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Abstract
Online updating of time series forecasting models aims to address the concept
drifting problem by efficiently updating forecasting models based on streaming
data. Many algorithms are designed for online time series forecasting, with some
exploiting cross-variable dependency while others assume independence among
variables. Given every data assumption has its own pros and cons in online time
series modeling, we propose Online ensembling Network (OneNet). It dynamically
updates and combines two models, with one focusing on modeling the dependency
across the time dimension and the other on cross-variate dependency. Our method
incorporates a reinforcement learning-based approach into the traditional online
convex programming framework, allowing for the linear combination of the two
models with dynamically adjusted weights. OneNet addresses the main shortcom-
ing of classical online learning methods that tend to be slow in adapting to the
concept drift. Empirical results show that OneNet reduces online forecasting error
by more than 50% compared to the State-Of-The-Art (SOTA) method. The code is
available at https://github.com/yfzhang114/OneNet.

1 Introduction

In recent years, we have witnessed a significant increase in research efforts that apply deep learning
to time series forecasting [Lim and Zohren, 2021, Wen et al., 2022]. Deep models have proven to
perform exceptionally well not only in forecasting tasks, but also in representation learning, enabling
the extraction of abstract representations that can be effectively transferred to downstream tasks such
as classification and anomaly detection. However, existing studies have focused mainly on the batch
learning setting, assuming that the entire training dataset is available beforehand, and the relationship
between the input and output variables remains constant throughout the learning process. These
approaches fall short in real-world applications where concepts are often not stable but change over
time, known as concept drift [Tsymbal, 2004], where future data exhibit patterns different from those
observed in the past. In such cases, re-training the model from scratch could be time-consuming.
Therefore, it is desirable to train the deep forecaster online, incrementally updating the forecasting
model with new samples to capture the changing dynamics in the environment.

The real world setting, termed online forecasting, poses challenges such as high noisy gradients
compared to offline mini-batch training [Aljundi et al., 2019a], and continuous distribution shifts
which can make the model learned from historical data less effective for the current prediction. While
some studies have attempted to address the issues by designing advanced updating structures or
learning objectives [Pham et al., 2023, You et al., 2021], they all rely on TCN backbones [Bai et al.,
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Table 1: A motivating example for online ensembling, where the reported metric is MSE and the
forecast horizon length is set as 48. Cells are colored on the basis of the MSE value, from low (red)
to medium (white) to high (blue). Columns titled cross-variable refer to methods that focus on
modeling cross-variable dependence, and columns titled cross-time refer to methods that only
exploit the temporal dependence and assume independence among covariates. All methods use the
same training and online adaptation strategy.

Cross-Variable Cross-Time Both Ours
Dataset #Variables

TCN FSNet Time-TCN DLinear PatchTST CrossFormer TS-Mixer Fedformer
ETTh2 7 0.910 0.846 1.307 6.910 2.716 5.772 3.060 1.620 0.609
ETTm1 7 0.250 0.127 0.308 1.120 0.553 0.370 0.660 0.516 0.108
WTH 21 0.348 0.223 0.308 0.541 0.465 0.317 0.482 0.372 0.200
ECL 321 10.800 7.034 5.230 7.388 5.030 94.790 5.764 27.640 2.201
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Figure 1: A motivating example for online ensembling, where the reported metric is MSE and
forecast horizon length is set to 48 during online adaptation. Cross-Time refers to a TCN backbone
that assumes independence among covariates and only models the temporal dependence, and cross-
variable refers to a TCN backbone that takes into cross-variable dependence.

2018], which do not take advantage of more advanced network structures, such as transformer [Nie
et al., 2023, Zhou et al., 2022b]. Our studies show that the current transformer-based model,
PatchTST [Nie et al., 2023], without any advanced adaption method of online learning, performs better
than the SOTA online adaptation model FSNet [Pham et al., 2023], particularly for the challenging
ECL task (Table.1). Furthermore, we find that variable independence is crucial for the robustness
of PatchTST. Specifically, PatchTST focuses on modeling temporal dependency (cross-time
dependency) and predicting each variable independently. To validate the effectiveness of the
variable independence assumption, we designed Time-TCN, which convolves only on the temporal
dimension. Time-TCN is better than FSNet, a state-of-the-art approach for online forecasting, and
achieves significant gains compared to the commonly used TCN structure that convolves on variable
dimensions.

Although variable independence enhances model robustness, the cross-variable dependency
is also critical for forecasting, i.e. for a specific variable, information from associated series in
other variables may improve forecasting results. As shown in Table 1 for datasets ETTm1 and
ETTh2, cross-time forecasters tend to yield lower performance for datasets with a small number
of variables. Surprisingly, existing models that are designed to leverage both cross-variable and
cross-time dependencies such as CrossFormer [Zhang and Yan, 2023] and TS-Mixer [Chen et al.,
2023], tend to perform worse than a native TCN. To investigate this phenomenon, we visualized the
MSE at different time steps during the entire online adaptation process for both a Cross-Time model
(Time-TCN) and a Cross-Variable model (TCN) in Figure 1. We observe a large fluctuation in MSE
over online adaption, indicating a significant concept drift over time. We also observe that neither
of these two methods performs consistently better than the other, indicating that neither of the two
data assumptions holds true for the entire time series. This is why relying on a single model like
CrossFormer cannot solve this problem. Existing work depends on a simple model, but for online
time series forecasting, data preferences for model bias will continuously change with online concept
drifts. Therefore, we need a data-dependent strategy to continuously change the model selection
policy. In other words, online time series forecasting should go beyond parameter updating.

In this paper, we address the limitation of a single model for online time series forecasting by intro-
ducing an ensemble of models that share different data biases. We then learn to dynamically combine
the forecasts from individual models for better prediction. By allowing each model to be trained
and online updated independently, we can take the best out of each online model; by dynamically
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adjusting the combination of different models, we can take the best out of the entire model ensemble.
We refer to our approach as Online Ensembling Network or OneNet for short. More concretely,
OneNet maintains two online forecasting models, one focused on modeling temporal correlation and
one focused on modeling cross-variable dependency. Each model is trained independently using the
same set of training data. During testing, a reinforcement learning (RL) based approach is developed
to dynamically adjust the weights used to combine the predictions of the two models. Compared to
classical online learning methods such as Exponentiated Gradient Descent, our RL-based approach
is more efficient in adapting to the changes/drifts in concepts, leading to better performance. The
contributions of this paper are:

1. We introduce OneNet, a two-stream architecture for online time series forecasting that integrates
the outputs of two models using online convex programming. OneNet leverages the robustness of the
variable-independent model in handling concept drift, while also capturing the inter-dependencies
among different variables to enhance forecasting accuracy. Furthermore, we propose an RL-based
online learning approach to mitigate the limitations of traditional OCP algorithms and demonstrate
its efficacy through empirical and theoretical analyses.

2. Our empirical studies with four datasets show that compared with state-of-the-art methods, OneNet
reduces the average cumulative mean-squared errors (MSE) by 53.1% and mean-absolute errors
(MAE) by 34.5%. In particular, the performance gain on challenging dataset ECL is superior, where
the MSE is reduced by 59.2% and MAE is reduced by 63.0%.

3. We conducted comprehensive empirical studies to investigate how commonly used design choices
for forecasting models, such as instance normalization, variable independence, seasonal-trend de-
composition, and frequency domain augmentation, impact the model’s robustness. In addition, we
systematically compared the robustness of existing Transformer-based models, TCN-based models,
and MLP-based models when faced with concept drift.

2 Preliminary and Related Work

Concept drift. Concepts in the real world are often dynamic and can change over time, which
is especially true for scenarios like weather prediction and customer preferences. Because of
unknown changes in the underlying data distribution, models learned from historical data may
become inconsistent with new data, thus requiring regular updates to maintain accuracy. This
phenomenon, known as concept drift [Tsymbal, 2004], adds complexity to the process of learning a
model from data. In this paper, we focus on online learning for time series forecasting. Unlike most
existing studies for online time series forecasting [Li et al., 2022, Qin et al., 2022, Pham et al., 2023]
that only focus on how to online update their models, this work goes beyond parameter updating and
introduces multiple models and a learnable ensembling weight, yielding rich and flexible hypothesis
space. Due to the space limit, more related works about time series forecasting and reinforcement
learning are left in the appendix.

Online time series forecasting: streaming data. Traditional time series forecasting tasks have
a collection of multivariate time series with a look-back window L: (xi)

L
i=1, where each xi is

M -channel vector xi = (xji )
M
j=1. Given a forecast horizon H , the target is to forecast H future

values (xi)
L+H
i=L+1. In real-world applications, the model builds on the historical data needs to forecast

the future data, that is, given time offset K ′ > L, and (xi)
K′

i=K′−L+1, the model needs to forecast
(x)K

′+H
i=K′+1. Online time series forecasting [Anava et al., 2013, Liu et al., 2016, Pham et al., 2023]

is a widely used technique in real-world due to the sequential nature of the data and the frequent
drift of concepts. In this approach, the learning process takes place over a sequence of rounds,
where the model receives a look-back window and predicts the forecast window. The true values
are then revealed to improve the model’s performance in the next rounds. When we perform online
adaptation, the model is retrained using the online data stream with the MSE loss over each channel:
L = 1

M

∑M
j=1 ∥ x̂

j
K′+1:K′+H − x

j
K′+1:K′+H ∥.

Variable-independent time series forecasting. The traditional cross-variable strategy used in most
structures takes the vector of all time series features as input and projects it into the embedding space
to mix the information. On the contrary, PatchTST [Nie et al., 2023] adopts a variable-independent
approach, where each input token only contains information from a single channel/variable. Our
research demonstrates that variable independence is crucial for boosting model robustness under

3



Cross-Variable
Forecaster 

Cross-Time
Forecaster 

Input Multivariate Series

MSE Loss MSE Loss

OCP

Linear Linear

(a) The overall OneNet architecture.

Linear

Drop

State (Prediction) Outcome

Action (Short-term weight )

Offline RL for Short-term Weight

EGD for Long-term Weight

(b) OCP block.

Figure 2: (a) OneNet processes multivariate data through cross-time and cross-variable branches,
each responsible for capturing different aspects. The weights of these two branches are generated
by the OCP block, and only the black arrows require execution during training. (b) The OCP block
produces ensembling weights by utilizing both the long-term history of exponential gradient descent
(EGD) and the short-term history of offline reinforcement learning (RL).

concept drift. For multivariate time series samples (xji )
L
i=1, each channel j is fed into the model

independently, and the forecaster produces prediction results (xji )
L+H
i=L+1 accordingly. As shown in

Table 1, cross-variable methods tend to overfit when the dataset has a large number of variables,
resulting in poor performance. This is evident in the poor performance of the SOTA online adaptation
model FSNet [Pham et al., 2023] in the ECL dataset. However, models that lack cross-variable
information perform worse on datasets with a small number of variables where cross-variable
dependency can be essential. Although some existing work has attempted to incorporate both cross-
variable interaction and temporal dependency into a single framework, our experiments show that
these models are fragile under concept drift and perform no better than the proposed simple baseline,
Time-TCN. To address this, we propose a novel approach that trains two separate branches, each
focusing on modeling temporal and cross-variable dependencies, respectively. We then combine
the results of these branches to achieve better forecasting performance under concept drift. We first
introduce the OCP block for coherence.

3 OneNet: Ensemble Learning for Online Time Series Forecasting

We first examine online learning methods to dynamically adjust combination weights used by
ensemble learning. We then present OneNet, an ensemble learning framework for online time series
forecasting.

3.1 Learning the best expert by Online Convex Programming (OCP)

For notation clarity, here we denote x ∈ RL×M as the historical data, y ∈ RH×M as the forecast
target. Our current method involves the integration of multiple complementary models. Therefore,
how to better integrate model predictions in the online learning setting is an important issue. Exponen-
tiated Gradient Descent (EGD) [Hill and Williamson, 2001] is a commonly used method. Specifically,
the decision space△ is a d-dimensional simplex, i.e. △ = {wt|wt,i ≥ 0 and ∥ wt ∥1= 1}, where t
is the time step indicator and we omit the subscript t for simplicity when it’s not confusing. Given
the online data stream x, its forecasting target y, and d forecasting experts with different parameters
f = [ỹi = fi(x)]

d
i=1, the player’s goal is to minimize the forecasting error as

min
w
L(w) :=∥

d∑
i=1

wifi(x)− y ∥2; s.t. w ∈ △. (1)
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According to EGD, choosing w1 = [w1,i = 1/d]di=1 as the center point of the simplex and denoting
ℓt,i as the loss of fi at time step t, the updating rule for each wi will be

wt+1,i =
wt,i exp(−η ∥ fi(x)− y ∥2)

Zt
=
wt,i exp(−ηℓt,i)

Zt
(2)

where Zt =
∑d

i=1 wt,i exp(−ηlt,i) is the normalizer, and the algorithm has a regret bound:
Proposition 1. (Online Convex Programming Bound) For T > 2 log(d), denote the regret for time
step t = 1, . . . , T as R(T ), set η =

√
2 log(d)/T , the OCP updating policy have an External regret

(See appendix B.1 for proof and analysis.)
T∑

t=1

L(wt)− inf
u

T∑
t=1

L(u) ≤
T∑

t=1

d∑
i=1

wt,i ∥ fi(x)− y ∥2 − inf
u

T∑
t=1

L(u) ≤
√
2T log(d) (3)

That is, the exponentially weighted average forecaster guarantees that the forecaster’s cumulative
expected loss is not much larger than the cumulative loss of the best decision. However, an expo-
nentially weighted average forecaster is widely known to respond very slowly to drastic changes in
the distribution [Cesa-Bianchi and Lugosi, 2006]. This phenomenon is sometimes referred to as the
“slow switch phenomenon” in online learning literature, and is further illustrated in Figure 3 where
the loss for f1 is 0 for the first 50 trials and 1 for the next 50 trials. The performance of f2 is the
opposite. When the step size η is small (e.g., η = 0.01), small changes are made to the weights and
no clear adaptation takes place. When a large step size η is applied (e.g., η = 1), we observe that the
EGD algorithm quickly adapts to the environment change for the first 50 trials by increasing weight
w1 to almost 1 in the first few iterations. But it takes many iterations for the EGD algorithm to adapt
to the change in the next 50 iterations, where f2 works much better than f1. We finally note that no
matter how we adjust the step size η, the EGD algorithm has to suffer from the trade-off between
speed of switching and overall good performance throughout the horizon.
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Figure 3: The evolution of the weight
assigned to f1 where the losses for
forecasters vary across the first regime
[0, 50] and the second regime [50, 100].

Although few algorithms have been developed to address
this issue in online learning [Stoltz and Lugosi, 2005,
Cesa-Bianchi and Lugosi, 2003, Blum and Mansour, 2007,
Foster and Vohra, 1998], the key idea is to find an acti-
vation function that maps the original policy wt to a new
one based on the recent loss of all experts. Despite the
efforts, very limited successes have been achieved, either
empirically or theoretically. In this work, we observe in
our experiments that the combination weights w generated
by the EGD algorithm are based on historical performance
over a long period of time and thus cannot adapt quickly
to transient environment changes. Hence, it is better to ef-
fectively incorporate both long-term historical information
and more recent changes in the environment. A straightfor-
ward idea is to re-initialize the weight w per K steps. We
show that such a simple algorithm can achieve a tighter
bound:
Proposition 2. (Informal) Denote I = [l, · · · , r] ∈ [1, · · · , T ] as any period of time. We then have,
the K-step re-initialize algorithm has a tighter regret bound compared to EGD at any small interval
I , where |I| < T

3
4 . (See appendix B.2 for proof.)

Proposition 2 stresses that, by considering short-term information, we can attain lower regret in short
time intervals. Such a simple strategy still struggles with the hyper-parameter choice of K. Besides,
discarding long-term information makes the algorithm inferior to EGD for a long period of the online
learning process. In this work, we address this challenge of online learning by exploiting offline
reinforcement learning [Levine et al., 2020]. At first, we use EGD to maintain long-term weight w.
Besides, we introduce a different set of weights b that can better capture the recent performance of
individual models. By combining w and b, our approach can effectively incorporate both long-term
historical information and more recent changes in the environment.

Specifically, we adopt the RvS [Emmons et al., 2022] framework, which formulates reinforcement
learning through supervised learning, as shown in Figure 2(b). At time step t, our target is to learn
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a short-term weight conditioned on the long-term weight w and experts’ performances during a
short period of history I = [l, t]. For simplicity and computation efficiency, we just let l = t − 1.
The agent then chooses actions using a policy πθrl

(
bt|{{wt,iỹi}di=1}t∈I ;y

)
parameterized by θrl.

During training, we concatenate the product between each prediction and expert weight (wt,i ∗ ỹi)
with the outcome y as the conditional input. We follow RvS [Emmons et al., 2022] to implement the
policy network as a two-layer MLPs frl : RH×M×(d+1) → Rd. Then the short-term weight and final
ensembling weight will be:

bt = frl (wt,1ỹ1 ⊗ · · · ⊗ wt,dỹd ⊗ y) and w̃t,i = (wt,i + bt,i)/

(
d∑

i=1

(wt,i + bt,i)

)
(4)

However, unlike in RvS, we cannot train the decision network through simple classification tasks since
the ground truth target action is inaccessible. Instead, we propose to train the network by minimizing
the forecasting error incurred by the new weight, that is, minθrl L(w̃) :=∥

∑d
i=1 w̃t,ifi(x)− y ∥2.

During inference, as concept drift changes gradually, we use wt−1 + bt−1 to generate the prediction
and train the networks after the ground truth outcome is observed. We theoretically and empirically
verify the effectiveness of the proposed OCP block in appendix B.4.

3.2 OneNet: utilizing the advantages of both structures

The model structure is shown in Figure 2(a) and we introduce the components as follows:

Two-stream forecasters. The input multivariate time series data is fed into two separate forecasters,
a cross-time forecaster f1 and a cross-variable forecaster f2. Each forecaster contains an encoder
and a prediction head. Assuming that the hidden dimension of the models are all dm, the encoder
of f1 projects the input series to representation z1 ∈ RM×dm , and the prediction head generates the
final forecasting results: ỹ1 ∈ RM×H . For the cross-variable forecaster f2, the encoder projects x
to z2 ∈ RL×dm . Then, the representation of the last time step z2,L ∈ Rdm is selected and fed into
the prediction head to generate the final forecasting results ỹ2 ∈ RM×H . Compared to f1, whose
projection head has a parameter of dm×H , the projection head of f2 has a parameter of dm×M×H ,
which is heavier, especially when M is large. Additionally, while f1 ignores variable dependency,
f2 simply selects the representation of the last time step time series, ignoring temporal dependency.
These two modules yield different but complementary inductive biases for forecasting tasks. OCP
block is then used for learning the best combination weights. Specifically, we use EGD to update a
weight wi for each forecaster and use offline-reinforcement learning to learn an additional short-term
weight bi, the final combination weight for one forecaster will be wi ← wi + bi. Considering the
difference between variables, we further construct different weights for each variable, namely, we
will have w ∈ RM×2 combination weights.

Decoupled training strategy. A straightforward training strategy for OneNet is to minimize L(w1 ∗
ỹ1 + w2 ∗ ỹ2,y) for both the OCP block and the two forecasters, where wi here denotes the weight
with the additional bias term. However, the coupled training strategy has a fatal flaw: considering an
extreme case where f1 always performs much better than f2, then w1 will be close to 1 and w2 → 0.
In this case, ∇ỹ2L(w1 ∗ ỹ1 + w2 ∗ ỹ2,y) ≈ 0, that is, f2 is probably not trained for a long time.
Under the context of concept drift, if retraining is not applied, as time goes on, the performance of
f2 will become much inferior. In this paper, therefore, we decouple the training process of the OCP
block and the two forecasters. Specifically, the two forecasters is trained by L(ỹ1,y) +L(ỹ2,y) and
the OCP block is trained by L(w1 ∗ ỹ1 + w2 ∗ ỹ2,y).

Remark Note that OneNet is complementary to advanced architectures for time series forecast-
ing and online adaption methods under concept drift. A stronger backbone or better adaptation
strategies/structure can both enhance performance.

4 Experiments
In this section, we will show that (1) the proposed OneNet attains superior forecasting performances
with only a simple retraining strategy (reduce more than 50% MSE compared to the previous SOTA
model); (2) OneNet achieves faster and better convergence than other methods; (3) we conduct
thorough ablation studies and analysis to reveal the importance of each of design choices of current
advanced forecasting models. Finally, we introduce a variant of OneNet, called OneNet-, which has
significantly fewer parameters but still outperforms the previous SOTA model by a large margin. Due
to space limitations, some experimental settings and results are provided in the appendix.
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Table 2: MSE of various adaptation methods. H: forecast horizon. OneNet-TCN is the mixture of
TCN and Time-TCN, and OneNet is the mixture of FSNet and Time-FSNet.

ETTH2 ETTm1 WTH ECL
Method / H

1 24 48 1 24 48 1 24 48 1 24 48 Avg

Informer 7.571 4.629 5.692 0.456 0.478 0.388 0.426 0.380 0.367 - - - 2.265
OnlineTCN 0.502 0.830 1.183 0.214 0.258 0.283 0.206 0.308 0.302 3.309 11.339 11.534 2.522
TFCL 0.557 0.846 1.208 0.087 0.211 0.236 0.177 0.301 0.323 2.732 12.094 12.110 2.574
ER 0.508 0.808 1.136 0.086 0.202 0.220 0.180 0.293 0.297 2.579 9.327 9.685 2.110
MIR 0.486 0.812 1.103 0.085 0.192 0.210 0.179 0.291 0.297 2.575 9.265 9.411 2.076
DER++ 0.508 0.828 1.157 0.083 0.196 0.208 0.174 0.287 0.294 2.657 8.996 9.009 2.033
FSNet 0.466 0.687 0.846 0.085 0.115 0.127 0.162 0.188 0.223 3.143 6.051 7.034 1.594
Time-TCN 0.491 0.779 1.307 0.093 0.281 0.308 0.158 0.311 0.308 4.060 5.260 5.230 1.549
PatchTST 0.362 1.622 2.716 0.083 0.427 0.553 0.162 0.372 0.465 2.022 4.325 5.030 1.512
OneNet-TCN 0.411 0.772 0.806 0.082 0.212 0.223 0.171 0.293 0.310 2.470 4.713 4.567 1.253
OneNet 0.380 0.532 0.609 0.082 0.098 0.108 0.156 0.175 0.200 2.351 2.074 2.201 0.747

4.1 Experimental setting
Baselines of adaptation methods We evaluate several baselines for our experiments, including
methods for continual learning, time series forecasting, and online learning. Our first baseline is
OnlineTCN [Zinkevich, 2003], which continuously trains the model without any specific strategy.
The second baseline is Experience Replay (ER) [Chaudhry et al., 2019], where previous data is
stored in a buffer and interleaved with newer samples during learning. Additionally, we consider
three advanced variants of ER: TFCL [Aljundi et al., 2019b], which uses a task-boundary detection
mechanism and a knowledge consolidation strategy; MIR [Aljundi et al., 2019a], which selects
samples that cause the most forgetting; and DER++ [Buzzega et al., 2020], which incorporates a
knowledge distillation strategy. It is worth noting that ER and its variants are strong baselines in
the online setting, as we leverage mini-batches during training to reduce noise from single samples
and achieve faster and better convergence. Finally, we compare our method to FSNet [Pham et al.,
2023], which is the previous state-of-the-art online adaptation method. Considering different model
structures, we compare the performance under concept drift of various structures, including TCN [Bai
et al., 2018], Informer [Zhou et al., 2021], FEDformer [Zhou et al., 2022b], PatchTST [Nie et al.,
2023], Dlinear [Zeng et al., 2023], Nlinear [Zeng et al., 2023], TS-Mixer [Chen et al., 2023].

Strong ensembling baselines. To verify the effectiveness of the proposed OCP block, we compare
it with several ensembling baselines. Given the online inputs x, predictions of each expert ỹ1, ỹ2,
and the ground truth outcome y, the final outcome ỹ of different baselines will be as follows: (1)
Simple averaging: we simply average the predictions of both experts to get the final prediction, i.e.,
ỹ = 1

2 (ỹ1 + ỹ2). (2) Gating mechanismLiu et al. [2021]: we learn weights to the output of each
forecaster, that is, h = WConcat(ỹ1, ỹ2) + b;w1, w2 = softmax(h), and the final result is given
by ỹ = w1 ∗ ỹ1 +w2 ∗ ỹ2. (3) Mixture-of-expertsJacobs et al. [1991], Shazeer et al. [2017]: we use
the mixture of experts approach, where we first learn the weights w1 and w2 by applying a softmax
function on a linear combination of the input, i.e., h = Wx+ b;w1, w2 = softmax(h), and then
we obtain the final prediction by combining the predictions of both experts as ỹ = w1 ∗ ỹ1 +w2 ∗ ỹ2.
(4) Linear Regression (LR): we use a simple linear regression model to obtain the optimal weights,
i.e., [w1, w2] = (XTX)−1XT y, where X = [ỹ1, ỹ2] and y is the ground truth outcome. (5)
Exponentiated Gradient Descent (EGD): we use EGD to update the weights w1 and w2 separately
without the additional bias. (6) Reinforcement learning to learn the weight directly (RL-W): we
use the bias term in the OCP block to update the weights based on the predictions of both experts and
the ground truth outcome, i.e., the weight is only dependent on ỹ1, ỹ2, and y, but not on the historical
performance of each expert. For all baselines with trainable parameters, the training procedure is just
the same as the proposed OCP block.

4.2 Online forecasting results

Cumulative performance Table.2 and Table.3 present the cumulative performance of different
baselines in terms of mean-squared errors (MSE) and mean-absolute errors (MAE). In particular,
Time-TCN and PatchTST exhibit strong performance and outperform the previous state-of-the-art
model, FSNet [Pham et al., 2023]. The proposed OneNet-TCN (online ensembling of TCN and Time-
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Table 3: MAE of various adaptation methods. H: forecast horizon. OneNet-TCN is the mixture of
TCN and Time-TCN and OneNet is the mixture of FSNet and Time-FSNet.

ETTH2 ETTm1 WTH ECL
Method / H

1 24 48 1 24 48 1 24 48 1 24 48 Avg

Informer 0.850 0.668 0.752 0.512 0.525 0.460 0.458 0.417 0.419 - - -
OnlineTCN 0.436 0.547 0.589 0.085 0.381 0.403 0.276 0.367 0.362 0.635 1.196 1.235 0.543
TFCL 0.472 0.548 0.592 0.198 0.341 0.363 0.240 0.363 0.382 0.524 1.256 1.303 0.549
ER 0.376 0.543 0.571 0.197 0.333 0.351 0.244 0.356 0.363 0.506 1.057 1.074 0.498
MIR 0.410 0.541 0.565 0.197 0.325 0.342 0.244 0.355 0.361 0.504 1.066 1.079 0.499
DER++ 0.375 0.540 0.577 0.192 0.326 0.340 0.235 0.351 0.359 0.421 1.035 1.048 0.483
FSNet 0.368 0.467 0.515 0.191 0.249 0.263 0.216 0.276 0.301 0.472 0.997 1.061 0.448
Time-TCN 0.425 0.544 0.636 0.211 0.395 0.421 0.204 0.378 0.378 0.332 0.420 0.438 0.399
PatchTST 0.341 0.577 0.672 0.186 0.471 0.549 0.200 0.393 0.459 0.224 0.341 0.375 0.399
OneNet-TCN 0.374 0.511 0.543 0.191 0.319 0.371 0.221 0.345 0.356 0.411 0.513 0.534 0.391
OneNet 0.348 0.407 0.436 0.187 0.225 0.238 0.201 0.255 0.279 0.254 0.333 0.348 0.293

Table 4: Ablation studies of ensembling methods (MSE results).

Method
ETTH2 ETTm1 WTH ECL

Avg
1 24 48 1 24 48 1 24 48 1 24 48

Baseline FSNet 0.466 0.687 0.846 0.085 0.115 0.127 0.162 0.188 0.223 3.143 6.051 7.034 1.594

Ensembling
methods

Average 0.381 0.607 0.595 0.088 0.105 0.111 0.154 0.176 0.197 2.458 2.833 3.309 0.918
Gating 0.476 0.678 0.782 0.089 0.121 0.135 0.161 0.207 0.232 2.474 2.181 2.301 0.820
MOE 0.488 0.565 1.238 0.084 0.107 0.133 0.155 0.179 0.213 3.312 3.086 2.497 1.005
LR 0.741 0.634 0.589 0.153 0.107 0.113 0.229 0.179 0.198 4.376 2.235 2.478 1.003

EGD 0.383 0.614 0.682 0.081 0.113 0.117 0.153 0.183 0.213 2.546 2.102 2.373 0.797
RL-W 0.374 0.634 0.735 0.091 0.099 0.109 0.157 0.174 0.202 2.457 2.115 2.192 0.778

Ours
OneNet- 0.381 0.732 0.932 0.084 0.154 0.153 0.162 0.222 0.208 2.351 2.322 3.833 0.961
OneNet 0.380 0.532 0.609 0.082 0.098 0.108 0.156 0.175 0.200 2.351 2.074 2.201 0.747

TCN) surpasses most of the competing baselines across various forecasting horizons. Interestingly,
if the combined branches are stronger, for example, OneNet combined FSNet and Time-FSNet,
achieving much better performance than OneNet-TCN. Namely, OneNet can integrate any advanced
online forecasting methods or representation learning structures to enhance the robustness of the
model. The average MSE and MAE of OneNet are significantly better than using either branch
(FSNet or Time-TCN) alone, which underscores the significance of incorporating online ensembling.

Comparison with strong ensembling baselines is shown in Table 4. The two-branch framework
greatly improves performance compared to FSNet with just simple ensembling methods such as
averaging. The MOE approach that learns the weight from the input x performs poorly and is
even inferior to simply averaging the prediction results. On the other hand, learning the weight
from the prediction results in ỹ1 and ỹ2 (Gating) performing much better than MOE. This indicates
that the combination weights should be dependent on the model prediction. However, formulating
the learning problem as linear regression and using the closed-form solution is not a good idea
due to the scarce nature of the online data stream and the high noise in the learned weight. EGD
provides significant benefits compared to the averaging method, which highlights the importance of
the cumulative historical performance of each expert. Additionally, we observe that RL-W achieves
performance comparable or even better than EGD on some datasets. Therefore, we propose the OCP
block that uses EGD to update the long-term weight and offline RL to learn the short-term weight.
This design leads to superior performance compared to all the other baselines.

Forecasting results are visualized in Figure 4. Compared to baselines that struggle to adapt to new
concepts and produce poor forecasting results, OneNet can successfully capture the patterns of time
series. More visualization results and convergence analysis are presented in Appendix C.7.

4.3 Ablation studies and analysis

The effect of instances normalization and seasonal-trend decomposition is shown in Table. 5. The
results show that removing the seasonal-trend decomposition component from PatchTST has limited
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Figure 4: Visualizing the model’s prediction and parameters during online learning. (a) Number
of parameters for different models on the ECL dataset with different forecast horizons. We concentrate
on a short 50-time step horizon, starting from t = 2500. (b), and (c) depict the model’s prediction
results for the first and second channels of the ECL dataset.

Table 5: Ablation studies of the instances normalization (inv) and seasonal-trend decomposition
(Decomp) of non-adapted PatchTST and online adapted PatchTST, where the metric is MSE.

Dataset ETTH2 ETTm1 WTH ECL

Online Inv Decomp 1 24 48 1 24 48 1 24 48 1 24 48 Avg

!

! % 0.360 1.625 2.670 0.083 0.436 0.555 0.161 0.370 0.464 1.988 4.345 5.060 1.510
% ! 0.380 1.492 3.060 0.084 0.427 0.463 0.164 0.358 0.421 2.510 5.320 6.280 1.747
! ! 0.362 1.622 2.716 0.083 0.427 0.553 0.162 0.372 0.465 2.022 4.325 5.030 1.512
% % 0.392 1.450 2.630 0.084 0.416 0.487 0.163 0.357 0.431 2.617 5.557 5.655 1.687

%

! % 0.397 2.090 3.156 0.084 0.448 0.553 0.161 0.372 0.467 2.000 4.398 5.100 1.602
% ! 0.674 3.100 4.510 0.086 0.462 0.686 0.165 0.362 0.443 3.900 11.340 21.540 3.939
! ! 0.427 2.090 3.290 0.083 0.433 0.570 0.163 0.375 0.467 2.030 4.395 5.101 1.619
% % 0.723 3.030 6.300 0.085 0.451 0.559 0.164 0.361 0.439 3.540 14.170 18.680 4.042

effect, regardless of whether the model is adapted online or not. Instances normalization is commonly
used to mitigate the distribution shift between training and testing data, which is crucial for model
robustness when online adaptation is impossible. However, when online adaptation is performed, the
influence of instance normalization is reduced. Interestingly, our experiments reveal that instance
normalization impedes the model adaptation process in ETTH2, ETTm1, and WTH datasets when
the forecast horizon is long (24 or 48). Thus, simply normalizing time series with zero mean and
unit standard deviation may not be the optimal approach under concept drift. Ablation studies of the
variable independence and frequency domain augmentation are detailed in the appendix.

Delve deep into parameter-efficient online adaptation. Although OneNet significantly reduces
the forecasting error, it also increases the number of parameters and inference time due to its two-
stream framework. We also design a variant of OneNet that may have slightly lower performance
than OneNet, but with fewer parameters, making it more suitable for lightweight applications,
denoted by OneNet-. Specifically, we ensemble PatchTST and Time-FSNet, which are both variable-
independent. In this case, denote z1, z2 as the generated features for one variable from two branches,
we concatenate the two features and feed them into the projection head, which further avoids the
offline reinforcement learning block for ensembling weight learning and reduces the parameters.
For example, in the ECL dataset, the hidden dimension FSNet [Pham et al., 2023] is 320, and the
sequences have 321 channels. When the forecast horizon is 48, the projection head consists of just
one linear layer with 320× 321× 48 = 4, 930, 560 parameters. On the contrary, the concatenated
features of OneNet- are always less than 1024 dimension, resulting in a final projection head with
less than 1024 × 48 = 49, 152 parameters. Figure 4(a) shows a detailed comparison of different
methods on the ECL dataset. For small forecast horizons, all methods have a comparable number
of parameters. As the forecast horizon increases, the number of parameters of existing adaptation
methods increases rapidly. On the contrary, the number of parameters of OneNet- remains insensitive
to the forecast horizon and is always less than all baselines. The performance of OneNet- is shown in
Table 12, which is much better than FSNet but achieves fewer parameters.

See the appendix for the comparison of different forecasting models and more numerical results such
as detailed ablation studies of different hyper-parameters and adaptation results under more settings.
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5 Conclusion and Future Work
Through our investigation into the behavior of advanced forecasting models with concept drift, we
discover that cross-time models exhibit greater robustness when the number of variables is large, but
are inferior to models that can model variable dependency when the number of variables is small. In
addition, this problem becomes more challenging due to the occurrence of concept drift, as the data
preferences for both model biases are dynamically changing throughout the entire online forecasting
process, making it difficult for a single model to overcome. To this end, we propose the OneNet
model, which takes advantage of the strengths of both models through OCP. In addition, we propose
to learn an additional short-term weight through offline reinforcement learning to mitigate the slow
switch phenomenon commonly observed in traditional policy learning algorithms. Our extensive
experiments demonstrate that OneNet is able to effectively deal with various types of concept drifts
and outperforms previous methods in terms of forecasting performance.

We also discover that instance normalization enhances model robustness under concept drift, but
can impede the model’s ability to quickly adapt to new distributions in certain scenarios. This
prompts further exploration of whether there exists a normalization technique that can mitigate
distribution shifts while enabling rapid adaptation to changing concepts. In addition, although we
design a lightened version of OneNet to address the problem of introducing additional parameters
and inference time, there is potential for more efficient adaptation methods, such as utilizing prompts
and efficient tuning methods from the NLP/CV community, to avoid retraining the full model.
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A Extended Related Work

Concept Drift Concepts in the real world are often dynamic and can change over time, which
is especially true for scenarios like weather prediction and customer preferences. Because of
unknown changes in the underlying data distribution, models learned from historical data may
become inconsistent with new data, thus requiring regular updates to maintain accuracy. This
phenomenon, known as concept drift [Tsymbal, 2004], adds complexity to the process of learning a
model from data. Concept drift poses several challenging subproblems, ranging from fast learning
under concept drift [Pham et al., 2023, Zhang et al., 2020, Gama et al., 2014], which involves
adjusting the offline model with new observations to recognize recent patterns, to forecasting future
data distributions [Li et al., 2022, Qin et al., 2022], which predicts the data distribution of the next
time-step sequentially, enabling the model of the downstream learning task to be trained on the
data sample from the predicted distribution. In this paper, we focus on the first problem, i.e. online
learning for time series forecasting. Unlike most existing studies for online time series forecasting [Li
et al., 2022, Qin et al., 2022, Pham et al., 2023] that only focus on how to online update their models,
this work goes beyond parameter updating and introduces multiple models and a learnable ensembling
weight, yielding rich and flexible hypothesis space.

Test-Time adaptive methods is similar to online time series forecasting but mainly focuses on
domain generalization [Zhang et al., 2022c,a, Zhou et al., 2022a], domain adaptation [Zhang et al.,
2023b] and other tasks [Liang et al., 2023]. These recently proposed to utilize target samples. Test-
Time Training methods design proxy tasks during tests such as self-consistence [Zhang et al., 2021],
rotation prediction [Sun et al., 2020] and need extra models; Test-Time Adaptation methods adjust
model parameters based on unsupervised objectives such as entropy minimization [Wang et al., 2020]
or update a prototype for each class [Iwasawa and Matsuo, 2021]. Domain adaptive method [Dubey
et al., 2021] needs additional models to adapt to target domains. There are also some methods that
do not need test-time tunning, for example, [Zhang et al., 2022b] introduces specific classifiers for
different domains and adapts the voting weight for test samples dynamically and [Zhang et al., 2023a]
apply non-parametric test-time adaptation.

Time Series Modeling Time series models have been developed for decades and are fundamental
in various fields. While autoregressive models like ARIMA [Box and Pierce, 1970] were the first
data-driven approaches, they struggle with nonlinearity and non-stationarity. Recurrent neural
networks (RNNs) were designed to handle sequential data, with LSTM [Graves and Graves, 2012]
and GRU [Chung et al., 2014] using gated structures to address gradient problems. Attention-based
RNNs [Qin et al., 2017] use temporal attention to capture long-range dependencies, but are not
parallelizable and struggle with long dependencies. Temporal convolutional networks [Sen et al.,
2019] are efficient, but have limited reception fields and struggle with long-term dependencies.
Recently, transformer-based [Vaswani et al., 2017, Wen et al., 2022] models have been renovated and
applied in time series forecasting. Although a large body of work aims to make Transformer models
more efficient and powerful [Zhou et al., 2022b, 2021, Nie et al., 2023], we are the first to evaluate
the robustness of advanced forecasting models under concept drift, making them more adaptable to
new distributions.

Reinforcement learning and offline reinforcement learning. Reinforcement learning is a math-
ematical framework for learning-based control, which allows us to automatically acquire policies
that represent near-optimal behavioral skills to optimize user-defined reward functions [Hafner and
Riedmiller, 2011, Silver et al., 2017]. The reward function specifies the objective of the agent, and
the reinforcement learning algorithm determines the actions necessary to achieve it. However, the
online learning paradigm of reinforcement learning is a major obstacle to its widespread adoption.
The iterative process of collecting experience by interacting with the environment is expensive or
dangerous in many settings, making offline reinforcement learning a more feasible alternative. Offline
RL [Prudencio et al., 2023, Levine et al., 2020] learns exclusively from static datasets of previously
collected interactions, enabling the extraction of policies from large and diverse training datasets.
Effective offline RL algorithms have a much wider range of applications than online RL. Although
there are many types of offline RL algorithms, such as those using value functions [Fujimoto et al.,
2019], dynamics estimation [Kidambi et al., 2020], or uncertainty quantification [Agarwal et al.,
2020], RvS [Emmons et al., 2022] has shown that simple conditioning with standard feedforward
networks can achieve state-of-the-art results. In this work, we draw inspiration from RvS and learn
an additional bias term for the OCP block for simplicity.
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B Proofs of Theoretical Statements

B.1 Online Convex Programming Regret Bound

Proposition 1. For T > 2 log(d), denote the regret for time step t = 1, . . . , T as R(T ), set
η =

√
2 log(d)/T , and the EGD update policy has regret.

R(T ) =

T∑
t=1

L(wt)− inf
u

T∑
t=1

L(u) ≤
T∑

t=1

d∑
i=1

wt,i ∥ fi(x)− y ∥2 −
T∑

t=1

inf
u
L(u) ≤

√
2T log(d)

(5)

Proof. The proof of Exponentiated Gradient Descent is well-studied [Ghai et al., 2020] and here we
provide a simple Regret bound for both OCP.

Denote ℓt,i =∥ fi(x)−y ∥2, recall that the normalizer for OCP-U is Zt+1 =
∑d

i=1 wt,i exp(−ηℓt,i),
then we have

log
Zt+1

Zt
= log

∑d
i=1 wt,i exp(−ηℓt,i)

Zt
= log

d∑
i=1

pt,i exp(−ηℓt,i), (6)

where pt,i = wt,i/Zt ≤ 1. For clarity, we let wt,i be the unnormalized weight and pt,i be the
normalized weight. Now, we assume ηℓt,i ∈ [0, 1]. Although it is not guaranteed that ℓt,i will be
small under concept shift, it is generally safe to assume that the concept will shift gradually and
will not lead to a drastic change in the loss. As a result, the loss will not become arbitrarily large,
and we can divide some large constant such that the loss is bounded in a small range. Based on the
assumption, we can use the second Taylor expansion of e−x ≤ 1 − x + x2/2 and the inequation
log(1− x) ≤ −x for x ∈ [0, 1]. Then we have

log

d∑
i=1

pt,i exp(−ηℓt,i) ≤ log

(
1− η

d∑
i=1

pt,iℓt,i +
η2

2

d∑
i=1

pt,iℓ
2
t,i

)
(7)

≤ −η
d∑

i=1

pt,iℓt,i +
η2

2

d∑
i=1

pt,iℓ
2
t,i ≤ −η

d∑
i=1

pt,iℓt,i +
η2

2
(8)

Note that wt,i is the unnormalized weight, and then w1,i = 1 and Z1 = d. Then we can get the lower
bound and upper bound of logZT+1:

logZT+1 =

T∑
t=1

log
Zt+1

Zt
+ log(Z1) ≤ −η

T∑
t=1

d∑
i=1

pt,iℓt,i +
Tη2

2
+ log(d) (9)

logZT+1 = log

d∑
i=1

wt,i exp(−ηℓt,i) ≥ −η
d∑

i=1

ℓt,i (10)

Finally, recall that we set η =
√
2 log(d)/T , then we have

η

(
T∑

t=1

d∑
i=1

pt,iℓt,i −
d∑

i=1

ℓt,i

)
≤ η

(
T∑

t=1

d∑
i=1

pt,iℓt,i − inf
u

T∑
t=1

L(u)

)
≤ Tη2

2
+ log(d), (11)

which completes our proof.

B.2 Theoretical guarantee for the K-step re-initialize algorithm.

The proposed K-step re-initialize algorithm is detailed as follows: at the beginning of the algorithm,
we choose w1 = [w1,i = 1/d]di=1 as the center point of the simplex and denote ℓt,i as the loss
for fi at time step t, the updating rule for each wi will be wt+1,i =

wt,i exp(−η[∂LU (wt)]i)
Zt

=
wt,i exp(−η∥fi(x)−y∥2)

Zt
=

wt,i exp(−ηℓt,i)
Zt

, where Zt =
∑d

i=1 wt,i exp(−ηlt,i) is the normalizer.
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Different from the native EGD algorithm, we re-initialize the weight wK+1 = [wK+1,i = 1/d]di=1
per K time steps. We call each K step one round. This simple strategy interrupts the influence of
the historical information of length K steps on the ensembling weights, which helps the model to
quickly adapt to the upcoming environment.

Proposition 2. For T > 2 log(d), denote I = [l, l+1, · · · , r] as any period of time of length r− l+1
where l > 1 and r ≤ T . Denote the length of I as a sublinear sequence of T , namely, |I| = Tn,
where 0 ≤ n ≤ 1. We choose K = T

2n
3 . We then have, the K-step re-initialize algorithm has an

regret bound R(I) ≤ O(T 2n/3) at any I = [l, l + 1, · · · , r]. Namely, for any small internal n < 3
4 ,

we have R([l, l + 1, · · · , r]) < O(T 1/2)

Proof. We discuss regret in three cases:

• At first, according to Proposition 1, if all K steps fall into [l, l + 1, · · · , r], then we have
R(K) ≤ 2

√
K ln d(d− 1). There exist L/K rounds that are all contained in [l, ..., r] and

the regret of these rounds will be O(L/K ∗ 2
√
K).

• For the first round, we do not know when the weights are reinitialized (l may or may not be
a multiple of K) and the performance of the algorithm in historical time. let’s think about
the worst case, where regret will be less than O(K).

• For the last round, we know when the last round begins and the weights are reinitialized.
However, some of the future time steps are not in [l, l + 1, · · · , r] and we can only treat the
case as the first round, which has a regret O(K).

Considering all cases, we have an internal regret that is bounded by

R(I) ≤ O(L/K ×
√
K +K) = O(L/K

√
K +K) (12)

When we choose an small internal length L = Tn and K = Tm where m ≤ n. To minimize the
upper bound, we should choose m = 2n

3 and the bound will be O(T 2n/3). Namely, for any small
internal n < 3

4 , we have R([l, l + 1, · · · , r]) < O(T 1/2), which is tighter than the regret bound of
the EGD algorithm under the whole online sequence. Specifically, when we choose L = T 2/3 and
K = T 4/9, we have R([l, l + 1, · · · , r]) < O(T 4/9) < O(T 1/2). When we choose L = T 1/4 and
K = T 1/6, then R([l, l + 1, · · · , r]) < O(T 1/6) < O(T 1/2).

In other words, the algorithm focuses on short-term information and leads to a better regret
bound in any small time interval. However, with increasing length of I , the bound of the simple
algorithm will become worse. Consider an extreme case where n = 1, the bound will be R([l, l +
1, · · · , r]) < O(T 2/3), which is inferior to the native EGD algorithm.

B.3 Necessary definitions and assumptions for evaluating model adaptation speed to
environment changes.

To complete the proofs, we begin by introducing some necessary definitions and assumptions. Given
the online data stream xt and its forecasting target yt at time t. Given d forecasting experts with
different parameters ft = {ft,i}, denote ℓ as a nonnegative loss function and ℓt,i := ℓ(ft,i(xt),yt)
as the loss incurred by ft,i at time t, we define the following notions.

Definition 1. (Weighted average forecaster). A weighted average forecaster makes predictions by

ỹt =

∑d
i=1 wt−1,ift,i∑d
i=1 wt−1,i

, (13)

where wt,i is the weight for expert fi at time t and ft,i is the prediction of fi at time t.
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Definition 2. (Cumulative regret and instantaneous regret). For expert fi, the cumulative regret (or
simply regret) on the T steps is defined by

RT,i =

T∑
t=1

rt,i =

T∑
t=1

(ℓ(ỹt,yt)− ℓt,i) = L̂T − LT,i (14)

where rt,i is the instantaneous regret of the expert fi at time t, which is the regret that the forecaster
feels of not having listened to the advice of the expert fi right after the tth outcome that has been
revealed. L̂T =

∑T
t=1 ℓ(ỹt,yt) is the cumulative loss of the forecaster and LT,i is the cumulative

loss of the expert fi.
Definition 3. (Potential function). We can interpret the weighted average forecaster in an interesting
way which allows us to analyze the theoretical properties easier. To do this, we denote rt =

(rt,1, . . . , rt,d) ∈ Rd as the instantaneous regret vector, and RT =
∑T

t=1 rt is the corresponding
regret vector. Now, we can introduce the potential function Φ : Rd → R of the form

Φ(u) = ψ

(
d∑

i=1

ϕ(ui)

)
(15)

where ϕ : R→ R is any nonnegative, increasing, and twice differentiable function, and ψ : R→ R
is nonnegative, strictly increasing, concave, and twice differentiable auxiliary function. With the
notion of potential function, the prediction ỹt will be

ỹt =

∑d
i=1∇Φ(Rt−1)ift,i∑d
i=1∇Φ(Rt−1)i

, (16)

where ∇Φ(Rt−1)i = ∂Φ(Rt−1)/∂Rt−1,i. It is easy to prove that the exponentially weighted

average forecaster used in Eq.(2) is based on the potential Φη(u) =
1
η ln

(∑d
i=1 e

ηui

)
.

Theorem 1. (Blackwell condition, Lemma 2.1. in [Cesa-Bianchi and Lugosi, 2006].) If the loss
function ℓ is convex in its first argument and we use x1 · x2 denote the inner product of two vectors,
then

sup
yt

rt · ∇Φ(Rt−1) ≤ 0 (17)

The following theorem is applicable to any forecaster that satisfies the Blackwell condition, not
limited to weighted average forecasters. Nevertheless, this theorem will lead to several interesting
bounds for various variations of the weighted average forecaster.
Theorem 2. (Theorem2.1 in [Cesa-Bianchi and Lugosi, 2006].) Assume that a forecaster satisfies
the Blackwell condition for a potential Φ, then for all i = 1, · · · ,

Φ(RT ) ≤ Φ(0) +
1

2

T∑
t=1

C(rt), (18)

where

C(rt) = sup
u∈Rd

ψ′

(
d∑

i=1

ϕ(ui)

)
d∑

i=1

ϕ′′(ui)r
2
t,i. (19)

B.4 Existing theoretical intuition and empirical comparison to the proposed OCP block.

With the help of the two theorems in Section B.3, we now recall that the Internal Regret
Rin(t,w) [Blum and Mansour, 2007] that measures forecaster’s expected regret of having taken an
action w at step t:

Rin(T,w) = max
i,j=1,...,d

T∑
t=1

rt,(i,j) = max
i,j=1,...,d

T∑
t=1

wt,i (ℓt,i − ℓt,j) . (20)

While Proposition 1 ensures that a small external regret can be achieved, ensuring a small internal
regret is a more challenging task. This is because any algorithm with a small internal regret also
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has small external regret but the opposite is not true, as demonstrated in [Stoltz and Lugosi, 2005].
The key question now is whether it is possible to define a policy w that attains small (i.e., sublinear
in T ) internal regret. For simplicity, we use R as internal regret in this subsection. To develop a
forecasting strategy that can guarantee a small internal regret. We define the exponential potential
function Φ : RM → R with η > 0 by

Φ(u) =
1

η
ln

(
M∑
i=1

eηui

)
, (21)

where M = d(d − 1). Here, we denote rt = (rt,(1,1), rt,(1,2), . . . , rt,(d,d−1)) ∈ Rd(d−1) as the
instantaneous regret vector and RT =

∑T
t=1 rt is the corresponding regret vector. Then, any

forecaster satisfying Blackwell’s condition will have a bounded internal regret (Corollary 8 in [Cesa-
Bianchi and Lugosi, 2003]) by choosing a proper parameter η:

max
i,j

Rt,(i,j) ≤ 2
√
t ln d(d− 1) (22)

With the help of the two theorems in Section B.3, we now recall that the Internal Regret
Rin(t,w) [Blum and Mansour, 2007] that measures forecaster’s expected regret of having taken an
action w at step t:

Rin(t,w) = max
i,j=1,...,d

T∑
t=1

rt,(i,j) = max
i,j=1,...,d

T∑
t=1

wt,i (ℓt,i − ℓt,j) . (23)

For simplicity, we use R as internal regret in this subsection. To conduct a forecasting strategy that
can guarantee a small internal regret. We define the exponential potential function Φ : RM → R with
η > 0 by

Φ(u) =
1

η
ln

(
M∑
i=1

eηui

)
, (24)

where M = d(d − 1). Here, we denote rt = (rt,(1,1), rt,(1,2), . . . , rt,(d,d−1)) ∈ Rd(d−1) as the
instantaneous regret vector and RT =

∑T
t=1 rt is the corresponding regret vector. Then, any

forecaster satisfying Blackwell’s condition will have a bounded internal regret (Corollary 8 in [Cesa-
Bianchi and Lugosi, 2003]) by choosing a proper parameter η:

max
i,j

Rt,(i,j) ≤ 2
√
t ln d(d− 1) (25)

Now our target is to find a new policy that makes the forecaster satisfy the Blackwell condition.

∇Φ(Rt−1) · rt =
d∑

i,j=1

∇(i,j)Φ(Rt−1)wt,i (ℓt,i − ℓt,j)

=

d∑
i=1

d∑
j=1

∇(i,j)Φ(Rt−1)wt,iℓt,i −
d∑

i=1

d∑
j=1

∇(i,j)Φ(Rt−1)wt,iℓt,j

=

d∑
i=1

d∑
j=1

∇(i,j)Φ(Rt−1)wt,iℓt,i −
d∑

j=1

d∑
i=1

∇(j,i)Φ(Rt−1)wt,jℓt,i

=

d∑
i=1

ℓt,i

 d∑
j=1

∇(i,j)Φ(Rt−1)wt,i −
d∑

k=1

∇(k,i)Φ(Rt−1)wt,k



(26)

To ensure that this value is negative or zero, it is sufficient to demand that.

d∑
i=1

ℓt,i

 d∑
j=1

∇(i,j)Φ(Rt−1)wt,i −
d∑

k=1

∇(k,i)Φ(Rt−1)wt,k

 = 0,∀i = 1, · · · , d (27)
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Figure 5: Empirical verification of the proposed OCP block can significantly reduce the internal
regret compared to vanilla EGD, where the forecasting window H = 48.

That is, we need to find a new policy vector wt that satisfies wT
t A = 0, where A ={

−∇k,iΦ(Rt−1) if i ̸= k,∑
j ̸=i∇k,jΦ(Rt−1) Otherwise.

is an d × d matrix. However, determining the existence

of a new policy vector and efficiently calculating its values can be challenging. Even if we assume
the new vector exists, the time complexity of calculating the new policy by the Gaussian elimination
method[Foster and Vohra, 1999] is O(d3), which is expensive, particularly for datasets with a large
number of variables such as the ECL dataset with 321 variables and 321*2 policies. To address this
issue, we propose the OCP block which utilizes an additional offline reinforcement learning block
frl with parameter θrl to learn a bias vector bt for the original policy wt. The new policy vector is
then defined as w̃t = wt + bt. The learned bias pushes the predicted outcomes closer to the ground
truth values, that is, we minimize minθrl L(w̃) :=∥

∑d
i=1 w̃ifi(x)− y ∥2; s.t. w̃ ∈ △ to train

θrl. We measure the internal regret maxi,j=1,...,d wt,i(ℓt,i − ℓt,j) at each time step empirically. As
shown in Figure 5, the proposed method significantly reduces internal regret without the need for
constructing and computing a large matrix.

C Additional Experimental Results

C.1 Datasets

We investigate a diverse set of datasets for time series forecasting. ETT [Zhou et al., 2021]3 logs the
target variable of the "oil temperature" and six features of the power load over a two-year period.
We also analyze the hourly recorded observations of ETTh2 and the 15-minute intervals of ETTm1
benchmarks. Additionally, we study ECL4 (Electricity Consuming Load), which gathers electricity

3https://github.com/zhouhaoyi/ETDataset
4https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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consumption data from 321 clients between 2012 and 2014. The Weather (WTH)5 dataset contains
hourly records of 11 climate features from almost 1,600 locations across the United States.

C.2 Implementation Details

For all benchmarks, we set the look-back window length at 60 and vary the forecast horizon from
H = 1, 24, 48. We split the data into two phases: warm-up and online training, with a ratio of
25:75. We follow the optimization details outlined in [Zhou et al., 2021] and utilize the AdamW
optimizer [Loshchilov and Hutter, 2017] to minimize the mean squared error (MSE) loss. To ensure a
fair comparison, we set the epoch and batch sizes to one, which is consistent with the online learning
setting. We make sure that all baseline models based on the TCN backbone use the same total
memory budget as FSNet, which includes three times the network sizes: one working model and
two exponential moving averages (EMAs) of its gradient. For ER, MIR, and DER++, we allocate
an episodic memory to store previous samples to meet this budget. For transformer backbones, we
find that a large number of parameters do not benefit the generalization results and always select the
hyperparameters such that the number of parameters for transformer baselines is fewer than that for
FSNet. In the warm-up phase, we calculate the mean and standard deviation to normalize the online
training samples and perform hyperparameter cross-validation. For different structures, we use the
optimal hyperparameters that are reported in the corresponding paper.

License. All the assets (i.e., datasets and the codes for baselines) we use include an MIT license
containing a copyright notice and this permission notice shall be included in all copies or substantial
portions of the software.

Environment. We conduct all the experiments on a machine with an Intel R Xeon (R) Platinum 8163
CPU @ 2.50GHZ, 32G RAM, and four Tesla-V100 (32G) instances. All experiments are repeated 3
times with different seeds.

Metrics Because learning occurs over a sequence of rounds. At each round, the model receives a
look-back window and predicts the forecast window. All models are commonly evaluated by their
accumulated mean-squared errors (MSE) and mean-absolute errors (MAE), namely the model is
evaluated based on its accumulated errors over the entire learning process.

C.3 Baseline details

We present a brief overview of the baselines employed in our experiments.

First, OnlineTCN adopts a conventional TCN backbone [Zinkevich, 2003] consisting of ten hidden
layers, each layer containing two stacks of residual convolution filters.

Secondly, ER [Chaudhry et al., 2019] expands on the OnlineTCN baseline by adding an episodic
memory that stores previous samples and interleaves them during the learning process with newer
ones.

Third, MIR [Aljundi et al., 2019a] replaces the random sampling technique of ER with its MIR
sampling approach, which selects the samples in the memory that cause the highest forgetting and
applies ER to them.

Fourthly, DER++ [Buzzega et al., 2020] enhances the standard ER method by incorporating a
knowledge distillation loss on the previous logits.

Finally, TFCL [Aljundi et al., 2019b] is a task-free, online continual learning method that starts with
an ER process and includes a task-free MAS-styled [Aljundi et al., 2018] regularization.

All the ER-based techniques utilize a reservoir sampling buffer, which is identical to that used
in [Pham et al., 2023].

C.4 Hyper-parameters

For the hyper-parameters of FSNet and the baselines mentioned in Section C.3, we follow the setting
in [Pham et al., 2023]. Besides, we cross-validate the hyper-parameters on the ETTh2 dataset and use
them for the remaining ones. In particular, we use the following configuration:

5https://www.ncei.noaa.gov/data/local-climatological-data/
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Table 6: Standard deviations of the metrics in Table. 2 and Table. 3.

MSE
ETTH2 ETTm1 WTH ECL

Method / H
1 24 48 1 24 48 1 24 48 1 24 48

Informer 1.370 2.254 2.088 0.088 0.035 0.020 0.005 0.003 0.009
OnlineTCN 0.011 0.017 0.148 0.003 0.002 0.002 0.001 0.001 0.001 0.019 0.077 0.122
TFCL 0.030 0.005 0.279 0.004 0.006 0.010 0.002 0.001 0.004 0.047 0.338 0.253
ER 0.018 0.007 0.141 0.005 0.003 0.004 0.001 0.001 0.009 0.034 0.236 0.320
MIR 0.019 0.017 0.130 0.005 0.005 0.006 0.002 0.001 0.009 0.037 0.261 0.143
DER++ 0.022 0.024 0.143 0.003 0.002 0.003 0.001 0.001 0.011 0.027 0.072 0.146
FSNet 0.018 0.014 0.128 0.003 0.002 0.003 0.001 0.001 0.001 0.021 0.096 0.105
Time-TCN 0.020 0.010 0.189 0.004 0.004 0.005 0.001 0.001 0.001 0.033 0.130 0.232
PatchTST 0.022 0.010 0.183 0.005 0.005 0.007 0.002 0.001 0.007 0.039 0.167 0.239
OneNet-TCN 0.015 0.012 0.104 0.003 0.003 0.003 0.001 0.001 0.007 0.025 0.114 0.152
OneNet 0.015 0.014 0.100 0.003 0.002 0.003 0.001 0.001 0.005 0.021 0.086 0.099

MAE
ETTH2 ETTm1 WTH ECL

Method / H
1 24 48 1 24 48 1 24 48 1 24 48

Informer 0.043 0.102 0.091 0.060 0.023 0.014 0.005 0.003 0.008
OnlineTCN 0.007 0.002 0.016 0.002 0.002 0.003 0.002 0.077 0.122 0.002 0.009 0.011
TFCL 0.003 0.003 0.024 0.008 0.005 0.008 0.002 0.001 0.006 0.011 0.019 0.008
ER 0.017 0.006 0.013 0.009 0.002 0.004 0.002 0.001 0.005 0.011 0.017 0.014
MIR 0.018 0.005 0.012 0.009 0.004 0.005 0.002 0.001 0.005 0.013 0.013 0.012
DER++ 0.015 0.004 0.015 0.007 0.002 0.002 0.002 0.001 0.007 0.002 0.013 0.014
FSNet 0.009 0.005 0.012 0.004 0.002 0.002 0.001 0.001 0.001 0.001 0.011 0.011
Time-TCN 0.009 0.004 0.018 0.006 0.003 0.005 0.002 0.026 0.044 0.008 0.009 0.011
PatchTST 0.013 0.005 0.016 0.009 0.004 0.006 0.002 0.001 0.005 0.012 0.010 0.011
OneNet-TCN 0.017 0.005 0.013 0.008 0.003 0.004 0.002 0.001 0.006 0.009 0.009 0.013
OneNet 0.014 0.005 0.013 0.007 0.003 0.003 0.002 0.001 0.004 0.005 0.007 0.012

• Learning rate 3e− 3 on Traffic and ECL and 1e− 3 for other datasets. Learning rate 1e− 2
for the EGD algorithm and 1e− 3 for the offline reinforcement learning block, where the
selection scope is {1e− 3, 3e− 3, 1e− 2, 3e− 2}.

• Number of hidden layers 10 for both cross-time and cross-variable branches, where the
selection scope is {6, 8, 10, 12}.

• Adapter’s EMA coefficient 0.9, Gradient EMA for triggering the memory interaction 0.3,
where the selection scope is {0.1, 0.2, . . . , 1.0}.

• Memory triggering threshold 0.75, where the selection scope is {0.6, 0.65, 0.7 . . . , 0.9}.
• Episodic memory size: 5000 (for ER, MIR, and DER++), 50 (for TFCL).

C.5 Additional Numerical Results

Additional forecasting results. In this section, we analyze the performance of different forecasting
methods on four datasets, ECL, WTH, ETTh2, and ETTm1, with various starting points, as shown
in Figure 8, Figure 9, Figure 10, and Figure 11, respectively. For the last three datasets, all methods
produce similar results that can capture the underlying time series patterns, and the performance
differences are not significant. However, when it comes to the ECL dataset, we observe that almost
all baselines exhibit poor forecasting results at the onset of the concept shift (time step 2500). As we
provide more instances, the performance of these methods improves, as evidenced by the cumulative
loss curves in Figure 7 and Figure 6.

Abltion studies of hyper-parameters. We conduct detailed ablation studies about model layers,
learning rate, and model dimension here. Taking into account the learning rate for the two-branch
framework, the learning rate for the long-term weight, and the learning rate for the short-term
weight: lr, lrw, lrb, as shown in Table 10 (left), the impact of the learning rate on dual-stream
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Table 7: MSE and MAE of various adaptation methods. H: forecast horizon. OneNet-TCN+Patch
is the mixture of TCN, Time-TCN, and PatchTST.

ETTH2 ETTm1 WTH ECL
Metric Method

1 24 48 1 24 48 1 24 48 1 24 48
Avg

MSE

TCN 0.502 0.830 1.183 0.214 0.258 0.283 0.206 0.308 0.302 3.309 11.339 11.534 2.522
Time-TCN 0.491 0.779 1.307 0.093 0.281 0.308 0.158 0.311 0.308 4.060 5.260 5.230 1.549
PatchTST 0.362 1.622 2.716 0.083 0.427 0.553 0.162 0.372 0.465 2.022 4.325 5.030 1.512

OneNet-TCN 0.411 0.772 0.806 0.082 0.212 0.223 0.171 0.293 0.310 2.470 4.713 4.567 1.253
OneNet-TCN+Patch 0.355 0.844 1.120 0.079 0.239 0.255 0.163 0.298 0.314 2.172 4.142 4.149 1.178

MAE

TCN 0.436 0.547 0.589 0.085 0.381 0.403 0.276 0.367 0.362 0.635 1.196 1.235 0.543
Time-TCN 0.425 0.544 0.636 0.211 0.395 0.421 0.204 0.378 0.378 0.332 0.420 0.438 0.399
PatchTST 0.341 0.577 0.672 0.186 0.471 0.549 0.200 0.393 0.459 0.224 0.341 0.375 0.399

OneNet-TCN 0.374 0.511 0.543 0.191 0.319 0.371 0.221 0.345 0.356 0.411 0.513 0.534 0.391
OneNet-TCN+Patch 0.338 0.513 0.552 0.184 0.360 0.381 0.217 0.351 0.381 0.297 0.423 0.457 0.371

networks is quite significant. The optimal learning rate varies for each dataset, but we can see
that for each dataset, the optimal learning rate is generally within the range of [1e − 4, 1e − 2].
lrw has a relatively small impact on the final performance of the model. On the contrary, the
offline-RL module determines whether the weights can quickly adapt to the new distribution, which
has a greater impact on the final performance. In terms of model parameters, # Layers, dm, and
dhead, all three have a significant impact on the performance of the model. A small model may
not be able to fit the training data, but a model that is too large increases the risk of overfitting, so
each dataset has an optimal model size. However, in this paper, we use the same hyperparameters
for all datasets to simplify the complexity of training and model selection. Specifically, we set
lr = 1e− 3, lrw = 1e− 2, lrb = 1e− 3,#layers = 10, dm = 64, dhead = 320.

C.6 Ensembling more than two networks.

In the main paper, we verify the effectiveness of ensembling two branches with different model biases.
Here, we show that the proposed OneNet framework enables us to incorporate more branches and the
OCP block can fully utilize the benefit of each branch. As shown in Table 7, incorporating PatchTST
to OneNet-TCN will further reduce the forecasting results during online forecasting.

C.7 More visualization results and Convergence Analysis of Different Structures

As shown in Figure 6 and Figure 7, ETTh2 and ECL datasets pose the greatest challenge to all
models due to the sharp peaks in their loss curves. When the forecasting window is short, OneNet
outperforms all baselines by a significant margin on all datasets. When the forecasting window is
extended to H = 48, FSNet is comparable to OneNet in the first three datasets. However, when
concept drift occurs in the ECL dataset, all baselines experience a drastic increase in their cumulative
MSE, except OneNet, which maintains a low MSE. Furthermore, the initialized MSE error of OneNet
is consistently lower than that of all baselines, thanks to the two-stream structure of OneNet. For
instance, in Figure 6(b) and Figure 6(f), OneNet demonstrates a significantly lower MSE than
baselines when the number of instances is less than 100.

C.8 Online forecasting results with delayed feedback

As illustrated in Section 2, this paper adopts the same setting as FSNet [Pham et al., 2023], where the
true values of each time step are revealed to improve the performance of the model in subsequent
rounds. However, in real-world applications, the true values of the forecast horizon H may not be
available until H rounds later, which is known as online forecasting with delayed feedback. This
setting is more challenging because the model cannot be retrained at each round and we can only
train the model per H round. Tables 8 and 9 show the cumulative performance considering MSE
and MAE, respectively. As expected, all methods perform worse with delayed feedback than under
the traditional online forecasting setting. Notably, the state-of-the-art method FSNet is shown to be
sensitive to delayed feedback, particularly when H = 48, where it is even inferior to a simple TCN
baseline on some datasets. In contrast, our proposed method OneNet significantly outperforms all
continual learning baselines across different datasets and delayed forecast horizons.
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Table 8: MSE of various adaptation methods with delayed feedback. H: forecast horizon. OneNet-
TCN is the mixture of TCN and Time-TCN, and OneNet is the mixture of FSNet and Time-FSNet.

ETTH2 ETTm1 WTH ECL
Method / H

1 24 48 1 24 48 1 24 48 1 24 48 Avg

OnlineTCN 0.502 5.871 11.074 0.214 0.410 0.535 0.206 0.429 0.504 3.309 9.621 24.159 4.736
ER 0.508 5.461 17.329 0.086 0.367 0.498 0.180 0.373 0.435 2.579 8.091 17.700 4.467
DER++ 0.508 5.387 17.334 0.083 0.347 0.465 0.174 0.369 0.431 2.657 7.878 17.692 4.444
FSNet 0.466 5.765 11.907 0.085 0.383 0.502 0.162 0.335 0.411 3.143 8.722 27.150 4.919
OneNet-TCN 0.411 2.639 4.995 0.082 0.287 0.382 0.171 0.341 0.433 2.470 4.809 6.252 1.939
OneNet 0.380 2.064 4.952 0.082 0.332 0.351 0.156 0.323 0.394 2.351 4.984 6.226 1.883

Table 9: MAE of various adaptation methods with delayed feedback. H: forecast horizon.
OneNet-TCN is the mixture of TCN and Time-TCN, and OneNet is the mixture of FSNet and
Time-FSNet.

ETTH2 ETTm1 WTH ECL
Method / H

1 24 48 1 24 48 1 24 48 1 24 48 Avg

OnlineTCN 0.436 1.109 1.348 0.085 0.511 0.548 0.276 0.459 0.508 0.635 0.783 1.076 0.648
ER 0.376 0.976 1.651 0.197 0.456 0.525 0.244 0.421 0.459 0.506 0.595 0.772 0.598
DER++ 0.375 0.967 1.644 0.192 0.443 0.508 0.235 0.415 0.456 0.421 0.591 0.758 0.584
FSNet 0.368 0.983 1.494 0.191 0.468 0.502 0.216 0.394 0.453 0.472 0.827 1.391 0.554
OneNet-TCN 0.374 0.772 0.951 0.191 0.387 0.417 0.221 0.389 0.461 0.411 0.381 0.451 0.451
OneNet 0.348 0.684 0.916 0.187 0.428 0.430 0.201 0.381 0.436 0.254 0.387 0.444 0.425

Table 10: Results of different OneNet ’s hyper-parameter configurations on the benchmarks
(H = 48). lr, lrw, lrb are the learning rate for the two-branch framework, the learning rate for the
long-term weight, and the learning rate for the short-term weight. # Layers is the number of layers
of the two branches of OneNet. dm, dhead is the hidden dimension and the output dimension of the
encoders, respectively.

Hyper-Parameter Value
MSE

Hyper-Parameter Value
MSE

ETTh2 ETTm1 WTH ECL ETTh2 ETTm1 WTH ECL

lr

1.00E-01 - - - -

# Layers

6 0.632 0.114 0.203 2.402
1.00E-02 0.585 0.152 0.171 3.128 8 0.661 0.101 0.201 2.289
1.00E-03 0.656 0.111 0.196 2.516 10 0.609 0.108 0.200 2.201
1.00E-04 2.994 0.464 0.331 4.949 12 0.652 0.115 0.200 2.328

lrw

1.00E-01 0.619 0.108 0.202 2.177

dm

16 0.679 0.122 0.223 2.201
1.00E-02 0.609 0.108 0.205 2.184 32 0.612 0.116 0.210 2.810
1.00E-03 0.608 0.108 0.201 2.197 64 0.609 0.108 0.200 2.311
1.00E-04 0.607 0.108 0.201 2.197 160 0.619 0.108 0.200 2.141

lrb

1.00E-01 0.899 0.134 0.221 2.499

dhead

80 0.741 0.136 0.219 2.468
1.00E-02 0.876 0.112 0.197 2.372 160 0.600 0.112 0.214 2.364
1.00E-03 0.656 0.111 0.196 2.371 320 0.609 0.108 0.201 2.184
1.00E-04 0.643 0.111 0.196 2.362 500 0.571 0.104 0.182 2.182

Table 11: Ablation studies of the variable independence and frequency domain augmentation,
where the metric is MSE. FEDformer-F uses frequency-enhanced blocks with Fourier transform, and
FEDformer-W uses frequency-enhanced blocks with Wavelet transform. Time-TCN is the variable
independence version of TCN.

Method Online
ETTH2 ETTm1 WTH ECL

Avg
1 24 48 1 24 48 1 24 48 1 24 48

FEDformer-F
% 1.922 3.045 4.016 0.922 1.003 1.821 3.544 2.344 1.179 43.852 37.802 37.377 11.569
! 1.912 3.013 3.951 0.372 0.633 0.586 2.196 0.376 0.562 39.243 35.975 36.092 10.409

FEDformer-W
% 1.816 3.070 3.996 2.275 3.784 2.662 1.220 1.211 1.431 41.791 37.236 37.210 11.475
! 1.798 2.993 1.623 0.235 0.451 0.516 0.717 0.962 0.372 21.387 24.600 27.640 6.941

TCN
% 27.060 27.760 26.320 2.240 12.170 10.880 0.290 0.480 0.580 538.000 546.000 552.000 145.315
! 0.530 0.930 0.910 0.130 0.310 0.250 0.300 0.348 0.348 3.010 11.680 10.800 2.462

Time-TCN
% 4.530 7.840 11.017 0.097 0.800 11.017 0.162 0.344 0.429 47.900 48.660 67.150 15.020
! 0.480 0.780 0.867 0.090 0.280 0.310 0.300 0.310 0.309 4.010 5.220 5.210 1.550
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Table 12: Comparison of existing forecasting structures, including TCN [Bai et al., 2018], FED-
former [Zhou et al., 2022b], PatchTST [Nie et al., 2023], Dlinear [Zeng et al., 2023], Nlinear [Zeng
et al., 2023], TS-Mixer [Chen et al., 2023], and CrossFormer [Zhang and Yan, 2023].

Method Online
ETTH2 ETTm1 WTH ECL

Avg
1 24 48 1 24 48 1 24 48 1 24 48

FEDformer-F
% 1.922 3.045 4.016 0.922 1.003 1.821 3.544 2.344 1.179 43.852 37.802 37.377 11.569
! 1.912 3.013 3.951 0.372 0.633 0.586 2.196 0.376 0.562 39.243 35.975 36.092 10.409

FEDformer-W
% 1.816 3.070 3.996 2.275 3.784 2.662 1.220 1.211 1.431 41.791 37.236 37.210 11.475
! 1.798 2.993 1.623 0.235 0.451 0.516 0.717 0.962 0.372 21.387 24.600 27.640 6.941

PatchTST
% 0.427 2.090 3.290 0.083 0.433 0.570 0.163 0.375 0.467 2.030 4.395 5.101 1.619
! 0.362 1.622 2.716 0.083 0.427 0.553 0.162 0.372 0.465 2.022 4.325 5.030 1.512

Crossformer
% 23.270 28.904 29.218 0.400 1.433 1.691 0.146 0.327 0.426 469.260 475.490 478.270 125.736
! 9.873 2.856 5.772 0.096 0.356 0.370 0.149 0.317 0.359 68.300 92.500 94.790 22.978

TCN
% 27.060 27.760 26.320 2.240 12.170 10.880 0.290 0.480 0.580 538.000 546.000 552.000 145.315
! 0.530 0.930 0.910 0.130 0.310 0.250 0.300 0.348 0.348 3.010 11.680 10.800 2.462

Time-TCN
% 4.530 7.840 1.300 0.097 0.800 1.030 0.162 0.344 0.429 47.900 48.660 67.150 15.020
! 0.480 0.780 1.300 0.090 0.280 0.310 0.300 0.310 0.309 4.010 5.220 5.210 1.550

DLinear
% 2.91 10.25 7.53 0.538 1.461 1.233 0.266 0.462 0.542 12.03 51.28 58.46 12.247
! 2.44 9.24 6.91 0.46 1.3 1.12 0.262 0.459 0.541 6.69 27.82 31.54 7.399

NLinear
% 0.424 50.15 49.52 0.09 4.02 4.13 0.171 1.07 1.08 2.14 930 929 164.316
! 0.369 50.24 49.6 0.089 4.035 4.141 0.171 1.053 1.064 2.135 930 930 164.408

TS-Mixer
% 1.968 3.525 4.88 0.335 0.726 0.855 0.255 0.429 0.503 11.16 30.93 44.68 8.354
! 0.78 2.05 3.060 0.219 0.550 0.660 0.237 0.413 0.482 2.798 4.983 5.764 1.833

C.9 The effect of variable independence and frequency domain augmentation

As shown in Table 11, we observe that frequency-enhanced blocks, which use the wavelet transform,
offer greater robustness to the Fourier transform. FEDformer outperforms TCN in terms of general-
ization, but online adaptation has a limited impact on performance, similar to other transformer-based
models. Notably, we find that variable independence is crucial for model robustness. By convolving
solely on the time dimension, independent of the feature channel, we significantly reduce MSE error
compared to convolving on the feature channel, regardless of whether online adaptation is applied.

C.10 Comparison of existing forecasting structures.

Results are shown in Table 12. Considering the average MSE on all four datasets, all transformer-
based models and Dlinear are better than TCN and Time-TCN. However, with online adaptation,
the forecasting error of TCN structures is reduced by a large margin and is better than DLinear and
FEDformer. Specifically, we show that the current transformer-based model (PatchTST [Nie et al.,
2023]) demonstrates superior generalization performance than the TCN models even without any
online adaptation, particularly in the challenging ECL task. However, we also noticed that PatchTST
remains largely unchanged after online retraining. In contrast, the TCN structure can quickly adapt to
the shifted distribution, and the online updated TCN model prefers a better forecasting error than the
adapted PatchTST on the first three data sets. Therefore, it is promising to combine the strengths of
both structures to create a more robust and adaptable model that can handle shifting data distributions
better.
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Algorithm 1 Training and inference algorithm of OneNet
1: Input: Historical multivariate time series x ∈ RM×L withM variables and length L, the forecast

target y ∈ RM×H , where we omit the variable index and time step index for simplicity.
2: Initialize a cross-time forecaster f1, a cross-variable forecaster f2 with corresponding prediction

head, long-term weight w = [0.5, 0.5], short term learning block frl : RH×M×3 → R2, and step
size η for long-term weight updating.

3: Get prediction results from two forecasters.
4: ỹ1 ∈ RM×H = f1(x). // Prediction result from the cross-time forecaster.
5: ỹ2 ∈ RM×H = f2(x). // Prediction result from the cross-variable forecaster.
6: Get combination weight from the OCP block.
7: b = frl (w1ỹ1 ⊗ w2ỹ2 ⊗ y) // Calculate the short term weight.

8: w̃i = (wi + bi)/
(∑d

i=1(wi + bi)
)

// Calculate the normalized weight.
9: ỹ = w1 ∗ ỹ1 + w2 ∗ ỹ2. // The final prediction result.

10: Update the long/short term weight.
11: wi = wi exp(−η ∥ ỹi − y ∥2)/

(∑2
i=1 wi exp(−η ∥ ỹi − y ∥2)

)
12: frl ← Adam (frl,L(w1 ∗ ỹ1 + w2 ∗ ỹ2,y)) //Parameters such as learning rate are omitted.
13: Update the two forecasters.
14: f1 ← Adam (f1,L(ỹ1,y)), f2 ← Adam (f2,L(ỹ2,y))
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Figure 6: Evolution of the cumulative MSE loss during training with forecast window H = 1 (a, b,
c, d) and H = 48 (e, f, g, h). 27
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Figure 7: Evolution of the cumulative MAE loss during training with forecasting window H = 1
(a,b,c,d) and H = 48 (e,f,g,h). 28



(a) Channel 1. (b) Channel 2. (c) Channel 3.

(d) Channel 1. (e) Channel 2. (f) Channel 3.

(g) Channel 1. (h) Channel 2. (i) Channel 3.

(j) Channel 1. (k) Channel 2. (l) Channel 3.

Figure 8: Visualization of the model’s prediction throughout the online learning process in the
ECL dataset. We focus on a short horizon of 50 time steps and the start prediction time is from 5000
(a,b,c), 7500 (d,e,f), 10000 (g,h,i), and 12500 (j,k,l) respectively.
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(a) Channel 1. (b) Channel 2. (c) Channel 3.

(d) Channel 1. (e) Channel 2. (f) Channel 3.

(g) Channel 1. (h) Channel 2. (i) Channel 3.

(j) Channel 1. (k) Channel 2. (l) Channel 3.

Figure 9: Visualization of the model’s prediction throughout the online learning process on the
WTH dataset. We focus on a short horizon of 50 time steps and the start prediction time is from 5000
(a,b,c), 7500 (d,e,f), 10000 (g,h,I), and 12500 (j,k,l), respectively.
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(a) Channel 1. (b) Channel 2. (c) Channel 3.

(d) Channel 1. (e) Channel 2. (f) Channel 3.

(g) Channel 1. (h) Channel 2. (i) Channel 3.

(j) Channel 1. (k) Channel 2. (l) Channel 3.

Figure 10: Visualization of the model’s prediction throughout the online learning process in the
ETTh2 data set. We focus on a short horizon of 50 time steps and the start prediction time is from
2500 (a,b,c), 5000 (d,e,f), 7500 (g,h,i), and 10000 (j,k,l) respectively.
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(a) Channel 1. (b) Channel 2. (c) Channel 3.

(d) Channel 1. (e) Channel 2. (f) Channel 3.

(g) Channel 1. (h) Channel 2. (i) Channel 3.

(j) Channel 1. (k) Channel 2. (l) Channel 3.

Figure 11: Visualization of the model’s prediction throughout the online learning process on the
ETTm1 dataset. We focus on a short horizon of 50 time steps and the start prediction time is from
2500 (a, b, c), 5000 (d, e, f), 7500 (g, h, i) and 10000 (j, k, l), respectively.
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