performance
of a dataset with the entire frequency dimension.

4 Experiments

4.1 Experiment Setting

We evaluate the efficacy of FreD on various benchmark datasets, i.e. SVHN [13], CIFAR-10, CIFAR-
100 [8] and ImageNet-Subset [6, 3, 4]. Please refer to Appendix D for additional experimental results
on other datasets. We compared FreD with both methods: 1) a method to model S as an input-sized
variable; and 2) a method, which parameterizes S, differently. As the learning with input-sized S, we
chose baselines as DD [20], DSA [24], DM [25], CAFE+DSA [19], TM [3], KIP [14] and FRePo [27].
We also selected IDC [7] and HaBa [10] as baselines, which is categorized as the parameterization on
S. we also compare FreD with core-set selection methods, such as random selection and herding
[22]. We use trajectory matching objective (TM) [3] for LDD as a default although FreD can use
any dataset distillation loss. We evaluate each method by training 5 randomly initialized networks
from scratch on optimized S. Please refer to Appendix C for a detailed explanation of datasets and
experiment settings.
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Table 2: Test accuracies (%) on CIFAR-10 under various dataset distillation loss and cross-architecture.
"DC/DM/TM" denote the gradient/feature/trajectory matching for dataset distillation loss, respectively.
We utilize AlexNet [9], VGG11 [18], and ResNet18 [5] for cross-architecture.

DC DM TM

IPC 2 11 51 2 11 51 2 11 51
#Params 61.44k 337.92k 1566.72k 61.44k 337.92k 1566.72k 61.44k 337.92k 1566.72k

ConvNet

Vanilla 31.4 ±0.2 45.3 ±0.3 54.2 ±0.6 34.6 ±0.5 50.4 ±0.4 62.0 ±0.3 50.6 ±1.0 63.9 ±0.3 69.8 ±0.5
w/ IDC 35.2 ±0.5 53.8 ±0.4 56.4 ±0.4 45.1 ±0.5 59.3 ±0.4 64.6 ±0.3 56.1 ±0.4 60.9 ±0.4 71.1 ±0.4

w/ HaBa 34.1 ±0.5 49.9 ±0.5 58.9 ±0.2 37.3 ±0.1 56.8 ±0.1 64.4 ±0.4 56.8 ±0.4 69.5 ±0.3 73.3 ±0.2
w/ FreD 45.3 ±0.5 55.8 ±0.4 59.8 ±0.5 55.9 ±0.4 61.3 ±0.8 66.6 ±0.6 61.4 ±0.3 70.7 ±0.5 75.5 ±0.2

Average of
Cross-

Architectures

Vanilla 22.0 ±0.9 29.2 ±0.9 34.1 ±0.6 21.5 ±2.2 39.5 ±1.1 52.6 ±0.7 33.1 ±1.1 43.9 ±1.4 55.0 ±1.0
w/ IDC 28.7 ±1.2 35.4 ±0.6 40.2 ±0.7 37.3 ±1.1 50.5 ±0.6 61.3 ±0.5 42.5 ±1.5 48.7 ±1.8 61.5 ±1.0

w/ HaBa 25.4 ±0.9 31.4 ±0.7 35.5 ±0.9 30.1 ±0.6 47.0 ±0.5 60.1 ±0.6 46.4 ±1.0 55.8 ±1.8 64.0 ±0.9
w/ FreD 37.3 ±0.9 37.4 ±0.7 42.7 ±0.8 48.1 ±0.7 57.3 ±0.8 65.0 ±0.7 49.7 ±1.0 60.1 ±0.7 69.1 ±0.7

Table 3: Test accuracies (%) on ImageNet-Subset (128× 128) under
IPC=2 (#Params=983.04k).

Model ImgNette ImgWoof ImgFruit ImgYellow ImgMeow ImgSquawk

TM 55.2 ±1.1 30.9 ±1.3 31.8 ±1.6 49.7 ±1.4 35.3 ±2.2 43.9 ±0.6
w/ IDC 65.4 ±1.2 37.6 ±1.6 43.0 ±1.5 62.4 ±1.7 43.1 ±1.2 55.5 ±1.2

w/ HaBa 51.9 ±1.7 32.4 ±0.7 34.7 ±1.1 50.4 ±1.6 36.9 ±0.9 41.9 ±1.4
w/ FreD 69.0 ±0.9 40.0 ±1.4 46.3 ±1.2 66.3 ±1.1 45.2 ±1.7 62.0 ±1.3

Table 4: Test accuracies (%)
on 3D MNIST.

IPC 1 10 50
#Params 40.96k 409.6k 2048k

Random 17.2 ±0.5 49.6 ±0.7 60.3 ±0.7

DM 42.5 ±0.9 58.6 ±0.8 64.7 ±0.5
w/ IDC 51.9 ±1.5 54.0 ±0.5 56.8 ±0.3
w/ FreD 54.9 ±0.5 62.9 ±0.5 66.6 ±0.7

Entire dataset 78.7 ±1.1

4.2 Experimental Results

Performance Comparison. Table 1 presents the test accuracies of the neural network, which is
trained on S inferred from each method. FreD achieves the best performances in all experimental
settings. Especially, when the limited budget is extreme, i.e. IPC=1 (#Params=30.72k); FreD shows
significant improvements compared to the second-best performer: 12.4%p in SVHN and 10.6%p
in CIFAR-10. This result demonstrates that using the frequency domain, where information is
concentrated in specific dimensions, has a positive effect on efficiency and performance improvement,
especially in situations where the budget is very small. Please refer to Appendix D for additional
experimental results on other datasets.

Qualitative Analysis. Figure 6 visualizes the synthetic dataset by FreD on CIFAR-10 with IPC=1
(#Params=30.72k). In this setting, we utilize 64 frequency dimensions per channel, which enables the
construction of 16 images per class under the same budget. The results show that each class contains
diverse data instances. Furthermore, despite of huge reduction in dimensions i.e. 64/1024 = 6.25%,
each image contains class-discriminative features. We also provide the corresponding binary masks,
which are constructed by EVR value. As a result, the low-frequency dimensions in the frequency
domain were predominantly selected. It supports that the majority of frequency components for image
construction are concentrated in the low-frequency region [1, 21]. Furthermore, it should be noted
that our EVR-based mask construction does not enforce keeping the low-frequency components,
what EVR only enforces is keeping the components with a higher explanation ratio on the image
feature. Therefore, the constructed binary masks are slightly different for each class. Please refer to
Appendix D.10 for more visualization.

Compatibility of Parameterization. The parameterization method in dataset distillation should
show consistent performance improvement across different distillation losses and test network
architectures. Therefore, we conduct experiments by varying the dataset distillation loss and test
network architectures. In the case of HaBa, conducting an experiment at IPC=1 is structurally
impossible due to the existence of a hallucination network. Therefore, for a fair comparison, we
basically follow HaBa’s IPC setting such as IPC=2,11,51. In Table 2, FreD shows the highest
performance improvement for all experimental combinations. Specifically, FreD achieves a substantial
performance gap to the second-best performer up to 10.8%p in training architecture and 10.6%p in
cross-architecture generalization. Furthermore, in the high-dimensional dataset cases, Table 3 verifies
that FreD consistently outperforms other parameterization methods. These results demonstrate
that the frequency domain exhibits high compatibility and consistent performance improvement,
regardless of its association with dataset distillation objective and test network architecture.
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Figure 7: Test accuracies
(%) on CIFAR-10-C.

Table 5: Test accuracies (%) on ImageNet-Subset-C. Note that the TM on
ImgSquawk is excluded because the off-the-shelf synthetic dataset is not
the default size of 128× 128.

#Params Model ImgNette-C ImgWoof-C ImgFruit-C ImgYellow-C ImgMeow-C ImgSquawk-C

491520
(IPC=1)

TM 38.0 ±1.6 23.8 ±1.0 22.7 ±1.1 35.6 ±1.7 23.3 ±1.1 -
w/ IDC 34.5 ±0.6 18.7 ±0.4 28.5 ±0.9 36.8 ±1.4 22.2 ±1.2 26.8 ±0.5
w/ FreD 51.2 ±0.6 31.0 ±0.9 32.3 ±1.4 48.2 ±1.0 30.3 ±0.3 45.9 ±0.6

4915200
(IPC=10)

TM 50.9 ±0.7 30.9 ±0.7 32.3 ±0.8 45.6 ±1.0 30.1 ±0.5 44.4 ±1.8
w/ IDC 40.4 ±1.0 21.9 ±0.3 32.2 ±0.7 39.6 ±0.5 23.9 ±0.8 40.5 ±0.7
w/ FreD 55.2 ±0.8 33.8 ±0.8 35.7 ±0.6 47.9 ±0.4 31.3 ±0.9 52.5 ±0.8

3D Point Cloud Dataset. As the spatial dimension of the data increases, the required dimension
budget for each instance also grows exponentially. To validate the efficay of FreD on data with
dimensions higher than 2D, we assess FreD on 3D point cloud data, 3D MNIST.4 Table 4 shows
the test accuracies on the 3D MNIST dataset. FreD consistently achieves significant performance
improvement over the baseline methods. This confirms the effectiveness of FreD in 2D image domain
as well as 3D point cloud domain.

Robustness against Corruption. Toward exploring the application ability of dataset distillation,
we shed light on the robustness against the corruption of a trained synthetic dataset. We utilize
the following test datasets: CIFAR-10.1 and CIFAR-10-C for CIFAR-10, ImageNet-Subset-C for
ImagNet-Subset. For CIFAR-10.1 and CIFAR-10-C experiments, we utilize the off-the-shelf synthetic
datasets which are released by the authors of each paper. We report the average test accuracies across
15 types of corruption and 5 severity levels for CIFAR-10-C and ImageNet-Subset-C.

Figure 7 and Table 5 show the results of robustness on CIFAR-10-C and ImageNet-Subset-C, respec-
tively. From both results, FreD shows the best performance over the whole setting which demonstrates
the superior robustness against corruption. We want to note that IDC performs worse than the baseline
in many ImageNet-Subset-C experiments (see Table 5) although it shows performance improvement
on the ImageNet-Subset (see Table 3). On the other hand, FreD consistently shows significant
performance improvement regardless of whether the test dataset is corrupted. It suggests that the
frequency domain-based parameterization method shows higher domain generalization ability than
the spatial domain-based parameterization method. Please refer to Appendix D.5 for the results of
CIFAR-10.1 and detailed results based on corruption types of CIFAR-10-C.

To explain the rationale, corruptions that diminish the predictive ability of a machine learning model
often occur at the high-frequency components. Adversarial attacks and texture-based corruptions
are representative examples [11, 23]. Unlike FreD, which can selectively store information about an
image’s frequency distribution, transforms such as factorization or upsampling are well-known for
not preserving frequency-based information well. Consequently, previous methods are likely to suffer
a decline in predictive ability on datasets that retain class information while adding adversarial noise.
In contrast, FreD demonstrates relatively good robustness against distribution shifts by successfully
storing the core frequency components that significantly influence class recognition, regardless of the
perturbations applied to individual data instances.

Table 6: Test accuracies (%) of each col-
laboration on CIFAR-10.

IPC 2 11
#Params 61.44k 337.92k

TM 50.6 ±1.0 63.9 ±0.3
w/ HaBa 56.8 ±0.4 69.5 ±0.3

w/ IDC & HaBa 61.3 ±0.3 70.9 ±0.4
w/ FreD & HaBa 62.3 ±0.1 72.9 ±0.2

Collaboration with Other Parameterization. The ex-
isting method either performs resolution resizing in the
spatial domain or uses a neural network to change the di-
mension requirement of the spatial domain. On the other
hand, FreD optimizes the coefficient of the frequency do-
main dimension and transforms it into the spatial domain
through the inverse frequency transform. Therefore, FreD
can be applied orthogonally to the existing spatial domain-
based parameterization methods. Table 6 shows the per-
formance of different parameterizations applied to HaBa.
From the results, we observed that FreD further enhances
the performance of HaBa. Furthermore, it is noteworthy that the performance of HaBa integrated
with FreD is higher than the combination of IDC and HaBa. These results imply that FreD can be
well-integrated with spatial domain-based parameterization methods.

4https://www.kaggle.com/datasets/daavoo/3d-mnist
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4.3 Ablation Studies
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Figure 8: Ablation studies on (a) the binary mask M , and (b)
the frequency transform F .

Effectiveness of Binary Mask M .
We conducted a comparison experi-
ment to validate the explained vari-
ance ratio as a criterion for the selec-
tion of frequency dimensions. We se-
lected the baselines for the ablation
study as follows: Low-pass, Band-
stop, High-pass, Random, and the
magnitude of the amplitude in the fre-
quency domain. We fixed the total
budget and made k the same. Figure
8a illustrates the ablation study on dif-
ferent variations of criterion for con-
structing M . We skip the high-pass
mask because of its low performance:
14.32% in IPC=1 (#Params=30.72k) and 17.11% in IPC=10 (#Params=307.2k). While Low-pass and
Amplitude-based dimension selection also improves the performance of the baseline, EVR-based
dimension selection consistently achieves the best performance.

Effectiveness of Frequency Transform F . We also conducted an ablation study on the frequency
transform. Note that the FreD does not impose any constraints on the utilization of frequency
transform. Therefore, we compared the performance of FreD when applying widely used frequency
transforms such as the Discrete Cosine Transform (DCT), Discrete Fourier Transform (DFT), and
Discrete Wavelet Transform (DWT). For DWT, we utilize the Haar wavelet function and low-pass filter
instead of an EVR mask. As shown in Figure 8b, we observe a significant performance improvement
regardless of the frequency transform. Especially, DCT shows the highest performance improvement
than other frequency transforms. Please refer to Appendix D.8 for additional experiments and detailed
analysis of the ablation study on frequency transform.
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Figure 9: Ablation study on budget al-
location of FreD with DM. Dashed line
indicates the performance of DM.

Budget Allocation. Dataset distillation aims to include
as much information from the original dataset as possible
on a limited budget. FreD can increase the number of
data |F | by controlling the dimension budget per instance
k, and FreD stores the frequency coefficients selected by
EVR as k-dimensional vector. For example, with a small
value of k, more data can be stored i.e. large |F |. This is a
way to increase the quantity of instances while decreasing
the quality of variance and reconstruction. By utilizing this
flexible trade-off, we can pick the balanced point between
quantity and quality to further increase the efficiency of
our limited budget. Figure 9 shows the performance of
selecting the dimension budget per channel under different
budget situations. Note that, for smaller budgets i.e. IPC=1
(#Params=30.72k), increasing |F | performs better. For
larger budget cases, such as IPC=50 (#Params=1536k),
allocating more dimensions to each instance performs
better i.e. large k. This result shows that there is a trade-
off between the quantity and the quality of data instances depending on the budget size.

5 Conclusion

This paper proposes a new parameterization methodology, FreD, that utilizes the augmented frequency
domain. FreD selectively utilizes a set of dimensions with a high variance ratio in the frequency
domain, and FreD only optimizes the frequency representations of the corresponding dimensions in
the junction with the frequency transform. Based on the various experiments conducted on benchmark
datasets, the results demonstrate the efficacy of utilizing the frequency domain in dataset distillation.
Please refer to Appendix G for the limitation of the frequency domain-based dataset distillation.
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