
OneNet: Enhancing Time Series Forecasting Models472

under Concept Drift by Online Ensembling473

474

————Appendix————475

Contents476

1 Introduction 1477

2 Preliminary and Related Work 3478

3 OneNet: Ensemble Learning for Online Time Series Forecasting 4479

3.1 Learning the best expert by Online Convex Programming (OCP) 4480

3.2 OneNet: utilizing the advantages of both structures 6481

4 Experiments 6482

4.1 Experimental setting . 6483

4.2 Online forecasting results . 7484

4.3 Ablation studies and analysis . 8485

5 Conclusion and Future Work 9486

A Extended Related Work 14487

B Proofs of Theoretical Statements 14488

B.1 Online Convex Programming Regret Bound . 14489

B.2 Theoretical guarantee for the K-step re-initialize algorithm. 15490

B.3 Necessary definitions and assumptions for evaluating model adaptation speed to491

environment changes. 16492

B.4 Existing theoretical intuition and empirical comparison to the proposed OCP block. 17493

C Additional Experimental Results 18494

C.1 Datasets . 18495

C.2 Implementation Details . 19496

C.3 Baseline details . 20497

C.4 Hyper-parameters . 20498

C.5 Additional Numerical Results . 20499

C.6 Ensembling more than two networks. 21500

C.7 More visualization results and Convergence Analysis of Different Structures 21501

C.8 Online forecasting results with delayed feedback 22502

C.9 The effect of variable independence and frequency domain augmentation 23503

C.10 Comparison of existing forecasting structures. 23504

505

13

A Extended Related Work506

Concept Drift Concepts in the real world are often dynamic and can change over time, which507

is especially true for scenarios like weather prediction and customer preferences. Because of508

unknown changes in the underlying data distribution, models learned from historical data may509

become inconsistent with new data, thus requiring regular updates to maintain accuracy. This510

phenomenon, known as concept drift [41], adds complexity to the process of learning a model from511

data. Concept drift poses several challenging subproblems, ranging from fast learning under concept512

drift [33, 46, 19], which involves adjusting the offline model with new observations to recognize513

recent patterns, to forecasting future data distributions [27, 35], which predicts the data distribution514

of the next time-step sequentially, enabling the model of the downstream learning task to be trained515

on the data sample from the predicted distribution. In this paper, we focus on the first problem,516

i.e. online learning for time series forecasting. Unlike most existing studies for online time series517

forecasting [27, 35, 33] that only focus on how to online update their models, this work goes beyond518

parameter updating and introduces multiple models and a learnable ensembling weight, yielding rich519

and flexible hypothesis space.520

Time Series Modeling Time series models have been developed for decades and are fundamental in521

various fields. While autoregressive models like ARIMA [8] were the first data-driven approaches,522

they struggle with nonlinearity and non-stationarity. Recurrent neural networks (RNNs) were designed523

to handle sequential data, with LSTM [21] and GRU [14] using gated structures to address gradient524

problems. Attention-based RNNs [36] use temporal attention to capture long-range dependencies,525

but are not parallelizable and struggle with long dependencies. Temporal convolutional networks [37]526

are efficient, but have limited reception fields and struggle with long-term dependencies. Recently,527

transformer-based [42, 43] models have been renovated and applied in time series forecasting.528

Although a large body of work aims to make Transformer models more efficient and powerful [49,529

48, 32], we are the first to evaluate the robustness of advanced forecasting models under concept drift,530

making them more adaptable to new distributions.531

Reinforcement learning and offline reinforcement learning. Reinforcement learning is a math-532

ematical framework for learning-based control, which allows us to automatically acquire policies533

that represent near-optimal behavioral skills to optimize user-defined reward functions [22, 39]. The534

reward function specifies the objective of the agent, and the reinforcement learning algorithm deter-535

mines the actions necessary to achieve it. However, the online learning paradigm of reinforcement536

learning is a major obstacle to its widespread adoption. The iterative process of collecting experience537

by interacting with the environment is expensive or dangerous in many settings, making offline538

reinforcement learning a more feasible alternative. Offline RL [34, 26] learns exclusively from539

static datasets of previously collected interactions, enabling the extraction of policies from large and540

diverse training datasets. Effective offline RL algorithms have a much wider range of applications541

than online RL. Although there are many types of offline RL algorithms, such as those using value542

functions [18], dynamics estimation [25], or uncertainty quantification [1], RvS [15] has shown543

that simple conditioning with standard feedforward networks can achieve state-of-the-art results. In544

this work, we draw inspiration from RvS and learn an additional bias term for the OCP block for545

simplicity.546

B Proofs of Theoretical Statements547

B.1 Online Convex Programming Regret Bound548

Proposition 1. For T > 2 log(d), denote the regret for time step t = 1, . . . , T as R(T), set549

η =
√
2 log(d)/T , and the EGD update policy has regret.550

R(T) =

T∑
t=1

L(wt)− inf
u

T∑
t=1

L(u) ≤
T∑

t=1

d∑
i=1

wt,i ∥ fi(x)− y ∥2 −
T∑

t=1

inf
u
L(u) ≤

√
2T log(d)

(5)

Proof. The proof of Exponentiated Gradient Descent is well-studied [20] and here we provide a551

simple Regret bound for both OCP.552

14

Denote ℓt,i =∥ fi(x)−y ∥2, recall that the normalizer for OCP-U is Zt+1 =
∑d

i=1 wt,i exp(−ηℓt,i),553

then we have554

log
Zt+1

Zt
= log

∑d
i=1 wt,i exp(−ηℓt,i)

Zt
= log

d∑
i=1

pt,i exp(−ηℓt,i), (6)

where pt,i = wt,i/Zt ≤ 1. For clarity, we let wt,i be the unnormalized weight and pt,i be the555

normalized weight. Now, we assume ηℓt,i ∈ [0, 1]. Although it is not guaranteed that ℓt,i will be556

small under concept shift, it is generally safe to assume that the concept will shift gradually and557

will not lead to a drastic change in the loss. As a result, the loss will not become arbitrarily large,558

and we can divide some large constant such that the loss is bounded in a small range. Based on the559

assumption, we can use the second Taylor expansion of e−x ≤ 1 − x + x2/2 and the inequation560

log(1− x) ≤ −x for x ∈ [0, 1]. Then we have561

log

d∑
i=1

pt,i exp(−ηℓt,i) ≤ log

(
1− η

d∑
i=1

pt,iℓt,i +
η2

2

d∑
i=1

pt,iℓ
2
t,i

)
(7)

≤ −η
d∑

i=1

pt,iℓt,i +
η2

2

d∑
i=1

pt,iℓ
2
t,i ≤ −η

d∑
i=1

pt,iℓt,i +
η2

2
(8)

Note that wt,i is the unnormalized weight, and then w1,i = 1 and Z1 = d. Then we can get the lower562

bound and upper bound of logZT+1:563

logZT+1 =

T∑
t=1

log
Zt+1

Zt
+ log(Z1) ≤ −η

T∑
t=1

d∑
i=1

pt,iℓt,i +
Tη2

2
+ log(d) (9)

logZT+1 = log

d∑
i=1

wt,i exp(−ηℓt,i) ≥ −η
d∑

i=1

ℓt,i (10)

Finally, recall that we set η =
√
2 log(d)/T , then we have564

η

(
T∑

t=1

d∑
i=1

pt,iℓt,i −
d∑

i=1

ℓt,i

)
≤ η

(
T∑

t=1

d∑
i=1

pt,iℓt,i − inf
u

T∑
t=1

L(u)

)
≤ Tη2

2
+ log(d), (11)

which completes our proof.565

B.2 Theoretical guarantee for the K-step re-initialize algorithm.566

The proposed K-step re-initialize algorithm is detailed as follows: at the beginning of the algorithm,567

we choose w1 = [w1,i = 1/d]di=1 as the center point of the simplex and denote ℓt,i as the loss568

for fi at time step t, the updating rule for each wi will be wt+1,i =
wt,i exp(−η[∂LU (wt)]i)

Zt
=569

wt,i exp(−η∥fi(x)−y∥2)
Zt

=
wt,i exp(−ηℓt,i)

Zt
, where Zt =

∑d
i=1 wt,i exp(−ηlt,i) is the normalizer.570

Different from the native EGD algorithm, we re-initialize the weight wK+1 = [wK+1,i = 1/d]di=1571

per K time steps. We call each K step one round. This simple strategy interrupts the influence of572

the historical information of length K steps on the ensembling weights, which helps the model to573

quickly adapt to the upcoming environment.574

Proposition 2. For T > 2 log(d), denote I = [l, l+1, · · · , r] as any period of time of length r− l+1575

where l > 1 and r ≤ T . Denote the length of I as a sublinear sequence of T , namely, |I| = Tn,576

where 0 ≤ n ≤ 1. We choose K = T
2n
3 . We then have, the K-step re-initialize algorithm has an577

regret bound R(I) ≤ O(T 2n/3) at any I = [l, l + 1, · · · , r]. Namely, for any small internal n < 3
4 ,578

we have R([l, l + 1, · · · , r]) < O(T 1/2)579

Proof. We discuss regret in three cases:580

• At first, according to Proposition 1, if all K steps fall into [l, l + 1, · · · , r], then we have581

R(K) ≤ 2
√
K ln d(d− 1). There exist L/K rounds that are all contained in [l, ..., r] and582

the regret of these rounds will be O(L/K ∗ 2
√
K).583

15

• For the first round, we do not know when the weights are reinitialized (l may or may not be584

a multiple of K) and the performance of the algorithm in historical time. let’s think about585

the worst case, where regret will be less than O(K).586

• For the last round, we know when the last round begins and the weights are reinitialized.587

However, some of the future time steps are not in [l, l + 1, · · · , r] and we can only treat the588

case as the first round, which has a regret O(K).589

Considering all cases, we have an internal regret that is bounded by590

R(I) ≤ O(L/K ×
√
K +K) = O(L/K

√
K +K) (12)

When we choose an small internal length L = Tn and K = Tm where m ≤ n. To minimize the591

upper bound, we should choose m = 2n
3 and the bound will be O(T 2n/3). Namely, for any small592

internal n < 3
4 , we have R([l, l + 1, · · · , r]) < O(T 1/2), which is tighter than the regret bound of593

the EGD algorithm under the whole online sequence. Specifically, when we choose L = T 2/3 and594

K = T 4/9, we have R([l, l + 1, · · · , r]) < O(T 4/9) < O(T 1/2). When we choose L = T 1/4 and595

K = T 1/6, then R([l, l + 1, · · · , r]) < O(T 1/6) < O(T 1/2).596

In other words, the algorithm focuses on short-term information and leads to a better regret597

bound in any small time interval. However, with increasing length of I , the bound of the simple598

algorithm will become worse. Consider an extreme case where n = 1, the bound will be R([l, l +599

1, · · · , r]) < O(T 2/3), which is inferior to the native EGD algorithm.600

601

B.3 Necessary definitions and assumptions for evaluating model adaptation speed to602

environment changes.603

To complete the proofs, we begin by introducing some necessary definitions and assumptions. Given604

the online data stream xt and its forecasting target yt at time t. Given d forecasting experts with605

different parameters ft = {ft,i}, denote ℓ as a nonnegative loss function and ℓt,i := ℓ(ft,i(xt),yt)606

as the loss incurred by ft,i at time t, we define the following notions.607

Definition 1. (Weighted average forecaster). A weighted average forecaster makes predictions by608

ỹt =

∑d
i=1 wt−1,ift,i∑d
i=1 wt−1,i

, (13)

where wt,i is the weight for expert fi at time t and ft,i is the prediction of fi at time t.609

Definition 2. (Cumulative regret and instantaneous regret). For expert fi, the cumulative regret (or610

simply regret) on the T steps is defined by611

RT,i =

T∑
t=1

rt,i =

T∑
t=1

(ℓ(ỹt,yt)− ℓt,i) = L̂T − LT,i (14)

where rt,i is the instantaneous regret of the expert fi at time t, which is the regret that the forecaster612

feels of not having listened to the advice of the expert fi right after the tth outcome that has been613

revealed. L̂T =
∑T

t=1 ℓ(ỹt,yt) is the cumulative loss of the forecaster and LT,i is the cumulative614

loss of the expert fi.615

Definition 3. (Potential function). We can interpret the weighted average forecaster in an interesting616

way which allows us to analyze the theoretical properties easier. To do this, we denote rt =617

(rt,1, . . . , rt,d) ∈ Rd as the instantaneous regret vector, and RT =
∑T

t=1 rt is the corresponding618

regret vector. Now, we can introduce the potential function Φ : Rd → R of the form619

Φ(u) = ψ

(
d∑

i=1

ϕ(ui)

)
(15)

16

where ϕ : R→ R is any nonnegative, increasing, and twice differentiable function, and ψ : R→ R620

is nonnegative, strictly increasing, concave, and twice differentiable auxiliary function. With the621

notion of potential function, the prediction ỹt will be622

ỹt =

∑d
i=1∇Φ(Rt−1)ift,i∑d
i=1∇Φ(Rt−1)i

, (16)

where ∇Φ(Rt−1)i = ∂Φ(Rt−1)/∂Rt−1,i. It is easy to prove that the exponentially weighted623

average forecaster used in Eq.(2) is based on the potential Φη(u) =
1
η ln

(∑d
i=1 e

ηui

)
.624

Theorem 1. (Blackwell condition, Lemma 2.1. in [11].) If the loss function ℓ is convex in its first625

argument and we use x1 · x2 denote the inner product of two vectors, then626

sup
yt

rt · ∇Φ(Rt−1) ≤ 0 (17)

The following theorem is applicable to any forecaster that satisfies the Blackwell condition, not627

limited to weighted average forecasters. Nevertheless, this theorem will lead to several interesting628

bounds for various variations of the weighted average forecaster.629

Theorem 2. (Theorem2.1 in [11].) Assume that a forecaster satisfies the Blackwell condition for a630

potential Φ, then for all i = 1, · · · ,631

Φ(RT) ≤ Φ(0) +
1

2

T∑
t=1

C(rt), (18)

where632

C(rt) = sup
u∈Rd

ψ′

(
d∑

i=1

ϕ(ui)

)
d∑

i=1

ϕ′′(ui)r
2
t,i. (19)

B.4 Existing theoretical intuition and empirical comparison to the proposed OCP block.633

With the help of the two theorems in Section B.3, we now recall that the Internal RegretRin(t,w) [7]634

that measures forecaster’s expected regret of having taken an action w at step t:635

Rin(T,w) = max
i,j=1,...,d

T∑
t=1

rt,(i,j) = max
i,j=1,...,d

T∑
t=1

wt,i (ℓt,i − ℓt,j) . (20)

While Proposition 1 ensures that a small external regret can be achieved, ensuring a small internal636

regret is a more challenging task. This is because any algorithm with a small internal regret also has637

small external regret but the opposite is not true, as demonstrated in [40]. The key question now is638

whether it is possible to define a policy w that attains small (i.e., sublinear in T) internal regret. For639

simplicity, we use R as internal regret in this subsection. To develop a forecasting strategy that can640

guarantee a small internal regret. We define the exponential potential function Φ : RM → R with641

η > 0 by642

Φ(u) =
1

η
ln

(
M∑
i=1

eηui

)
, (21)

where M = d(d − 1). Here, we denote rt = (rt,(1,1), rt,(1,2), . . . , rt,(d,d−1)) ∈ Rd(d−1) as the643

instantaneous regret vector and RT =
∑T

t=1 rt is the corresponding regret vector. Then, any644

forecaster satisfying Blackwell’s condition will have a bounded internal regret (Corollary 8 in [10])645

by choosing a proper parameter η:646

max
i,j

Rt,(i,j) ≤ 2
√
t ln d(d− 1) (22)

With the help of the two theorems in Section B.3, we now recall that the Internal RegretRin(t,w) [7]647

that measures forecaster’s expected regret of having taken an action w at step t:648

Rin(t,w) = max
i,j=1,...,d

T∑
t=1

rt,(i,j) = max
i,j=1,...,d

T∑
t=1

wt,i (ℓt,i − ℓt,j) . (23)

17

For simplicity, we use R as internal regret in this subsection. To conduct a forecasting strategy that649

can guarantee a small internal regret. We define the exponential potential function Φ : RM → R with650

η > 0 by651

Φ(u) =
1

η
ln

(
M∑
i=1

eηui

)
, (24)

where M = d(d − 1). Here, we denote rt = (rt,(1,1), rt,(1,2), . . . , rt,(d,d−1)) ∈ Rd(d−1) as the652

instantaneous regret vector and RT =
∑T

t=1 rt is the corresponding regret vector. Then, any653

forecaster satisfying Blackwell’s condition will have a bounded internal regret (Corollary 8 in [10])654

by choosing a proper parameter η:655

max
i,j

Rt,(i,j) ≤ 2
√
t ln d(d− 1) (25)

Now our target is to find a new policy that makes the forecaster satisfy the Blackwell condition.656

∇Φ(Rt−1) · rt =
d∑

i,j=1

∇(i,j)Φ(Rt−1)wt,i (ℓt,i − ℓt,j)

=
d∑

i=1

d∑
j=1

∇(i,j)Φ(Rt−1)wt,iℓt,i −
d∑

i=1

d∑
j=1

∇(i,j)Φ(Rt−1)wt,iℓt,j

=

d∑
i=1

d∑
j=1

∇(i,j)Φ(Rt−1)wt,iℓt,i −
d∑

j=1

d∑
i=1

∇(j,i)Φ(Rt−1)wt,jℓt,i

=

d∑
i=1

ℓt,i

 d∑
j=1

∇(i,j)Φ(Rt−1)wt,i −
d∑

k=1

∇(k,i)Φ(Rt−1)wt,k



(26)

To ensure that this value is negative or zero, it is sufficient to demand that.657

d∑
i=1

ℓt,i

 d∑
j=1

∇(i,j)Φ(Rt−1)wt,i −
d∑

k=1

∇(k,i)Φ(Rt−1)wt,k

 = 0,∀i = 1, · · · , d (27)

That is, we need to find a new policy vector wt that satisfies wT
t A = 0, where A =658 {

−∇k,iΦ(Rt−1) if i ̸= k,∑
j ̸=i∇k,jΦ(Rt−1) Otherwise.

is an d × d matrix. However, determining the existence659

of a new policy vector and efficiently calculating its values can be challenging. Even if we assume660

the new vector exists, the time complexity of calculating the new policy by the Gaussian elimination661

method[16] is O(d3), which is expensive, particularly for datasets with a large number of variables662

such as the ECL dataset with 321 variables and 321*2 policies. To address this issue, we propose663

the OCP block which utilizes an additional offline reinforcement learning block frl with parameter664

θrl to learn a bias vector bt for the original policy wt. The new policy vector is then defined as665

w̃t = wt + bt. The learned bias pushes the predicted outcomes closer to the ground truth values,666

that is, we minimize minθrl L(w̃) :=∥
∑d

i=1 w̃ifi(x) − y ∥2; s.t. w̃ ∈ △ to train θrl. We667

measure the internal regret maxi,j=1,...,d wt,i(ℓt,i − ℓt,j) at each time step empirically. As shown in668

Figure 5, the proposed method significantly reduces internal regret without the need for constructing669

and computing a large matrix.670

C Additional Experimental Results671

C.1 Datasets672

We investigate a diverse set of datasets for time series forecasting. ETT [48]1 logs the target variable673

of the "oil temperature" and six features of the power load over a two-year period. We also analyze674

the hourly recorded observations of ETTh2 and the 15-minute intervals of ETTm1 benchmarks.675

Additionally, we study ECL2 (Electricity Consuming Load), which gathers electricity consumption676

1https://github.com/zhouhaoyi/ETDataset
2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

18

0 2000 4000 6000 8000 10000
Time step

0

500

1000

1500

2000

In
te

rn
al

 R
eg

re
t

EGD
OCP

(a) ETTh2.

0 2000 4000 6000 8000 10000
Time step

0

50

100

150

In
te

rn
al

 R
eg

re
t

EGD
OCP

(b) ETTm1.

0 5000 10000 15000 20000 25000
Time step

0

100

200

300

400

500

In
te

rn
al

 R
eg

re
t

EGD
OCP

(c) WTH.

0 5000 10000 15000 20000
Time step

0

2000

4000

6000

8000

In
te

rn
al

 R
eg

re
t

EGD
OCP

(d) ECL.

Figure 5: Empirical verification of the proposed OCP block can significantly reduce the internal
regret compared to vanilla EGD, where the forecasting window H = 48.

data from 321 clients between 2012 and 2014. The Weather (WTH)3 dataset contains hourly records677

of 11 climate features from almost 1,600 locations across the United States.678

C.2 Implementation Details679

For all benchmarks, we set the look-back window length at 60 and vary the forecast horizon from680

H = 1, 24, 48. We split the data into two phases: warm-up and online training, with a ratio of 25:75.681

We follow the optimization details outlined in [48] and utilize the AdamW optimizer [31] to minimize682

the mean squared error (MSE) loss. To ensure a fair comparison, we set the epoch and batch sizes683

to one, which is consistent with the online learning setting. We make sure that all baseline models684

based on the TCN backbone use the same total memory budget as FSNet, which includes three times685

the network sizes: one working model and two exponential moving averages (EMAs) of its gradient.686

For ER, MIR, and DER++, we allocate an episodic memory to store previous samples to meet this687

budget. For transformer backbones, we find that a large number of parameters do not benefit the688

generalization results and always select the hyperparameters such that the number of parameters689

for transformer baselines is fewer than that for FSNet. In the warm-up phase, we calculate the690

mean and standard deviation to normalize the online training samples and perform hyperparameter691

cross-validation. For different structures, we use the optimal hyperparameters that are reported in the692

corresponding paper.693

License. All the assets (i.e., datasets and the codes for baselines) we use include an MIT license694

containing a copyright notice and this permission notice shall be included in all copies or substantial695

portions of the software.696

3https://www.ncei.noaa.gov/data/local-climatological-data/

19

Environment. We conduct all the experiments on a machine with an Intel R Xeon (R) Platinum 8163697

CPU @ 2.50GHZ, 32G RAM, and four Tesla-V100 (32G) instances. All experiments are repeated 3698

times with different seeds.699

Metrics Because learning occurs over a sequence of rounds. At each round, the model receives a700

look-back window and predicts the forecast window. All models are commonly evaluated by their701

accumulated mean-squared errors (MSE) and mean-absolute errors (MAE), namely the model is702

evaluated based on its accumulated errors over the entire learning process.703

C.3 Baseline details704

We present a brief overview of the baselines employed in our experiments.705

First, OnlineTCN adopts a conventional TCN backbone [50] consisting of ten hidden layers, each706

layer containing two stacks of residual convolution filters.707

Secondly, ER [12] expands on the OnlineTCN baseline by adding an episodic memory that stores708

previous samples and interleaves them during the learning process with newer ones.709

Third, MIR [3] replaces the random sampling technique of ER with its MIR sampling approach,710

which selects the samples in the memory that cause the highest forgetting and applies ER to them.711

Fourthly, DER++ [9] enhances the standard ER method by incorporating a knowledge distillation712

loss on the previous logits.713

Finally, TFCL [4] is a task-free, online continual learning method that starts with an ER process and714

includes a task-free MAS-styled [2] regularization.715

All the ER-based techniques utilize a reservoir sampling buffer, which is identical to that used in [33].716

C.4 Hyper-parameters717

For the hyper-parameters of FSNet and the baselines mentioned in Section C.3, we follow the setting718

in [33]. Besides, we cross-validate the hyper-parameters on the ETTh2 dataset and use them for the719

remaining ones. In particular, we use the following configuration:720

• Learning rate 3e− 3 on Traffic and ECL and 1e− 3 for other datasets. Learning rate 1e− 2721

for the EGD algorithm and 1e− 3 for the offline reinforcement learning block, where the722

selection scope is {1e− 3, 3e− 3, 1e− 2, 3e− 2}.723

• Number of hidden layers 10 for both cross-time and cross-variable branches, where the724

selection scope is {6, 8, 10, 12}.725

• Adapter’s EMA coefficient 0.9, Gradient EMA for triggering the memory interaction 0.3,726

where the selection scope is {0.1, 0.2, . . . , 1.0}.727

• Memory triggering threshold 0.75, where the selection scope is {0.6, 0.65, 0.7 . . . , 0.9}.728

• Episodic memory size: 5000 (for ER, MIR, and DER++), 50 (for TFCL).729

C.5 Additional Numerical Results730

Additional forecasting results. In this section, we analyze the performance of different forecasting731

methods on four datasets, ECL, WTH, ETTh2, and ETTm1, with various starting points, as shown732

in Figure 8, Figure 9, Figure 10, and Figure 11, respectively. For the last three datasets, all methods733

produce similar results that can capture the underlying time series patterns, and the performance734

differences are not significant. However, when it comes to the ECL dataset, we observe that almost735

all baselines exhibit poor forecasting results at the onset of the concept shift (time step 2500). As we736

provide more instances, the performance of these methods improves, as evidenced by the cumulative737

loss curves in Figure 7 and Figure 6.738

Abltion studies of hyper-parameters. We conduct detailed ablation studies about model layers,739

learning rate, and model dimension here. Taking into account the learning rate for the two-branch740

framework, the learning rate for the long-term weight, and the learning rate for the short-term741

weight: lr, lrw, lrb, as shown in Table 10 (left), the impact of the learning rate on dual-stream742

networks is quite significant. The optimal learning rate varies for each dataset, but we can see743

20

Table 6: Standard deviations of the metrics in Table. 2 and Table. 3.

MSE
ETTH2 ETTm1 WTH ECL

Method / H
1 24 48 1 24 48 1 24 48 1 24 48

Informer 1.370 2.254 2.088 0.088 0.035 0.020 0.005 0.003 0.009
OnlineTCN 0.011 0.017 0.148 0.003 0.002 0.002 0.001 0.001 0.001 0.019 0.077 0.122
TFCL 0.030 0.005 0.279 0.004 0.006 0.010 0.002 0.001 0.004 0.047 0.338 0.253
ER 0.018 0.007 0.141 0.005 0.003 0.004 0.001 0.001 0.009 0.034 0.236 0.320
MIR 0.019 0.017 0.130 0.005 0.005 0.006 0.002 0.001 0.009 0.037 0.261 0.143
DER++ 0.022 0.024 0.143 0.003 0.002 0.003 0.001 0.001 0.011 0.027 0.072 0.146
FSNet 0.018 0.014 0.128 0.003 0.002 0.003 0.001 0.001 0.001 0.021 0.096 0.105
Time-TCN 0.020 0.010 0.189 0.004 0.004 0.005 0.001 0.001 0.001 0.033 0.130 0.232
PatchTST 0.022 0.010 0.183 0.005 0.005 0.007 0.002 0.001 0.007 0.039 0.167 0.239
OneNet-TCN 0.015 0.012 0.104 0.003 0.003 0.003 0.001 0.001 0.007 0.025 0.114 0.152
OneNet 0.015 0.014 0.100 0.003 0.002 0.003 0.001 0.001 0.005 0.021 0.086 0.099

MAE
ETTH2 ETTm1 WTH ECL

Method / H
1 24 48 1 24 48 1 24 48 1 24 48

Informer 0.043 0.102 0.091 0.060 0.023 0.014 0.005 0.003 0.008
OnlineTCN 0.007 0.002 0.016 0.002 0.002 0.003 0.002 0.077 0.122 0.002 0.009 0.011
TFCL 0.003 0.003 0.024 0.008 0.005 0.008 0.002 0.001 0.006 0.011 0.019 0.008
ER 0.017 0.006 0.013 0.009 0.002 0.004 0.002 0.001 0.005 0.011 0.017 0.014
MIR 0.018 0.005 0.012 0.009 0.004 0.005 0.002 0.001 0.005 0.013 0.013 0.012
DER++ 0.015 0.004 0.015 0.007 0.002 0.002 0.002 0.001 0.007 0.002 0.013 0.014
FSNet 0.009 0.005 0.012 0.004 0.002 0.002 0.001 0.001 0.001 0.001 0.011 0.011
Time-TCN 0.009 0.004 0.018 0.006 0.003 0.005 0.002 0.026 0.044 0.008 0.009 0.011
PatchTST 0.013 0.005 0.016 0.009 0.004 0.006 0.002 0.001 0.005 0.012 0.010 0.011
OneNet-TCN 0.017 0.005 0.013 0.008 0.003 0.004 0.002 0.001 0.006 0.009 0.009 0.013
OneNet 0.014 0.005 0.013 0.007 0.003 0.003 0.002 0.001 0.004 0.005 0.007 0.012

that for each dataset, the optimal learning rate is generally within the range of [1e − 4, 1e − 2].744

lrw has a relatively small impact on the final performance of the model. On the contrary, the745

offline-RL module determines whether the weights can quickly adapt to the new distribution, which746

has a greater impact on the final performance. In terms of model parameters, # Layers, dm, and747

dhead, all three have a significant impact on the performance of the model. A small model may748

not be able to fit the training data, but a model that is too large increases the risk of overfitting, so749

each dataset has an optimal model size. However, in this paper, we use the same hyperparameters750

for all datasets to simplify the complexity of training and model selection. Specifically, we set751

lr = 1e− 3, lrw = 1e− 2, lrb = 1e− 3,#layers = 10, dm = 64, dhead = 320.752

C.6 Ensembling more than two networks.753

In the main paper, we verify the effectiveness of ensembling two branches with different model biases.754

Here, we show that the proposed OneNet framework enables us to incorporate more branches and the755

OCP block can fully utilize the benefit of each branch. As shown in Table 7, incorporating PatchTST756

to OneNet-TCN will further reduce the forecasting results during online forecasting.757

C.7 More visualization results and Convergence Analysis of Different Structures758

As shown in Figure 6 and Figure 7, ETTh2 and ECL datasets pose the greatest challenge to all759

models due to the sharp peaks in their loss curves. When the forecasting window is short, OneNet760

outperforms all baselines by a significant margin on all datasets. When the forecasting window is761

extended to H = 48, FSNet is comparable to OneNet in the first three datasets. However, when762

concept drift occurs in the ECL dataset, all baselines experience a drastic increase in their cumulative763

MSE, except OneNet, which maintains a low MSE. Furthermore, the initialized MSE error of OneNet764

is consistently lower than that of all baselines, thanks to the two-stream structure of OneNet. For765

21

Table 7: MSE and MAE of various adaptation methods. H: forecast horizon. OneNet-TCN+Patch
is the mixture of TCN, Time-TCN, and PatchTST.

ETTH2 ETTm1 WTH ECL
Metric Method

1 24 48 1 24 48 1 24 48 1 24 48
Avg

MSE

TCN 0.502 0.830 1.183 0.214 0.258 0.283 0.206 0.308 0.302 3.309 11.339 11.534 2.522
Time-TCN 0.491 0.779 1.307 0.093 0.281 0.308 0.158 0.311 0.308 4.060 5.260 5.230 1.549
PatchTST 0.362 1.622 2.716 0.083 0.427 0.553 0.162 0.372 0.465 2.022 4.325 5.030 1.512

OneNet-TCN 0.411 0.772 0.806 0.082 0.212 0.223 0.171 0.293 0.310 2.470 4.713 4.567 1.253
OneNet-TCN+Patch 0.355 0.844 1.120 0.079 0.239 0.255 0.163 0.298 0.314 2.172 4.142 4.149 1.178

MAE

TCN 0.436 0.547 0.589 0.085 0.381 0.403 0.276 0.367 0.362 0.635 1.196 1.235 0.543
Time-TCN 0.425 0.544 0.636 0.211 0.395 0.421 0.204 0.378 0.378 0.332 0.420 0.438 0.399
PatchTST 0.341 0.577 0.672 0.186 0.471 0.549 0.200 0.393 0.459 0.224 0.341 0.375 0.399

OneNet-TCN 0.374 0.511 0.543 0.191 0.319 0.371 0.221 0.345 0.356 0.411 0.513 0.534 0.391
OneNet-TCN+Patch 0.338 0.513 0.552 0.184 0.360 0.381 0.217 0.351 0.381 0.297 0.423 0.457 0.371

Table 8: MSE of various adaptation methods with delayed feedback. H: forecast horizon. OneNet-
TCN is the mixture of TCN and Time-TCN, and OneNet is the mixture of FSNet and Time-FSNet.

ETTH2 ETTm1 WTH ECL
Method / H

1 24 48 1 24 48 1 24 48 1 24 48 Avg

OnlineTCN 0.502 5.871 11.074 0.214 0.410 0.535 0.206 0.429 0.504 3.309 9.621 24.159 4.736
ER 0.508 5.461 17.329 0.086 0.367 0.498 0.180 0.373 0.435 2.579 8.091 17.700 4.467
DER++ 0.508 5.387 17.334 0.083 0.347 0.465 0.174 0.369 0.431 2.657 7.878 17.692 4.444
FSNet 0.466 5.765 11.907 0.085 0.383 0.502 0.162 0.335 0.411 3.143 8.722 27.150 4.919
OneNet-TCN 0.411 2.639 4.995 0.082 0.287 0.382 0.171 0.341 0.433 2.470 4.809 6.252 1.939
OneNet 0.380 2.064 4.952 0.082 0.332 0.351 0.156 0.323 0.394 2.351 4.984 6.226 1.883

instance, in Figure 6(b) and Figure 6(f), OneNet demonstrates a significantly lower MSE than766

baselines when the number of instances is less than 100.767

C.8 Online forecasting results with delayed feedback768

As illustrated in Section 2, this paper adopts the same setting as FSNet [33], where the true values of769

each time step are revealed to improve the performance of the model in subsequent rounds. However,770

in real-world applications, the true values of the forecast horizon H may not be available until H771

rounds later, which is known as online forecasting with delayed feedback. This setting is more772

challenging because the model cannot be retrained at each round and we can only train the model per773

H round. Tables 8 and 9 show the cumulative performance considering MSE and MAE, respectively.774

As expected, all methods perform worse with delayed feedback than under the traditional online775

forecasting setting. Notably, the state-of-the-art method FSNet is shown to be sensitive to delayed776

feedback, particularly when H = 48, where it is even inferior to a simple TCN baseline on some777

datasets. In contrast, our proposed method OneNet significantly outperforms all continual learning778

baselines across different datasets and delayed forecast horizons.779

Table 9: MAE of various adaptation methods with delayed feedback. H: forecast horizon.
OneNet-TCN is the mixture of TCN and Time-TCN, and OneNet is the mixture of FSNet and
Time-FSNet.

ETTH2 ETTm1 WTH ECL
Method / H

1 24 48 1 24 48 1 24 48 1 24 48 Avg

OnlineTCN 0.436 1.109 1.348 0.085 0.511 0.548 0.276 0.459 0.508 0.635 0.783 1.076 0.648
ER 0.376 0.976 1.651 0.197 0.456 0.525 0.244 0.421 0.459 0.506 0.595 0.772 0.598
DER++ 0.375 0.967 1.644 0.192 0.443 0.508 0.235 0.415 0.456 0.421 0.591 0.758 0.584
FSNet 0.368 0.983 1.494 0.191 0.468 0.502 0.216 0.394 0.453 0.472 0.827 1.391 0.554
OneNet-TCN 0.374 0.772 0.951 0.191 0.387 0.417 0.221 0.389 0.461 0.411 0.381 0.451 0.451
OneNet 0.348 0.684 0.916 0.187 0.428 0.430 0.201 0.381 0.436 0.254 0.387 0.444 0.425

22

Table 10: Results of different OneNet ’s hyper-parameter configurations on the benchmarks
(H = 48). lr, lrw, lrb are the learning rate for the two-branch framework, the learning rate for the
long-term weight, and the learning rate for the short-term weight. # Layers is the number of layers
of the two branches of OneNet. dm, dhead is the hidden dimension and the output dimension of the
encoders, respectively.

Hyper-Parameter Value
MSE

Hyper-Parameter Value
MSE

ETTh2 ETTm1 WTH ECL ETTh2 ETTm1 WTH ECL

lr

1.00E-01 - - - -

Layers

6 0.632 0.114 0.203 2.402
1.00E-02 0.585 0.152 0.171 3.128 8 0.661 0.101 0.201 2.289
1.00E-03 0.656 0.111 0.196 2.516 10 0.609 0.108 0.200 2.201
1.00E-04 2.994 0.464 0.331 4.949 12 0.652 0.115 0.200 2.328

lrw

1.00E-01 0.619 0.108 0.202 2.177

dm

16 0.679 0.122 0.223 2.201
1.00E-02 0.609 0.108 0.205 2.184 32 0.612 0.116 0.210 2.810
1.00E-03 0.608 0.108 0.201 2.197 64 0.609 0.108 0.200 2.311
1.00E-04 0.607 0.108 0.201 2.197 160 0.619 0.108 0.200 2.141

lrb

1.00E-01 0.899 0.134 0.221 2.499

dhead

80 0.741 0.136 0.219 2.468
1.00E-02 0.876 0.112 0.197 2.372 160 0.600 0.112 0.214 2.364
1.00E-03 0.656 0.111 0.196 2.371 320 0.609 0.108 0.201 2.184
1.00E-04 0.643 0.111 0.196 2.362 500 0.571 0.104 0.182 2.182

Table 11: Ablation studies of the variable independence and frequency domain augmentation,
where the metric is MSE. FEDformer-F uses frequency-enhanced blocks with Fourier transform, and
FEDformer-W uses frequency-enhanced blocks with Wavelet transform. Time-TCN is the variable
independence version of TCN.

Method Online
ETTH2 ETTm1 WTH ECL

Avg
1 24 48 1 24 48 1 24 48 1 24 48

FEDformer-F
% 1.922 3.045 4.016 0.922 1.003 1.821 3.544 2.344 1.179 43.852 37.802 37.377 11.569
! 1.912 3.013 3.951 0.372 0.633 0.586 2.196 0.376 0.562 39.243 35.975 36.092 10.409

FEDformer-W
% 1.816 3.070 3.996 2.275 3.784 2.662 1.220 1.211 1.431 41.791 37.236 37.210 11.475
! 1.798 2.993 1.623 0.235 0.451 0.516 0.717 0.962 0.372 21.387 24.600 27.640 6.941

TCN
% 27.060 27.760 26.320 2.240 12.170 10.880 0.290 0.480 0.580 538.000 546.000 552.000 145.315
! 0.530 0.930 0.910 0.130 0.310 0.250 0.300 0.348 0.348 3.010 11.680 10.800 2.462

Time-TCN
% 4.530 7.840 1.300 0.097 0.800 1.030 0.162 0.344 0.429 47.900 48.660 67.150 15.020
! 0.480 0.780 1.300 0.090 0.280 0.310 0.300 0.310 0.309 4.010 5.220 5.210 1.550

C.9 The effect of variable independence and frequency domain augmentation780

As shown in Table 11, we observe that frequency-enhanced blocks, which use the wavelet transform,781

offer greater robustness to the Fourier transform. FEDformer outperforms TCN in terms of general-782

ization, but online adaptation has a limited impact on performance, similar to other transformer-based783

models. Notably, we find that variable independence is crucial for model robustness. By convolving784

solely on the time dimension, independent of the feature channel, we significantly reduce MSE error785

compared to convolving on the feature channel, regardless of whether online adaptation is applied.786

C.10 Comparison of existing forecasting structures.787

Results are shown in Table 12. Considering the average MSE on all four datasets, all transformer-788

based models and Dlinear are better than TCN and Time-TCN. However, with online adaptation,789

the forecasting error of TCN structures is reduced by a large margin and is better than DLinear790

and FEDformer. Specifically, we show that the current transformer-based model (PatchTST [32])791

demonstrates superior generalization performance than the TCN models even without any online792

adaptation, particularly in the challenging ECL task. However, we also noticed that PatchTST793

remains largely unchanged after online retraining. In contrast, the TCN structure can quickly adapt to794

the shifted distribution, and the online updated TCN model prefers a better forecasting error than the795

adapted PatchTST on the first three data sets. Therefore, it is promising to combine the strengths of796

both structures to create a more robust and adaptable model that can handle shifting data distributions797

better.798

23

Table 12: Comparison of existing forecasting structures, including TCN [6], FEDformer [49],
PatchTST [32], Dlinear [45], Nlinear [45], TS-Mixer [13], and CrossFormer [47].

Method Online
ETTH2 ETTm1 WTH ECL

Avg
1 24 48 1 24 48 1 24 48 1 24 48

FEDformer-F
% 1.922 3.045 4.016 0.922 1.003 1.821 3.544 2.344 1.179 43.852 37.802 37.377 11.569
! 1.912 3.013 3.951 0.372 0.633 0.586 2.196 0.376 0.562 39.243 35.975 36.092 10.409

FEDformer-W
% 1.816 3.070 3.996 2.275 3.784 2.662 1.220 1.211 1.431 41.791 37.236 37.210 11.475
! 1.798 2.993 1.623 0.235 0.451 0.516 0.717 0.962 0.372 21.387 24.600 27.640 6.941

PatchTST
% 0.427 2.090 3.290 0.083 0.433 0.570 0.163 0.375 0.467 2.030 4.395 5.101 1.619
! 0.362 1.622 2.716 0.083 0.427 0.553 0.162 0.372 0.465 2.022 4.325 5.030 1.512

Crossformer
% 23.270 28.904 29.218 0.400 1.433 1.691 0.146 0.327 0.426 469.260 475.490 478.270 125.736
! 9.873 2.856 5.772 0.096 0.356 0.370 0.149 0.317 0.359 68.300 92.500 94.790 22.978

TCN
% 27.060 27.760 26.320 2.240 12.170 10.880 0.290 0.480 0.580 538.000 546.000 552.000 145.315
! 0.530 0.930 0.910 0.130 0.310 0.250 0.300 0.348 0.348 3.010 11.680 10.800 2.462

Time-TCN
% 4.530 7.840 1.300 0.097 0.800 1.030 0.162 0.344 0.429 47.900 48.660 67.150 15.020
! 0.480 0.780 1.300 0.090 0.280 0.310 0.300 0.310 0.309 4.010 5.220 5.210 1.550

DLinear
% 2.91 10.25 7.53 0.538 1.461 1.233 0.266 0.462 0.542 12.03 51.28 58.46 12.247
! 2.44 9.24 6.91 0.46 1.3 1.12 0.262 0.459 0.541 6.69 27.82 31.54 7.399

NLinear
% 0.424 50.15 49.52 0.09 4.02 4.13 0.171 1.07 1.08 2.14 930 929 164.316
! 0.369 50.24 49.6 0.089 4.035 4.141 0.171 1.053 1.064 2.135 930 930 164.408

TS-Mixer
% 1.968 3.525 4.88 0.335 0.726 0.855 0.255 0.429 0.503 11.16 30.93 44.68 8.354
! 0.78 2.05 3.060 0.219 0.550 0.660 0.237 0.413 0.482 2.798 4.983 5.764 1.833

24

0 2000 4000 6000 8000 10000
Instances

0.0

0.2

0.4

0.6

0.8

M
SE

TCN
Time-TCN
FSNet
OneNet

(a) ETTh2.

0 2000 4000 6000 8000 10000
Instances

0.0

0.1

0.2

0.3

0.4

M
SE

TCN
Time-TCN
FSNet
OneNet

(b) ETTm1.

0 5000 10000 15000 20000 25000
Instances

0.0

0.1

0.2

0.3

0.4

0.5

M
SE

TCN
Time-TCN
FSNet
OneNet

(c) WTH.

0 5000 10000 15000 20000
Instances

0

1

2

3

4

5

M
SE

TCN
Time-TCN
FSNet
OneNet

(d) ECL

0 2000 4000 6000 8000 10000
Instances

0.5

1.0

1.5

2.0

M
SE

TCN
Time-TCN
FSNet
OneNet

(e) ETTh2.

0 2000 4000 6000 8000 10000
Instances

0.0

0.1

0.2

0.3

0.4

0.5

M
SE

TCN
Time-TCN
FSNet
OneNet

(f) ETTm1.

0 5000 10000 15000 20000 25000
Instances

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
SE

TCN
Time-TCN
FSNet
OneNet

(g) WTH.

0 5000 10000 15000 20000
Instances

0

5

10

15

20

M
SE

TCN
Time-TCN
FSNet
OneNet

(h) ECL

Figure 6: Evolution of the cumulative MSE loss during training with forecast window H = 1 (a, b,
c, d) and H = 48 (e, f, g, h). 25

0 2000 4000 6000 8000 10000
Instances

0.2

0.3

0.4

0.5

M
A

E

TCN
Time-TCN
FSNet
OneNet

(a) ETTh2.

0 2000 4000 6000 8000 10000
Instances

0.0

0.1

0.2

0.3

0.4

M
A

E

TCN
Time-TCN
FSNet
OneNet

(b) ETTm1.

0 5000 10000 15000 20000 25000
Instances

0.0

0.1

0.2

0.3

0.4

0.5

M
A

E

TCN
Time-TCN
FSNet
OneNet

(c) WTH.

0 5000 10000 15000 20000
Instances

0.2

0.3

0.4

0.5

0.6

0.7

M
A

E

TCN
Time-TCN
FSNet
OneNet

(d) ECL

0 2000 4000 6000 8000 10000
Instances

0.4

0.5

0.6

0.7

M
A

E

TCN
Time-TCN
FSNet
OneNet

(e) ETTh2.

0 2000 4000 6000 8000 10000
Instances

0.0

0.1

0.2

0.3

0.4

0.5

M
A

E

TCN
Time-TCN
FSNet
OneNet

(f) ETTm1.

0 5000 10000 15000 20000 25000
Instances

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
A

E

TCN
Time-TCN
FSNet
OneNet

(g) WTH.

0 5000 10000 15000 20000
Instances

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
A

E

TCN
Time-TCN
FSNet
OneNet

(h) ECL

Figure 7: Evolution of the cumulative MAE loss during training with forecasting window H = 1
(a,b,c,d) and H = 48 (e,f,g,h). 26

(a) Channel 1. (b) Channel 2. (c) Channel 3.

(d) Channel 1. (e) Channel 2. (f) Channel 3.

(g) Channel 1. (h) Channel 2. (i) Channel 3.

(j) Channel 1. (k) Channel 2. (l) Channel 3.

Figure 8: Visualization of the model’s prediction throughout the online learning process in the
ECL dataset. We focus on a short horizon of 50 time steps and the start prediction time is from 5000
(a,b,c), 7500 (d,e,f), 10000 (g,h,i), and 12500 (j,k,l) respectively.

27

(a) Channel 1. (b) Channel 2. (c) Channel 3.

(d) Channel 1. (e) Channel 2. (f) Channel 3.

(g) Channel 1. (h) Channel 2. (i) Channel 3.

(j) Channel 1. (k) Channel 2. (l) Channel 3.

Figure 9: Visualization of the model’s prediction throughout the online learning process on the
WTH dataset. We focus on a short horizon of 50 time steps and the start prediction time is from 5000
(a,b,c), 7500 (d,e,f), 10000 (g,h,I), and 12500 (j,k,l), respectively.

28

(a) Channel 1. (b) Channel 2. (c) Channel 3.

(d) Channel 1. (e) Channel 2. (f) Channel 3.

(g) Channel 1. (h) Channel 2. (i) Channel 3.

(j) Channel 1. (k) Channel 2. (l) Channel 3.

Figure 10: Visualization of the model’s prediction throughout the online learning process in the
ETTh2 data set. We focus on a short horizon of 50 time steps and the start prediction time is from
2500 (a,b,c), 5000 (d,e,f), 7500 (g,h,i), and 10000 (j,k,l) respectively.

29

(a) Channel 1. (b) Channel 2. (c) Channel 3.

(d) Channel 1. (e) Channel 2. (f) Channel 3.

(g) Channel 1. (h) Channel 2. (i) Channel 3.

(j) Channel 1. (k) Channel 2. (l) Channel 3.

Figure 11: Visualization of the model’s prediction throughout the online learning process on the
ETTm1 dataset. We focus on a short horizon of 50 time steps and the start prediction time is from
2500 (a, b, c), 5000 (d, e, f), 7500 (g, h, i) and 10000 (j, k, l), respectively.

30

	Extended Related Work
	Proofs of Theoretical Statements
	Online Convex Programming Regret Bound
	Theoretical guarantee for the K-step re-initialize algorithm.
	Necessary definitions and assumptions for evaluating model adaptation speed to environment changes.
	Existing theoretical intuition and empirical comparison to the proposed OCP block.

	Additional Experimental Results
	Datasets
	Implementation Details
	Baseline details
	Hyper-parameters
	Additional Numerical Results
	Ensembling more than two networks.
	More visualization results and Convergence Analysis of Different Structures
	Online forecasting results with delayed feedback
	The effect of variable independence and frequency domain augmentation
	Comparison of existing forecasting structures.

