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Abstract

Federated Learning (FL) is an emerging paradigm that allows a model to be trained
across a number of participants without sharing data. Recent works have begun
to consider the effects of using pre-trained models as an initialization point for
existing FL algorithms; however, these approaches ignore the vast body of efficient
transfer learning literature from the centralized learning setting. Here we revisit the
problem of FL from a pre-trained model considered in prior work and expand it to
a set of computer vision transfer learning problems. We first observe that simply
fitting a linear classification head can be efficient in many cases. We then show
that in the FL setting, fitting a classifier using the Nearest Class Means (NCM) can
be done exactly and orders of magnitude more efficiently than existing proposals,
while obtaining strong performance. Finally, we demonstrate that using a two-stage
approach of obtaining the classifier and then fine-tuning the model can yield rapid
convergence and improved generalization in the federated setting. We demonstrate
the potential our method has to reduce communication and compute costs while
achieving better model performance. Code for our experiments is available1.

1 Introduction
In recent years an increased focus on data privacy has attracted significant research interest in
Federated Learning (FL). FL is an approach in which a common global model is trained by aggregating
model updates computed across a set of distributed edge devices whose data is kept private. We
desire to train a federated global model capable of equivalent performance as one trained on the
same set of centralized data. However, it is worth noting that FedAvg [McMahan et al., 2017], the
most commonly used FL baseline, has been shown to suffer from performance degradation when the
distribution of data between clients is not iid [Li et al., 2020, Acar et al., 2021, Karimireddy et al.,
2020].

Transfer learning from pre-trained models that have been trained on sufficiently abundant and diverse
data is well known to produce state-of-the-art results in tasks related to vision [He et al., 2019,
Girshick et al., 2014], Natural Language Processing (NLP) [Radford et al., 2019], and other domains.
Indeed, pre-training combined with fine tuning to specialize the model for a specific downstream task
often leads to better generalization and faster model convergence in the centralized setting [Weiss
et al., 2016, Patel et al., 2015]. FL literature on the other hand, has been largely focused on models
trained from scratch [McMahan et al., 2017, Karimireddy et al., 2020, Li et al., 2020] and the impact
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of heterogeneity on algorithmic convergence. Recently, several studies have been conducted on the
effect of pre-training on the performance of standard FL algorithms, see e.g., Chen et al. [2023],
Nguyen et al. [2023]. Here, it was found that besides improving performance, pre-training can help
to close the accuracy gap between a model trained in the federated setting and its non federated
counterpart, particularly in the case of non-iid client data.

Prior work on transfer learning in the federated setting has focused on treating the pre-trained model
as a stable initialization for classical FL algorithms that adapt all the parameters of the model.
Approaches from the transfer learning literature demonstrate that it is often more efficient to adapt
only parts of the model such as just the last layers [Kornblith et al., 2019], affine parameters [Lian
et al., 2022, Yazdanpanah et al., 2022], or adapters Houlsby et al. [2019]. These approaches frequently
yield combinations of better performance, computation time and better prevention against over-fitting.
The selection is often a function of architecture, task similarity, and dataset size [Evci et al., 2022,
Shysheya et al., 2023, Yazdanpanah et al., 2022]. In many supervised learning tasks studied in the
literature such as transfer learning from ImageNet, the representations are powerful and training only
the linear classifier is sufficient for strong performance [Kornblith et al., 2019].

A key driver of algorithmic development in FL is the reduction of communication cost, having largely
motivated the design of the FedAvg algorithm (see e.g., McMahan et al. [2017]). Although not
studied in the prior works, updating only the linear classifier can be highly efficient in the federated
setting when starting from a pre-trained model. It can allow for both high performance, limited
communication cost (since only the linear layer needs to be transmitted), and potentially rapid
convergence due to the stability of training only the final layer. Training the linear classifier in a
federated setting can lead to classical FL problems such as client drift if not treated appropriately. An
example of this is illustrated in Nguyen et al. [2023, Appendix C].

We propose a two-stage approach based on first deriving a powerful classification head (HeadTuning
stage) and subsequently performing a full fine-tuning of the model (Fine-Tune stage). Such two-stage
approaches have been applied in practice and studied theoretically in the transfer learning literature
[Kumar et al., 2022, Ren et al., 2023b]. They have been shown to give improved performance
in both in-distribution and out-of-distribution settings [Kumar et al., 2022]. We highlight that the
two-stage procedure can lead to many advantages in FL setting: (a) the fine-tuning stage is more
stable when data is non-iid heterogeneous models, leading to substantial performance improvement
(b) convergence of the fine-tuning stage is rapid (minimizing compute and communication cost)

For the HeadTuning stage, our work highlights the Nearest Class Mean (NCM), a classical alternative
to initialize the classification layer which we denote FedNCM in the federated case. FedNCM can be
computed exactly and efficiently in the federated setting without violating privacy constraints and
we will demonstrate that in many cases of interest, using FedNCM to tune the classification head
(without a subsequent fine-tuning) can even outperform approaches considered in prior work with
significant communication and computation costs savings.

Our contributions in this work are:

• We provide empirical evidence that, for numerous downstream datasets, training only the
classifier head proves to be an effective approach in FL settings.

• We propose employing a two-stage process consisting of HeadTuning (e.g., via FedNCM
or LP) followed by fine-tuning, results in faster convergence and higher accuracy without
violating FL constraints. We further illustrate that it can address many key desiderata of FL:
high accuracy, low communication, low computation, and robustness to high heterogeneity
while being easier to tune in terms of hyperparameter selection.

• We present FedNCM, a straightforward FL HeadTuning method that significantly reduces
communication costs when used, either as a stand alone technique, or as stage one (Head-
Tuning) in our proposed two stage process which leads to improved accuracy.

2 Related work
Federated Learning The most well known approach in FL is the FedAvg algorithm proposed by
McMahan et al. [2017]. In the random initialization setting, convergence of FedAvg and related
algorithms has been widely studied for both iid [Stich, 2019, Wang and Joshi, 2018] and non-iid
settings [Karimireddy et al., 2020, Li et al., 2020, Fallah et al., 2020, Yu et al., 2019]. A commonly
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cited problem in the literature is the challenge of heterogeneous or non-iid data and a variety of
algorithms have been developed to tackle this [Li et al., 2020, Hsu et al., 2019, Legate et al., 2023,
Karimireddy et al., 2020].

Transfer Learning Transfer learning is widely used in many domains where data is scarce [Girshick
et al., 2014, Alyafeai et al., 2020, Zhuang et al., 2020, Yazdanpanah et al., 2022]. A number of
approaches for transfer learning have been proposed including the most commonly used full model
fine-tuning and last layer tuning Kornblith et al. [2019] and some more efficient methods such as
selecting features Evci et al. [2022], adding affine parameters Lian et al. [2022], Yazdanpanah et al.
[2022], and adapters for transformers Houlsby et al. [2019]. Transfer learning and the effects of
pre-training in FL have so far only been explored in limited capacity. In their recent publication,
Nguyen et al. [2023] show that initializing a model with pre-trained weights consistently improves
training accuracy and reduces the performance gap between homogeneous and heterogeneous client
data distributions. Additionally, in the case where pre-trained data is not readily available, producing
synthetic data and training the global model centrally on this has been shown to be beneficial to FL
model performance [Chen et al., 2023].

Nearest Class Means Classifier The use of the NCM algorithm in artificial intelligence has a long
history. Each class is represented as a point in feature space defined by the mean feature vector of
its training samples. New samples are classified by computing the distances between them and the
class means and selecting the class whose mean is the nearest. In 1990, Ratcliff proposed to use
NCM to mitigate catastrophic forgetting in continual learning and since then the use of NCM has
been widely adopted and extended by continual learning researchers. This is due to its simplicity and
minimal compute requirements to obtain a final classifier when a strong representation has already
been learnt. Some of these methods include Rebuffi et al. [2017], Li and Hoiem [2017], Davari
et al. [2022] who maintain a memory of exemplars used to compute an NCM classifier. Related
to our work, recent literature in continual learning that have considered pre-trained models were
shown to ignore a simple NCM baseline [Janson et al., 2022] which can outperform many of the
more complicated methods proposed. In our work this NCM baseline, denoted as FedNCM for the
federated setting, demonstrates similar strong performance for FL while serving as a very practical
first stage of training in our proposed two-step process.

3 Methods
3.1 Background and Notation

In FL, distributed optimization occurs over K clients with each client k ∈ {1, ...,K} having data
Xk,Yk that contains nk samples drawn from distribution Dk. We define the total number of
samples across all clients as n =

∑K
k=1 nk. The data Xk at each node may be drawn from different

distributions and/or may be unbalanced with some clients possessing more training samples than
others. The typical objective function for federated optimization is given in Eq. 1 [Konečnỳ et al.,
2016] and aims to find the minimizer of the loss over the sum of the client data:

w∗,v∗ ∈ argmin
w,v

K∑
k=1

nk

n
L(g(f(w,Xk),v)) . (1)

Here we have split the model prediction into f , a base parameterized by w that produces representa-
tions, and g, a task head parameterized by v. In this work we will focus on the case where the task
head is a linear model, and the loss function, L represents a standard classification or regression loss.
The w are derived from a pre-trained model and they can be optimized or held fixed.

One approach to obtain the task head while using a fixed w is to optimize only v in a federated
manner over all the data. In the case that g is given as a linear model and we absorb the softmax into
L this defaults to Linear Probing (LP)[Nguyen et al., 2023, Ren et al., 2023a].

3.2 FedNCM Algorithm

An alternative approach to derive an efficient g is through the use of NCM. We note that FedNCM,
the federated version of NCM, can be derived exactly in a federated setting. In FedNCM, outlined
in Algo. 1., the server only communicates pre-trained weights once to each of the clients and the
clients only communicate once with the server to send back their weighted class means. The server
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Algorithm 1 FedNCM. K is the total number of clients, C is the number of classes in the training
dataset, Dc is the total number of samples of class c
Require: (X1,Y1), (X2,Y2), . . . , (XK ,YK) - Local datasets, wpt - pre-trained model

Server Executes:
1: for each client k ∈ K in parallel do
2: [mk

c ]c∈C ← LocalClientStats(Xk, Yk,wpt) ▷ Send to all clients, receive weighted class means
3: end for
4: for each class c ∈ C do
5: lc ← 1

Dc

∑K
k=1 m

k
c ▷ lc can be used in NCM classifier

6: end for

Client Side:
7: function LOCALCLIENTSTATS(X,Y,w)
8: for each class c ∈ N do
9: Let Xc = {xi ∈ X, yi = c}

10: mc ←
∑

x∈Xc
fw(x)

11: end for
12: return [mc]c∈C

13: end function

can then use each client’s class means to compute the NCM exactly and use them either to perform
classification directly using the class centroids, or to initialize a linear task head for further fine-tuning.
FedNCM allows an efficient classifier approximation for pre-trained models and addresses many
critical concerns in the FL setting including:

(a) communication and computation: FedNCM is negligible in both compute and communi-
cation, it requires one communication from the server to each client and back. Used as an
initialization for further FT, FedNCM speeds up convergence and reduces the communication
and computation burden

(b) client statistical heterogeneity: Robust to typical non-iid distribution shifts (not the case
for LP or FT). A FedNCM initialization also makes further FT more robust to heterogeneity.

Notably, FedNCM can be computed using secure aggregation methods. Furthermore, the lack of
update to the base model parameters naturally improves differential privacy guarantees [Cattan et al.,
2022].

To use NCM as an initialization, consider the cross-entropy loss and (g ◦ f)(x) = vf(x;w) + b.
We can set the matrix v corresponding to the class c logit with the normalized class centroid lc/∥lc∥
and the bias term to 0. This allows us to initialize the task head with FedNCM and obtain further
improvement through fine-tuning f .

3.3 Two-stage Approach for Transfer Learning in FL (HeadTune + FineTune)

FL algorithms are often unstable due to the mismatch in client objectives which can lead to large
changes during local training causing significant deviations amongst the different client models.
When using a pre-trained model which allows us a powerful initial representation, we argue that a
two-stage procedure will improve training stability and converge more quickly. In the first stage
(HeadTune) we perform HeadTuning where the parameters of g are updated e.g. by linear probing in
federated fashion or by using FedNCM. As stated in Sec. 3.2, FedNCM is highly efficient, imposing
a negligible cost in compute and communication with respect to any typical fine-tuning stage. In the
second stage (FineTune), both f and the classifier initialized in stage one, are fine tuned together in a
federated setting according to the FL objective function specified in Eq. 1. Taking the negligible cost
of communication and compute provided by FedNCM into account, our two-stage approach can have
a substantial advantage in convergence when compared to simply a fine-tuning stage [Nguyen et al.,
2023, Chen et al., 2023].

We now give an intuitive interpretation of the advantages of our method using the framework of Ren
et al. [2023a]. Assume that the k-th worker is initialized via w0, and trained locally with SGD for
several steps until it reaches the parameter wk. Writing w∗ the optimal parameter, via triangular
inequality, we obtain the following inequality:
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EXk [∥f(wk;Xk)−f(w∗;Xk)∥] ≤ EXk [∥f(w0;Xk)−f(w∗;Xk)∥+∥f(wk;Xk)−f(w0;Xk)∥] . (2)

In the neural tangent kernel (NTK) [Ren et al., 2023a, Jacot et al., 2018] regime, for sufficiently
small step size, Ren et al. [2023a] showed that the second term depends on the approximation quality
of the head g0 at initialization, which is bounded (where σ is the sigmoid activation and {ei}i the
canonical basis) for some c > 0, by:

EXk
∥f(wk;Xk)− f(w0;Xk)∥ ≤ c · E(Xk,Yk)∥eYk

− gv(f(w0;Xk))∥ .

This suggests in particular that a good choice of linear head v will lead to a smaller right hand side
term in Eq. 2, and thus reduce the distance to the optimum. Consequently, FedNCM or LP derived v
(compared to a random v) may be expected to lead to a more rapid convergence. Thanks to the initial
consensus on the classifier, we may also expect less client drift to occur, at least in the first round of
training, when v it initialized by HeadTuning, compared to a random initialization.

4 Experiments
In this section we will experimentally demonstrate the advantages of our proposed FedNCM and
FedNCM+FT. Additionally, we show that simple LP tuning can at times be more stable and commu-
nication efficient than undertaking the full fine tuning considered almost exclusively in prior work on
FL with pre-trained models.

Our primary experiments focus on standard image classification tasks. We also provide some NLP clas-
sification tasks in Sec. 4.2.1. We consider a setting similar to Nguyen et al. [2023] using the CIFAR 10
dataset [Krizhevsky, 2009] and expand our setting to include four additional standard computer vision
datasets shown in Tab. 1. Following the method of Hsu et al. [2019], data is distributed between clients
using a Dirichlet distribution parameterized by α = 0.1 for our primary experiments. We set the num-
ber of clients to 100, train for 1 local epoch per round, and set client participation to 30% for CIFAR
(as in Nguyen et al. [2023]). For all other datasets we use full client participation for simplicity.

Dataset Num. Num.
Classes Images

CIFAR-10 10 50000
Flowers102 102 1020

Stanford Cars 196 8144
CUB 200 5994

EuroSAT-Sub 10 5000

Table 1: Summary of datasets used in
our experiments.

Like Nguyen et al. [2023], we use SqueezeNet [Iandola
et al., 2016], we also consider a ResNet18 [He et al., 2016]
for experiments in Appendix E. When performing fine-
tuning and evaluation for all datasets, we resize images to
224 × 224, the training input size of ImageNet. We run
all experiments for three seeds using the FLSim library
described in Nguyen et al. [2023].

Baseline methods We compare our methods to the fol-
lowing approaches as per Nguyen et al. [2023]: (a) Ran-
dom: the model is initialized at random with no use of
pre-trained model or NCM initialization. This setting cor-

responds to the standard FL paradigm of McMahan et al. [2017]. (b) LP: Given a pre-trained model,
we freeze the base and train only the linear head using standard FL optimizer for training. (c) FT: A
pre-trained model is used to initialize the global model weights and then a standard FL optimization
algorithm is applied. (d) LP and FT Oracles: These are equivalent baselines trained in the centralized
setting that provide an upper bound to the expected performance.

All of the above baseline methods as well as our FedNCM and FedNCM+FT can be combined
with any core FL optimization algorithm such as FedAvg and FedAdam [Reddi et al., 2020]. Our
experiments, we focus on the high-performing FedAvg, FedProx and FedAdam which have been
shown to do well in these settings in prior art [Nguyen et al., 2023].

Hyperpameters We follow the approach of Nguyen et al. [2023], Reddi et al. [2020] to select the
learning rate for each method on the various datasets. For CIFAR-10 and SqueezeNet experiments
we take the hyperparameters already derived in Nguyen et al. [2023]. Additional details of selected
hyperparameters are provided in Appendix B.

Communication and Computation Budget We evaluate the communication and computation
costs of each proposed method. Costs are considered both in total and given a fixed budget for either
communication or computation. For the communication costs, we assume that each model parameter
that needs to be transmitted is transmitted via a 32-bit floating point number. This assumption
allows us to compute the total expected communication between clients and server. It is important to
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Dataset Method Accuracy (%) Total Compute (×F) Total Comm. (GB)

CIFAR-10

Random 67.8 ± 0.6 4.5 × 108 1803.71
FT 85.4 ± 0.4 3.0 × 107 120.25

FedNCM+FT 87.2 ± 0.2 3.0 × 107 120.25
LP 82.5 ± 0.2 1.0 × 106 0.82

FedNCM 64.8 ± 0.1 1 4.1 × 10−3

CIFAR-10 ×32

Random (Nguyen et al. [2023]) 34.2 1.5 × 108 601.24
FT (Nguyen et al. [2023]) 63.1 1.5 × 108 601.24

FedNCM+FT 67.9 ± 0.4 7.5 × 107 300.62
LP (Nguyen et al. [2023]) 44.7 5.0 × 107 4.10

FedNCM 40.02 ± 0.04 1 4.10 × 10−3

FLOWERS-102

Random 33.2 ± 0.7 9.2 × 106 1916.76
FT 64.5 ± 1.0 7.7 × 105 159.73

FedNCM+FT 74.9 ± 0.2 7.7 × 105 159.73
LP 74.1 ± 1.2 5.1 × 105 20.93

FedNCM 71.8 ± 0.03 1 4.2 × 10−2

CUB

Random 15.0 ± 0.7 5.4 × 107 2037.18
FT 52.0 ± 0.9 1.8 × 107 679.06

FedNCM+FT 55.0 ± 0.3 1.8 × 107 679.06
LP 50.0 ± 0.3 9.0 × 106 122.88

FedNCM 37.9 ± 0.2 1 8.2 × 10−2

STANFORD CARS

Random 5.6 ± 0.8 8.6 × 107 2370.97
FT 48.7 ± 2.0 2.4 × 107 677.42

FedNCM+FT 54.8 ± 1.2 2.4 × 107 677.42
LP 41.2 ± 0.5 2.0 × 107 200.70

FedNCM 20.33 ± 0.04 1 8.0 × 10−2

EUROSAT-SUB

Random 85.8 ± 2.7 5.3 × 107 2104.32
FT 95.6 ± 1.0 1.5 × 107 601.24

FedNCM+FT 96.0 ± 0.5 1.5 × 107 601.24
LP 92.6 ± 0.4 5.0 × 106 4.10

FedNCM 81.8 ± 0.6 1 4..10 × 10−3

Table 2: Accuracy, total computation and total communication costs of pure HeadTuning methods
(below dashed lines) and their full training counterparts. CIFAR-10 ×32 indicates CIFAR-10 without
re-sizing samples to 224× 224, we include this setting so we can compare directly with values for
FT, Random and LP reported by Nguyen et al. [2023]. We observe pure HeadTuning approaches,
FedNCM and LP can be powerful, especially under compute and communication constraints. The
unit, F, used to measure communication is one forward pass of a single sample, details of the
communication and computation calculations are provided in AppendixA.

emphasize that linear probing only requires that we send client updates for the classifier rather than
the entire model as is the case in the other settings. Consequently, LP has much lower communication
costs when compared to FT for any given number of rounds. Our proposed FedNCM is a one-round
algorithm and therefore has even lower communication costs than any other algorithm considered.

For computation time we consider the total FLOPs executed on the clients. We assume for simplicity
that the backward pass of a model is 2× the forward pass. For example, in the case of LP (with
data augmentation) each federated round leads to one forward communication on the base model, f ,
and one forward and one backward (equivalent to two forward passes) on the head, g. Similarly, for
FedNCM the communication cost consists only one forward pass through the data.

4.1 Efficiency of Pure HeadTuning for FL

As discussed in Sec. 1 tuning the classifier head is at times as effective or more effective than updating
the entire model in the context of transfer learning Evci et al. [2022]. In prior work, this situation
was briefly considered as a limited case in Nguyen et al. [2023, Appendix C.2] for CIFAR-10 and
suggested that tuning just the linear head (LP) might be a weak approach in the heterogeneous setting.
Here we first revisit this claim and expand the scope of these experiments to highlight where LP can
be beneficial in terms of performance, communication costs, and compute time. Subsequently, we
show another approach for approximating a good classifier, FedNCM, which can be competitive with
orders of magnitude less computation and communication cost. We will demonstrate how to get the
best of both HeadTuning and fine-tuning in the FL setting.

In Nguyen et al. [2023] the CIFAR-10 fine-tuning is done by feeding the 32× 32 input image directly
into a pre-trained ImageNet model. Since the architectures are adapted to the 224 × 224 size and
trained at this scale originally, such an approach can lead to a very large distribution shift and may be
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sub-optimal for transfer learning. Thus we additionally compare to CIFAR-10 using the traditional
approach of resizing the image to the source data [Kornblith et al., 2019, Evci et al., 2022].

Tab. 2 shows accuracy, compute, and communication cost results for Pure HeadTuning Methods
(FedNCM and LP) as well as full tuning approaches including our FedNCM+FT. We note that in
Tab. 2, CIFAR-10-32 × 32 refers to results published in Nguyen et al. [2023]. We first point out
the difference image input size has on the results and conclusion. Overall accuracy is much higher
(highest is 86% vs 63%) and the gap between FT and LP is substantially smaller when using the
model’s native input size, it shows an absolute improvement of only 4.6% vs 18.4%. For both sizes of
CIFAR-10 CUB, Stanford Cars and Eurosat. FedNCM without FT can substantially exceed random
performance while maintaining a highly competitive compute and communication budget. For the
Flowers102 dataset, FedNCM can already far exceed the difficult-to-train FT setting and furthermore,
LP alone exceeds both FedNCM and FT. Our two-stage method of FedNCM+FT outperforms all
other methods in terms of accuracy. In what follows we will show how FedNCM+FT also allows high
efficiency given a specific, potentially limited compute and computational budget. When considering
the results, we note that CIFAR-10 contains the same object categories as the original ImageNet
dataset but the Flowers102 and CUB datasets, represent more realistic transfer learning tasks and
under these conditions we observe the true effectiveness of HeadTuning methods such as FedNCM
and LP.

4.2 FedNCM then FineTune

We now study in more detail the two-stage approach described in Sec. 3.3. Fig. 1 shows the
comparison of our baselines and FedNCM+FT with FedAvg. We show both accuracies versus rounds
as well as accuracy given a communication and computation cost budget. Firstly, we observe that
when going beyond CIFAR-10, LP can converge rather quickly and sometimes to the same accuracy
as FT. This result shows the importance of HeadTuning and supports the use of LP in federated
learning scenarios. Secondly, we can see the clear advantage of FedNCM+FT. After the stage one
FedNCM initialization, it is able to achieve a strong starting accuracy and in stage two, it converges
with a better accuracy than FT given the same computation budget. We note that FedNCM+FT for
Cars and EuroSAT-Sub sees an initial performance decrease during the first few rounds of fine-tuning
before rebounding to reach the best performance. This phenomenon is related to the chosen learning
rate and further study is required to determine if this drop behaviour can be eliminated, potentially by
using an initial warm-up period at a lower learning rate.

FedNCM+FT converges rapidly, allowing it to be highly efficient under most communication budgets
compared to other methods. The second column of Tab. 2 shows that as we impose increasingly severe
limitations on communication budgets, the performance gap between FedNCM+FT and all other
methods widens significantly in favour of FedNCM+FT. Indeed for all the datasets FedNCM+FT
is always optimal early on. For three of the datasets (Flowers, CUB, Cars) it exceeds LP over any
communication budget. For CIFAR-10 and Eurosat LP can overtake it after the early stage, however,
FedNCM+FT remains competitive and ultimately reaches higher performance. Similar trends are
observed for computation time.We note overall as compared to FT the performance improvement can
be drastic when considering the trade-off of accuracy as a function of communication and compute
available. We also remark that the variance of LP and FedNCM+FT is lower across runs than the FT
and Random counterparts.

We note that the Random baseline, typically requires longer training than others to reach the conver-
gence criteria, thus for the purpose of our visualization we do not show the fully converged random
baseline, which always requires many more communication rounds than the other approaches;
however, the full curves are included in Appendix F.
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Figure 1: A comparison of the accuracy between models initialized with pre-trained weights and trained on
different downstream tasks. The final result for both an LP and an FT oracle are shown and we remark that the
NCM initialization allows the model to outperform the results of the LP oracle.
4.2.1 NLP Experiments

We now explore the effectiveness of our approach on NLP tasks. For these experiments, we train
a DistillBert model [Sanh et al., 2019] on the AG News dataset [Zhang et al., 2015]. Fig. 2 shows
the comparison of LP, FT and FedNCM+FT where we vary the number of examples per class (15,
90, 1470). We observe the strong performance of FedNCM as a stand alone method, reinforcing
previous observations around the importance of HeadTuning. As models get larger, the importance of
the final layer on the overall size of the model diminishes resulting in larger gaps in communication
cost between one LP or FedNCM round and an FT round. Additionally, we find that FedNCM’s
accuracy is robust to sample size decreases and FedNCM+FT provides substantial convergence, and
by extension communication cost benefits. Indeed it is well known that centroid based classifiers
perform robustly in the case of few samples [Snell et al., 2017]. We provide additional confirmation
of this in Appendix D with experiments using small subsets of Cifar-10.
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Figure 2: A comparison of the accuracy between models initialized with pre-trained trained using LP, FT and
FedNCM+FT. We remark that the FedNCM alone obtains strong performance.

Dataset Algorithm FedNCM FedNCM + FT FT

CIFAR-10 FEDAVG 64.8 ± 0.1 87.2 ± 0.2 85.4 ± 0.4
FEDPROX 64.8 ± 0.1 88.1 ± 0.1 87.8 ± 0.08

FEDADAM 64.8 ± 0.1 89.4 ± 1.1 88.2 ± 0.2

FLOWERS102 FEDAVG 71.8 ± 0.03 74.9 ± 0.2 64.5 ± 1.0
FEDPROX 71.8 ± 0.03 75.2 ± 0.1 65.5 ± 1.5

FEDADAM 71.8 ± 0.03 76.7 ± 0.2 66.6 ± 1.0

Table 3: Model performance with different methods for a variety of FL algorithms for FedAvg, FedADAM and
FedProx. FedNCM+FT outperforms in all cases.

4.3 Analysis and Ablations

We now focus on demonstrating other advantages of our two-stage method, with a focus on using
FedNCM as the method of choice for stage one (FedNCM+FT). In particular, we investigate robust-
ness to larger number of clients, insensitivity to hyperparameters and compatibility with multiple FL
algorithms and architectures. In Appendix C we ablate our two-stage method by comparing FedNCM,
LP and a three-layer MPL as methods for stage one.

4.3.1 Choice of FL Algorithm

So far we have focused on comparisons using FedAvg as the baseline algorithm; however, since
our method can be widely applied in FL, we further analyze FedNCM+FT using the FedAdam
optimizer and the FedProx algorithm. Tab. 4.3.1 summarizes the results of using each method with
1.) FedNCM+FT and 2.) only FT, for the Cifar-10 and Flowers datasets.

We observe that improved FL optimizers can complement the two-stage FedNCM+FT which sys-
tematically exceeds the performance obtained when only fine-tuning. Regardless of the federated
algorithm used, FedNCM alone continues to exceed the performance of FT on Flowers102. Our
results suggest that choice of the FL optimization algorithm [Nguyen et al., 2023] is not always the
most critical consideration for optimal performance when using pre-trained models.

Hyperparameter Tuning FL algorithms are known to be challenging for hyperparameter selection
[Reddi et al., 2020] and this can affect their practical application. We first note that FedNCM does
not have any hyperparameters which already provides a large advantage. In Fig. 5, we observe the
final performance for a grid search over a range of server and client learning rates for FedAdam using
both FT and FedNCM+FT. We observe that FedNCM+FT not only has higher performance but it
is also more stable over the entire hyperparameter grid on Flowers dataset, and outperforms for all
settings on CIFAR-10.
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Figure 3: We vary the heterogeneity (Dirichlet-α) for CIFAR-10 and Flowers102. Methods with
HeadTuning: LP and FedNCM+FT are more robust, with the substantial advantage of FedNCM + FT
increasing in challenging higher heterogeneity.
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Figure 4: We vary the number of local epochs. FedNCM+FT always outperforms FT and nearly
always LP in this challenging setting.
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Figure 5: Hyperparameter grids for FedAdam for CIFAR-10 FT, FedNCMFT (left) and Flowers
(right). We observe CIFAR-10 FedNCM-FT tends to do better or equal for all hyperparameters
compared to FT. For Flowers it is much easier to tune, achieving strong values over a wide range, a
noticeable advantage in FL

Heterogeneity Nguyen et al. [2023] points out that starting from a pre-trained model can reduce
the effect of system heterogeneity. This is evaluated by comparing a specific Dirichlet distribution
(α = 0.1) used to partition data into a non-iid partitioning. Although the effect of heterogeneity is
reduced we observe that in highly heterogeneous settings we still see substantial degradation in FT
as shown in Fig. 3. Here we consider for CIFAR-10 the nearly iid α = 100, α = 0.1 as considered
in Nguyen et al. [2023], and a very heterogeneous α = 0.01. Firstly, we observe that FedNCM+FT
can provide benefits in the iid setting. As heterogeneity degrades the naive FT setting sees a large
absolute and relative drop in performance. On the other hand, FedNCM+FT as well as LP are able to
degrade more gracefully.

Varying the Local Epoch The number of local epochs can drastically affect FL aglorithms, typi-
cally a larger amount of local computation between rounds is desired to minimize communication.
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Figure 6: We increase the number of
clients on CIFAR-10. FedNCM+FT de-
grades more gracefully than FT and LP.

However, this can often come at a cost of degraded perfor-
mance. We observe in Fig. 4 as in Nguyen et al. [2023]
that FT can be relatively robust in some cases (CIFAR-
10) to increasing local epochs. However, we also observe
for some datasets that it can degrade, while LP and Fed-
NCM+FT are less likely to degrade. Overall FedNCM+FT
continues to outperform for larger local epochs.

Increasing clients Tab. 6 shows that as we increase the
number of clients we observe that the degradation of Fed-
NCM+FT is less severe than both LP and FT, suggesting it
is stable under a large number of workers being averaged.
As discussed in Sec. 3.3 it is expected in the same round
that a representation would shift less from a starting point,
and therefore since the starting point is the same for all
clients, we expect the client drift within a round to be less
given a fixed update budget.

5 Conclusion and Limitations
We have highlighted the importance of the last layers in FL from pre-trained models. We used
this observation to then derive two highly efficient methods FedNCM and FedNCM+FT whose
advantages in terms of performance, communication, computation, and robustness to heterogeneity
were demonstrated. A limitation of our work is that it focus on image data and models, as this the
primary set of data and models studied in prior work particularly in the context of transfer learning.
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Dataset FT+FedNCM FT LP Random

CIFAR-10 200 200 200 3000
CIFAR-10 32 × 32NGUYEN ET AL. [2023] 1000 500 1000 1000

FLOWERS-102 250 250 500 3000
STANFORD CARS 1000 1000 2500 3500

CUB 1000 1000 1500 3000
EUROSAT-SUB 1000 1000 1000 3500

Table 4: rounds conducted for each dataset and method combination. For CIFAR-10 32× 32 experiments were
conducted in Nguyen et al. [2023] with the exception of FedNCM+FT (our method)

Appendix

A Calculation of Communication and Computation Values in Tab. 2

A.1 Communication

For HeadTuning methods such as LP and FedNCM, communication is calculated according to
equation 3 where LLin and LLout are the input and output dimensions of the linear layer, R is the
number of federated rounds, K is the total number of clients and F is the fraction F ∈ (0, 1] of
clients participating in each federated round:

commlp = 2 ∗ (LLout ∗ LLin) ∗K ∗R ∗ F ∗ (32 bit) (3)

For methods training the complete model, communication is calculated according to equation 4
where P is the number of parameters present in the base model (excluding the linear layer) and LLin,
LLout, R, K and F have the same meanings as above:

commft = 2((LLout ∗ LLin) + P ) ∗K ∗R ∗ F ∗ (32 bit) (4)

A.2 Computation

For computation, let F be one forward pass of a single sample, Let S be the subset of clients, K,
selected to participate in each federated round, R. We define one backward pass as 2F therefore each
sample contributes 3F per round in a full fine-tuning situation. For HeadTuning a complete backward
pass is not necessary since we only update the linear layer weights and each sample contributes F
per round. Eq. 5 and Eq. 6 formalize our computation calculation method in units of F, where E is
the number of local epochs performed by each client and Ns is the sum of the number of samples at
each selected client, S.

compft = 3 ∗R ∗ E ∗Ns (5)

compft = R ∗ E ∗Ns (6)

B Hyperparameter Settings

For CIFAR-10, CUB, Stanford Cars and Eurosat datasets the learning rates
for the FedAvg algorithm were tuned via a grid search over learning rates
{0.1, 0.07, 0.05, 0.03, 0.01, 0.007, 0.005, 0.003, 0.001}. For Flowers102, based on prelimi-
nary analysis we used lower learning rates were tuned over learning rates
{0.01, 0.007, 0.005, 0.003, 0.001, 0.0007, 0.0005, 0.0003, 0.0001}. Tab. 4 summarizes the number
of rounds conducted for each dataset and method combination.

Prior work on federated learning with pre-trained models has indicated that for FedADAM lower
global learning rates and higher client learning rates were more effective. As a result for CIFAR-
10 and Flowers the client learning rate was tuned over {1, 0.1, 0.01, 0.001, 0.0001} and the server
learning rate was tuned over {0.001, 0.0001, 0.00001, 0.000001}, each combination of server and
client learning rates were tried.
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Dataset HeadTuning Method Accuracy

CIFAR-10 LP 82.5 ± 0.2
MLP 84.1 ± 0.2

FLOWERS102 LP 74.1 ± 1.2
MLP 72.5 ± 0.3

CUB LP 50.0 ± 0.3
MLP 50.3 ± 0.3

CARS
LP 41.2 ± 0.5

MLP 41.0 ± 0.4

EUROSAT-SUB
LP 92.6 ± 0.4

MLP 91.7 ± 0.8

Table 5: LP and MLP HeadTuning results prior to the fine-tuning stage.

Dataset stage 1 Method Accuracy

CIFAR-10 LP (5 ROUNDS) 85.9 ± 0.4
LP (10 ROUNDS) 84.5 ± 0.17

FEDNCM 87.2 ± 0.2
N/A 85.4 ± 0.4

FLOWERS102 LP (5 ROUNDS) 68.6 ± 1.3
LP (10 ROUNDS) 68.3 ± 0.6

FEDNCM 74.9 ± 0.2
N/A 64.5 ± 0.1

Table 6: Outcomes using LP as the HeadTuning method in our two stage training algorithm, FedNCM results
from Tab. 2 are included for comparison.

C Additional HeadTuning Analysis

C.1 MLP HeadTuning

We compare HeadTuning methods by replacing the linear layer in the LP method with a three layer
MLP. Tab. 5 shows the HeadTuning results obtained using LP and MLP. We observe no advantage to
using an MLP instead on a linear layer since most of our results are comparable or in some cases
even inferior to the LP case.

C.2 LP and FT

In this section we explore the use of LP as the HeadTuning method in our two-stage algorithm. Tab. 6
indicates performance of our two stage HeadTuning + fine-tuning method using five rounds of LP,
ten rounds of LP and FedNCM as the HeadTuning methods. The bottom row in each dataset category
where stage 1 Methods is denoted as n/a, is the result of only fine-tuning, i.e. not using our two stage
method, which shows that HeadTuning prior to fine-tuning is always at least as effective as FT alone
and, depending on the HeadTuning method selected, much more effective.

D Experiments Using Small Subsets of Data

We conduct experiments using only a small subset of Cifar-10 with nine samples of each class, i.e.
90 samples in total. We distribute these samples between five clients using a Dirichlet distribution
with α = 0.1 so each client will have very few samples and some will be entirely missing samples
from many classes. Tab. 7 shows a ≥ 10% improvement in accuracy between FT and FedNCM,
which we attribute to overfitting of the FT model and the challenge of heterogeneity that FedNCM is
not susceptible to. We also observe that LP does quite a bit better than FT indicating the benefit of
HeadTuning methods in this setting.

E ResNet Experiments

We perform experiments for LP, FT, FedNCM and FedNCM+FT using the ResNet18 model using the
FedAvg algorithm and the CIFAR-10 and Flowers102 datasets. Results are summarized in Tab. 8
where we observe that FedNCM performance is better by almost 13% compared to squeezenet, while
FT performance is degraded compared to squeezenet. We hypothesis this is due to the challenges
of deeper networks in heterogenous federated learning. For the Flowers102 dataset, FedNCM and
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LP FT FedNCM FedNCM + FT

53.8 ± 0.3 45.2 ± 2.4 55.6 ± 0.8 56.7 ± 0.7

Table 7: ResNet18 model performance for FedAvg. As with Squeezenet, FedNCM+FT continues to outperforms
in all cases.

Dataset FedNCM FedNCM + FT FT+Pretrain LP+Pretrain

CIFAR-10 77.74 ± 0.05 79.05 ± 1.31 77.87 ± 4.07 74.73 ± 3.03
FLOWERS102 74.13 ± 0.31 74.1 ± 0.26 34.41 ± 10.16 25.35 ± 2.59

Table 8: ResNet18 model performance for FedAvg. As with Squeezenet, FedNCM+FT continues to outperforms
in all cases.

FedNCM+FT produce the best results by far. Additionally, for flowers FedNCM outperformed all
other methods. The variance between runs using ResNet18 is much higher than was observed for
SqueezeNet, FedNCM appears to help stabilize the results since it provides the most consistency by
for both datasets.

F Extended Accuracy Comparison Figures

Fig. 7 is the extended version of Fig. 1 in the main body of the paper. In the paper we truncate
the number of round displayed for the random setting since random requires many more rounds to
converge than the other methods. Fig. 7 shows these same figures with the entirety of the training
rounds displayed for the random setting.

G Compute

We use a combination of NVIDIA A100-SXM4-40GB, NVIDIA RTX A4500, Tesla V100-SXM2-
32GB and Tesla P100-PCIE-12GB GPUs for a total of 1.1 GPU years . In addition to the experiments
reported in the paper, this includes preliminary experiments and hyperparameter searches.
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Figure 7: The full training of Random baseline corresponding to Fig. 1 in the paper is shown. We
observer Random is always very far from the other baseliens and converges slowly.
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