
1 Notation

r reward function
h safety loss function
V π cumulative discounted reward value function
V πc cumulative discounted cost value function
V πh reachability value function
1s∈Sv instantaneous violation indicator function
ϕπ reachability estimation function (REF) of a given policy
ϕ∗ reachability estimation function (REF) of safest policy
p predicted reachability estimation function (REF) of safest policy

Hmax upper bound of function h
Hmin minimum non-zero value of of function h
λmax maximum value to clip lagrange multiplier
Rmax upper bound of function r
Ss safe set
Sv unsafe set
Sf feasible set (persistent safe set)

Es′∼π,P expectation taken over possible next states
Eτ∼π,P expectation taken over possible trajectories
Es∼d0 expectation taken over initial distribution

Table 1: Notation used in the paper.

2 Gradient estimates

The Q value losses based on the MSE between the Q networks and the respective sampled returns
result in the gradients:

∇̂ηJQ(η) = ∇ηQ(st, at; η) · [Qη(st, at)− (r(st, at) + γQ(st+1, at+1; η))]

∇̂κJQc
(κ) = ∇κQc(st, at;κ) · [Qκ(st, at)− (h(st) + γQc(st+1, at+1;κ))]

Similarly the REF gradient update is:

∇̂ηJp(ξ) = ∇ξp(st; ξ) · [p(st; ξ)−max{1st∈Sv
, γp(st+1; ξ)}]

From the policy gradient theorem in [1], we get the policy gradient loss as:

∇̂θJπ(θ) = γt
[
−Qη(st, at)[1− pξ(st)]

+Qc(st, at)[λω(1− pξ(st)) + pξ(st)]

]
∇θ log πθ(at|st)

and the stochastic gradient of the multiplier is

∇̂ωJλ(ω) = Qc(st, at;κ)(1− pξ(st))∇ωλω

and λω is clipped to be in range [0, λmax] (in particular, projection operator ΓΩ(λω) =

argminλ̂ω∈[0,λmax]
||λω − λ̂ω||2).

3 Proofs

3.1 Theorem 1 with Proof

Theorem 1. The REF can be reduced to the following recursive Bellman formulation:
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ϕπ(s) = max{1s∈Sv , E
s′∼π,P (s)

ϕπ(s′)},

where s′ ∼ π, P (s) is a sample of the immediate successive state (i.e., s′ ∼ P (·|s, a ∼ π(·|s))) and
the expectation is taken over all possible successive states.

Proof.

ϕπ(s) := E
τ∼π,P (s)

max
st∈τ

1sπt ∈Sv

= E
τ∼π,P (s)

max{1s∈Sv
, max
st∈τ\{s}

1sπt ∈Sv
}

= max{1s∈Sv
, E
τ∼π,P (s)

max
st∈τ\{s}

1sπt ∈Sv
}

= max{1s∈Sv
, E
s′∼π,P (s)

E
τ ′∼π,P (s′)

max
st∈τ ′

1sπt ∈Sv
}

= max{1s∈Sv
, E
s′∼π,P (s)

ϕπ(s′)}

Note that we use the notation τ ∼ π, P (s) to indicate a trajectory sampled from the MDP with
transition probability P under policy π starting from state s, and use the notation s′ ∼ π, P (s) to
indicate the next immediate state from the MDP with transition probability P under policy π starting
from state s. The third line holds because the indicator function is either 0 or 1, so if it’s 1 then
ϕπ(s) = Eτ∼π,P (s) 1 = 1 else ϕπ(s) = Eτ∼π,P (s) maxst∈τ\{s} 1sπt ∈Sv

.

3.2 Proposition 1 with Proof

Proposition 1. The cost value function V πc (s) is zero for state s if and only if the persistent safety is
guaranteed for that state under the policy π.

Proof. (IF) Assume for a given policy π, the persistent safety is guaranteed, i.e. h(st|s0 = 0, π) = 0
holds for all st ∈ τ for all possible trajectories τ sampled from the environment with control policy
π. We then have:

V πc (s) := E
τ∼π,P (s)

[
∑
st∈τ

γth(st)] = 0.

(ONLY IF) Assume for a given policy π, V πc (s) = 0. Since the image of the safety loss function h(s)
is non-negative real, and V πc (s) is the expectation of the sum of non-negative real values, the only
way V πc (s) = 0 is if h(st|s0 = 0, π) = 0, ∀st ∈ τ for all possible trajectories τ sampled from the
environment with control policy π.

3.3 Proposition 2 with Proof

Proposition 2. If ∃π that produces trajectory τ = {(si), i ∈ N, s1 = s} in deterministic MDP M
starting from state s, and ∃m ∈ N,m < ∞ such that sm ∈ Sπf , then ∃ϵ > 0 where if discount
factor γ ∈ (1− ϵ, 1), then the optimal policy π∗ of Main paper Equation 3 will produce a trajectory
τ ′ = {(s′j), j ∈ N, s′1 = s}, such that ∃n ∈ N, n <∞, s′n ∈ Sπ

∗

f and V π
∗

c (s) = minπ′ V π
′

c (s).

In other words the proposition is stating for some state s, if there is a policy that enters its feasible set
in a finite number (m− 1) of steps, then by ensuring discount factor γ is close to 1 we can guarantee
that the optimal policy π∗ of Main paper Equation 3 will also enter the feasible set in a finite number
of steps with the minimum cumulative discounted sum of the costs. Note that π∗ will always produce
trajectories with the minimum discounted sum of costs whether the state is in the feasible or infeasible
set of the policy by virtue of its optimization which constrains V πc .

Proof. We consider two cases: (Case 1) m = 1 and (Case 2) m > 1.

Case 1 m = 1: In this case, there exists a policy π in which the the current state s is in the feasible
set of that policy. By definition, that means that in a trajectory τ sampled in the MDP using that
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policy, starting from state s, there are no future violations incurred in τ . Thus V πc (s) = 0. Since π∗

incurs the minimum cumulative violation, V π
∗

c (s) = 0 trivially. Therefore, s, the first state of the
trajectory, is in the feasible set of π∗.

Case 2 m > 1: Since policy π∗ produces the minimum cumulative discounted cost for a given state s,
the core of this proof will be demonstrating that the minimum cumulative discounted cost of entering
the feasible set (call this value HE) is less than the minimum cumulative discounted cost of not
entering the feasible set (call this value HN ), and therefore π∗ will choose the route of entering the
feasible set.

The proof will proceed by deriving a sufficient condition for HE < HN by establishing bounds on
them.

We place an upper bound on the minimum cumulative discounted cost of entering the feasible set
HE . Since ∃π that enters the feasible set in m− 1 steps, entering the feasible set can be at most the
highest possible cost that π incurs. Since the maximum cost at any state is Hmax, the upper bound is
the discounted sum of m− 1 steps of violations Hmax, or

HE <
Hmax(1− γm−1)

(1− γ)

We place a lower bound on the minimum cumulative discounted cost of not entering the feasible
set HN . In this case, say in the sampled trajectory, the maximum gap between any two non-zero
violations is w. By definition, the trajectory cannot have an infinite sequence of violation-free states
since the trajectory never enters the feasible set. Therefore w is finite. Now recall Hmin is the lower
bound on the non-zero values of h. So the minimum cumulative discounted cost of not entering the
feasible set must be at least the cost of the trajectory with a violation of Hmin at intervals of w steps.
That is:

Hmin(γ
w)

(1− γw)
< HN

Now HE < HN will be true if the upper bound of HE is less than the lower bound of HN . In other
words HE < HN is true if:

Hmax(1− γm−1)

(1− γ)
<
Hmin(γ

w)

(1− γw)
(1)

Rearranging, we get:
Hmax

Hmin
<

(1− γ) · (γw)
(1− γm−1) · (1− γw)

(2)

Let’s define the RHS of the Inequality 2 as the function υ(γ). Consider γ ∈ (0, 1). It is not difficult
to demonstrate that υ(γ) in this domain range is a continuous function and that left directional limit
limγ→1− υ(γ) = ∞. This suggests that there is an open interval of values for γ (whose supremum
is 1) for which Hmax/Hmin < υ(γ) and so HE < HN . So we establish that ∃ϵ > 0 such that for
γ ∈ (1− ϵ, 1), we satisfy the sufficient condition HE < HN so that the optimal policy will enter its
feasible set.

Thus, we prove that if there is a policy entering its feasible set from state s, then there is a range of
values for γ that are close enough to 1 ensuring that the optimal policy of Main paper Equation 3 will
enter its feasible set in a finite number of steps with minimum discounted sum of costs.

3.4 Theorem 2 with Proof

Theorem 2. Given Assumptions A1-A3 in Main paper, the policy updates in Algorithm 1 will almost
surely converge to a locally optimal policy for our proposed optimization in Equation RESPO.

We first provide an intuitive explanation behind why our REF learns to converge to the safest policy’s
REF, then a proof overview, and then the full proof.
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Figure 1: The predicted feasible set converges to a safest policy’s feasible set since the misclassified regions X
and Y are corrected over time.

3.4.1 Intuition behind REF convergence

The approach can be explained by considering what happens in the individual regions of space.
Consider a deterministic environment for simplicity. As seen in Figure 1, there are two subsets of the
initial state space: a safest policy’s "true" feasible set ShI and REF predicted feasible set SpI , and
they create 4 regions in the initial state space SI : W = ShI ∩ SpI , X = ShI ∩ SpI , Y = ShI ∩ SpI ,
Z = ShI ∩ SpI . Consider a point during training when the lagrange multiplier λ is sufficiently large.
For states in W , the set of correctly classified infeasible states, the algorithm will simply minimize
cumulative violations V πθ

c (s), and thereby remain as safe as possible since the policy and critics
learning rates are faster than that of REF. X , which is the set of infeasible states that are misclassified,
is very small if we ensure the policy and REF are trained at much faster time scales than the multiplier
and so when the agent starts in true infeasible states, it will by definition reach violations and therefore
be labeled as infeasible. In Y , the set of truly feasible states that are misclassified, the algorithm also
minimizes cumulative violations, which by the definition of feasibility should be 0. It will then have
no violations and enter the correctly predicted feasible set Z . And when starting in states in Z , the
algorithm will optimize the lagrangian, and since the multiplier λ is sufficiently large, it will converge
to a policy that optimizes for reward while ensuring safety, i.e. no future violations, and therefore the
state will stay predictably feasible in Z . In this manner, REF’s predicted feasible set will converge
to the optimal feasible set, and the agent will be safe and have optimal performance in the feasible
set and be the safest behavior outside the feasible set. Thereby, the algorithm finds a locally optimal
solution to the proposed optimization formulation.

3.4.2 Proof Overview

We show our algorithm convergence to the optimal policy by utilizing the proof framework of multi-
time scale presented in [2, 3, 4, 5]. Specifically, we have 4 time scales for (1) the critics, (2) policy,
(3) REF function, and (4) lagrange multiplier, listed in order from fastest to slowest. The overview of
each timescale proof step is as follows:

1 We demonstrate the almost sure convergence of the critics to the corresponding fixed point
optimal critic functions of the policy.

2 Using multi-timescale theory, we demonstrate the policy almost surely converges to a
stationary point of a continuous time system, which we show has a Lyapunov function
certifying its locally asymptotic stability at the stationary point.

3 We demonstrate the almost sure convergence of the REF function to the REF of the policy
that is safe insofar as the lagrange multiplier is sufficiently large.

4 We demonstrate the almost sure convergence of the lagrange multiplier to a stationary point
similar to the proof in the policy timecale.

Finally, we demonstrate that the stationary points for the policy and lagrange multiplier form a saddle
point, and so by local saddle point theorem we almost surely achieve the locally optimal policy of our
proposed optimization.
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3.4.3 Proof Details

Proof. Step 1 (convergence of the critics Vη and Vκ updates): From the multi-time scale assumption,
we know that η and κ will convergence on a faster time scale than the other parameters θ, ξ, and ω.
Therefore, we can leverage Lemma 1 of Chapter 6 of [3] to analyze the convergence properties while
updating ηk and κk by treating θ, ξ, and ω as fixed parameters θk, ξk, and ωk. In other words, the
policy, REF, and lagrange multiplier are fixed while computing Qπθk (s, a) and Q

πθk
c (s, a). With the

Finite MDP assumption and policy evaluation convergence results of [1], and assuming sufficiently
expressive function approximator (i.e. wide enough neural networks) to ensure convergence to global
mininum, we can use the fact that the bellman operators B and Bc which are defined as

B[Q](s, a) = r(s, a) + γ E
s′,a′∼π,P (s)

[Q(s′, a′)]

B[Qc](s, a) = h(s) + γ E
s′,a′∼π,P (s)

[Qc(s
′, a′)]

are γ-contraction mappings, and therefore as k approaches ∞, we can be sure that Q(s, a; ηk) →
Q(s, a; η∗) = Qπθk (s, a) and Qc(s, a;κk) → Qc(s, a;κ

∗) = Q
πθk
c (s, a). So since ηk and κk

converge to η∗ and κ∗, we prove convergence of the critics in Time scale 1.

Step 2 (convergence of the policy πθ update): Because ξ and ω updated on slower time scales than
θ, we can again use Lemma 1 of Chapter 6 of [3] and treat these parameters are fixed at ξk and ωk
respectively when updating θk. Additionally in Time scale 2, we have ||Q(s, a; ηk)−Q(s, a; η∗)|| →
0 and ||Qc(s, a;κk) −Qc(s, a;κ

∗)|| → 0 almost surely. Now the update of the policy θ using the
gradient from Equation 4 is:

θk+1 = ΓΘ[θk − ζ2(k)(∇θL(θ, ξk, ωk)|θ=θk)]
= ΓΘ[θk − ζ2(k)[γ

t[−Qη(st, at)[1− pξk(st)]

+Qc(st, at)[λω(1− pξk(st)) + pξk(st)]]∇θ log π(at|st; θ)|θ=θk ]]
= ΓΘ[θk − ζ2(k)(∇θL(θ, ξk, ωk)|θ=θk,η=η∗,κ=κ∗ + δθk+1 + δθϵ)]

where

δθk+1 =
∑
si,ai

[
d0(s0)P

πθk (si, ai|s0)γi[−Qη(si, ai)[1− pξk(si)]

+Qc(si, ai)[λω(1− pξk(si)) + pξk(si)]]∇θ log π(ai|si; θ)|θ=θk
]

−γt[−Qη(st, at)[1− pξk(st)] +Qc(st, at)[λω(1− pξk(st)) + pξk(st)]]

·∇θ log π(at|st; θ)|θ=θk

and

δθϵ =
∑
si,ai

d0(s0)P
πθk (si, ai|s0)

[
−γi[−Q(si, ai; ηk)[1− pξk(si)] +Qc(si, ai;κk)[λω(1− pξk(si)) + pξk(si)]]

·∇θ log π(ai|si; θ)|θ=θk
+γi[−Qπθk (si, ai)[1− pξk(si)] +Q

πθk
c (si, ai)[λω(1− pξk(si)) + pξk(si)]]

·∇θ log π(ai|si; θ)|θ=θk
]
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Lemma 1: We can first demonstrate that δθk+1 is square integrable. In particular,

E[||δθk+1||2|Fθ,k]

≤ 2||∇θ log π(a|s; θ)|θ=θk1π(a|s;θk)>0||2∞ ·
(
||Q(s, a; ηk)||2∞ · ||1− pξk(s)||2∞

+ ||Qc(s, a;κk)||2∞ ·
[
||λω||2∞ · ||1− pξk(s)||2∞ + ||pξk(s)||2∞

])
≤ 2

||∇θπ(a|s; θ)|θ=θk ||2∞
min{π(a|s; θk)|π(a|s; θk) > 0}

·
(
||Q(s, a; ηk)||2∞ · ||1− pξk(s)||2∞

+ ||Qc(s, a;κk)||2∞ ·
[
||λω||2∞ · ||1− pξk(s)||2∞ + ||pξk(s)||2∞

])
Note that Fθ,k = σ(θm, δθm,m ≤ k) is the filtration for θk generated by different independent
trajectories [2]. Also note that the indicator function is used because the expectation of ||δθk+1||2
is taken with respect to Pπθk and Pπθk (s, a|s0) = 0 if π(a|s; θk) = 0. From the Assumptions on
Lipschitz continuity and Finite MDPs reward and costs, we can bound the values of the functions and
the gradients of functions. Specifically

||∇θπ(a|s; θ)|θ=θk ||2∞ ≤ K1(1 + ||θk||2∞),

||Q(s, a; ηk)||2∞ ≤ Rmax

1− γ
,

||Qh(s, a;κk)||2∞ ≤ Hmax

1− γ
,

||λω||2∞ ≤ λmax,

||1− pξk(s)||2∞ ≤ 1,

||pξk(s)||2∞ ≤ 1

where K1 is a Lipschitz constant. Furthermore, note that because we are sampling, π(a|s; θk) will
take on only a finite number of values, so its nonzero values will be bounded away from zero. Thus
we can say

1

min{π(a|s; θk)|π(a|s; θk) > 0}
≤ K2

for some large enough K2. Thus using the bounds from these conditions, we can demonstrate

E[||δθk+1||2|Fθ,k] ≤ 2 ·K1(1 + ||θk||2∞) ·K2(
Rmax

1− γ
· 1 + Hmax

1− γ
· (λmax · 1 + 1)) <∞

Therefore δθk+1 is square integrable.

Lemma 2: Secondly, we can demonstrate δθϵ → 0.

δθϵ =
∑
si,ai

d0(s0)P
πθk (si, ai|s0)

[
γi
[
(Q(si, ai; ηk)−Qπθk (si))[1− pξk(si)]

+ (−Qc(si, ai;κk) +Q
πθk
c (si, ai))[λω(1− pξk(si)) + pξk(si)]

]
∇θ log π(ai|si; θ)|θ=θk

]
≤

∑
si,ai

d0(s0)P
πθk (si, ai|s0)

[
γi
[
(Q(si, ai; ηk)−Q(si, ai; η

∗))[1− pξk(si)]

+ (−Qc(si, ai;κk) +Qc(si, ai;κ
∗))[λω(1− pξk(si)) + pξk(si)]

]
∇θ log π(ai|si; θ)|θ=θk

]
≤

∑
si,ai

d0(s0)P
πθk (si, ai|s0)

[
γi
[
||Q(si, ai; ηk)−Q(si, ai; η

∗)||[1− pξk(si)]

+ || −Qc(si, ai;κk) +Qc(si, ai;κ
∗)||[λω(1− pξk(si)) + pξk(si)]

]
∇θ log π(ai|si; θ)|θ=θk

]
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And because we have ||Q(s, a; ηk) − Q(s, a; η∗)|| → 0 and ||Qc(s, a;κk) − Qc(s, a;κ
∗)|| → 0

almost surely, we can therefore say δθϵ → 0.

Lemma 3: Finally, since ∇̂θJπ(θ)|θ=θk is a sample of ∇θL(θ, ξk, ωk)|θ=θk based on the history of
sampled trajectories, we conclude that E[δθk+1|Fθ,k] = 0.

From the 3 above lemmas, the policy θ update is a stochastic approximation of a continuous system
θ(t) defined by [3]

θ̇ = ΥΘ[−∇θL(θ, ξ, ω)] (3)

in which

ΥΘ[M(θ]
∆
= lim

0<ψ→0

ΓΘ(θ + ψM(θ))− ΓΘ(θ)

ψ

or in other words the left directional derivative of ΓΘ(θ) in the direction of M(θ). Using the left
directional derivative ΥΘ[−∇θL(θ, ξ, ω)] in the gradient descent algorithm for learning the policy
πθ ensures the gradient will point in the descent direction along the boundary of Θ when the θ
update hits its boundary. Using Step 2 in Appendix A.2 from [2], we have that dL(θ, ξ, ω)/dt =
−∇θL(θ, ξ, ω)

T ·ΥΘ[−∇θL(θ, ξ, ω)] ≤ 0 and the value is non-zero if ||ΥΘ[−∇θL(θ, ξ, ω)]|| ≠ 0.
Now consider the continuous system θ(t). For some fixed ξ and ω, define a Lyapunov function

Lξ,ω(θ) = L(θ, ξ, ω)− L(θ∗, ξ, ω)

where θ∗ is a local minimum point. Then there exists a ball centered at θ∗ with a radius ρ such that
∀θ ∈ Bθ∗(ρ) = {θ|||θ−θ∗|| ≤ ρ}, Lξ,ω(θ) is a locally positive definite function, that is Lξ,ω(θ) ≥ 0.
Using Proposition 1.1.1 from [6], we can show that ΥΘ[−∇θL(θ, ξ, ω)]|θ=θ∗ = 0 meaning θ∗ is
a stationary point. Since dL(θ, ξ, ω)/dt ≤ 0, through Lyapunov theory for asymptotically stable
systems presented in Chapter 4 of [7], we can use the above arguments to demonstrate that with
any initial conditions of θ(0) ∈ Bθ∗(ρ), the continuous state trajectory of θ(t) converges to θ∗.
Particularly, L(θ∗, ξ, ω) ≤ L(θ(t), ξ, ω) ≤ L(θ(0), ξ, ω) for all t > 0.

Using these aforementioned properties, as well as the facts that 1) ∇θL(θ, ξ, ω) is a Lipschitz
function (using Proposition 17 from [2]), 2) the step-sizes of Assumption on steps sizes, 3) δθk+1 is
a square integrable Martingale difference sequence and δθϵ is a vanishing error almost surely, and
4) θk ∈ Θ,∀k implying that supk ||θk|| <∞ almost surely, we can invoke Theorem 2 of chapter 6
in [3] to demonstrate the sequence {θk}, θk ∈ Θ converges almost surely to the solution of the ODE
defined by Equation 3, which additionally converges almost surely to the local minimum θ∗ ∈ Θ.

Step 3 (convergence of REF pξ updates): Since ω is updated on a slower time scale that ξ, we can
again treat ω as a fixed parameter at ωk when updating ξ. Furthermore, in Time scale 3, we know that
the policy has converged to a local minimum, particularly ||θk − θ∗(ξk, ωk)|| = 0. Now the bellman
operator for REF is defined by

Bp[p](s) = max{1s∈Sv
, γ E

s′∼π,P (s)
[p(s′)]}.

We demonstrate this is a γ contraction mapping as follows:

|Bp[p](s)− Bp[p̂](s)|
= |max{1s∈Sv

, γ E
s′∼π,P (s)

[p(s′)]} −max{1s∈Sv
, γ E

s′∼π,P (s)
[p̂(s′)]}|

≤ |γ E
s′∼π,P (s)

[p(s′)]− γ E
s′∼π,P (s)

[p̂(s′)]|

= γ| E
s′∼π,P (s)

[p(s′)− p̂(s′)]|

≤ γ sup
s

|p(s)− p̂(s)| = γ||p− p̂||∞

So we can say that p(s; ξk) will converge to p(s; ξ∗) as k → ∞ under the same assumptions of
the Finite MDP and function approximator expressiveness in Step 1. Therefore, πθk will also
converge to π⋄ = πθ∗(ξ∗,ωk) as k → ∞. And because πθ is the sampling policy used to compute p,
p(s; ξ∗) = pπθ∗(ξ∗,ωk)(s; ξ∗) = p⋄(s).
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Notice that π⋄ is a locally minimum optimal policy for the following optimization (recall λω is treated
as constant in this timescale):

min
π

E
s∼d0

E
a∼π(·|s)

[
−Qπ(s, a) · [1− p⋄(s)] +Qπc (s, a) · [(1− p⋄(s))λω + p⋄(s)]

]
and therefore also locally minimum optimal policy for optimization:

min
π

E
s∼d0

E
a∼π(·|s)

[
−Qπ(s, a) +Qπc (s, a) · [λω +

p⋄(s)

(1− p⋄(s))
]

]
, if p⋄(s) > 0

E
s∼d0

min
π

E
a∼π(·|s)

[
Qπc (s, a)

]
, if p⋄(s) = 0

Since p⋄(s)
(1−p⋄(s)) ≥ 0, and the Q functions are always nonnegative, we can know that π⋄ is at least

as safe as (i.e., its expected cumulative cost is at most that of) a locally optimal policy for the
optimization:

min
π

E
s∼d0

E
a∼π(·|s)

[
−Qπ(s, a) +Qπc (s, a)λω

]
(4)

As λω approaches λmax, which in turn approaches ∞, the local minimum optimal policies of
Equation 4 approach those of the optimization π△ = argminπ Es∼d0 Ea∼π(·|s)Qπc (s, a)λω =
argminπ Es∼d0 Ea∼π(·|s)Qπc (s, a). Therefore, the feasible set of the REF p⋄ will approach that of
the REF pπ

△
.

Step 4 (convergence of lagrange multiplier λω update): Since λω is on the slowest time scale, we
have that ||θk−θ∗(ω)|| = 0, ||ξk− ξ∗(ω)|| = 0, and ||Qc(s, a;κk)−Q

πθk
c (s, a)|| = 0 almost surely.

Furthermore, due to the continuity of ∇ωL(θ, ξ, ω), we have that ||∇ωL(θ, ξ, ω)|θ=θk,ξ=ξk,ω=ωk
−

∇ωL(θ, ξ, ω)|θ=θ∗(ωk),ξ=ξ∗(ωk),ω=ωk
|| = 0 almost surely. The update of the multiplier using the

gradient for Equation is:
ωk+1 = ΓΩ[ωk + ζ4(k)(∇ωL(θ, ξ, ω)|θ=θk,ξ=ξk,ω=ωk

)]

= ΓΩ[ωk + ζ4(k)(Qc(st, at;κk)[1− p(st; ξk)]∇ωλω|ω=ωk
)]

= ΓΩ[ωk + ζ4(k)(∇ωL(θ, ξ, ω)|θ=θ∗(ωk),ξ=ξ∗(ωk),ω=ωk
+ δωk+1)]

where
δωk+1 = −∇ωL(θ, ξ, ω)|θ=θ∗(ωk),ξ=ξ∗(ωk),ω=ωk

+Qc(st, at;κk)[1− p(st; ξk)]∇ωλω|ω=ωk

= −
∑
si,ai

d0(s0)P
πθk (si, ai|s0)[Qπθ∗

c (si, ai)[1− pξ∗(si)]∇ωλω|ω=ωk
]

+Qc(st, at;κk)[1− p(st; ξk)]∇ωλω|ω=ωk

= −
∑
si,ai

d0(s0)P
πθk (si, ai|s0)[Qπθ∗

c (si, ai)[1− pξ∗(si)]∇ωλω|ω=ωk
]

+ [Qc(st, at;κk)[1− p(st; ξk)]−Q
πθk
c (st, at)[1− p(st; ξk)]+

Q
πθk
c (st, at)[1− p(st; ξk)]−Q

πθk
c (st, at)[1− p⋄(st)]+

Q
πθk
c (st, at)[1− p⋄(st)]]∇ωλω|ω=ωk

= −
∑
si,ai

d0(s0)P
πθk (si, ai|s0)[Qπθ∗

c (si, ai)[1− pξ∗(si)]∇ωλω|ω=ωk
]

+ [(Qc(st, at;κk)−Q
πθk
c (st, at))[1− p(st; ξk)]+

Q
πθk
c (st, at)[p

⋄(st)− p(st; ξk)]+

Q
πθk
c (st, at)[1− p⋄(st)]]∇ωλω|ω=ωk

]

Now, just as in the θ update convergence, we can demonstrate the following lemmas:

Lemma 4: δωk+1 is square integrable since

E[||δωk+1||2|Fω,k] ≤ 2 · Hmax

1− γ
· 1 ·K3(1 + ||ωk||2∞) <∞
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for some large Lipschitz constant K3. Note that Fω,k = σ(ωm, δωm,m ≤ k) is the filtration for ωk
generated by different independent trajectories [2].

Lemma 5: Because ||Qc(st, at;κk) − Q
πθk
c (st, at)||∞ → 0 and ||p⋄(st) − p(st; ξk)||∞ → 0 and

Q
πθk
c (st, at)[1− pξ∗(st)]∇ωλω|ω=ωk

is a sample of Qπθ∗
c (si, ai)[1− pξ∗(si)]∇ωλω|ω=ωk

, we con-
clude that E[δωk+1|Fω,k] = 0 almost surely.

Thus, the lagrange multiplier ω update is a stochastic approximation of a continuous system ω(t)
defined by [3]

ω̇ = ΥΩ[−∇ωL(θ, ξ, ω)|θ=θ∗(ω),ξ=ξ∗(ω)] (5)

with Martingale difference error of δωk and where ΥΩ is the left direction deriva-
tive defined similar to that in Time scale 2 of the convergence of θ update. Us-
ing Step 2 in Appendix A.2 from [2], we have that dL(θ∗(ω), ξ∗(ω), ω)/dt =

∇ωL(θ, ξ, ω)|θ=θ∗(ω),ξ=ξ∗(ω)
T · ΥΩ[∇ΩL(θ, ξ, ω)|θ=θ∗(ω),ξ=ξ∗(ω)] ≥ 0 and the value is non-zero

if ||ΥΩ[∇ωL(θ, ξ, ω)|θ=θ∗(ω),ξ=ξ∗(ω)]|| ≠ 0.

For a local maximum point ω∗, define a Lyapunov function as

L(ω) = L(θ∗(ω), ξ∗(ω), ω∗)− L(θ∗(ω), ξ∗(ω), ω)

Then there exists a ball centered at ω∗ with a radius ρ′ such that ∀ω ∈ Bω∗(ρ′) = {ω|||ω −
ω∗|| ≤ ρ′}, L(ω) is a locally positive definite function, that is L(ω) ≥ 0. Also, dL(ω(t))/dt =
−dL(θ∗(ω), ξ∗(ω), ω)/dt ≤ 0 and is equal only when ΥΩ[∇ωL(θ, ξ, ω)|θ=θ∗(ω),ξ=ξ∗(ω)] = 0, so
therefore ω∗ is a stationary point. By leveraging Lyapunov theory for asymptotically stable systems
presented in Chapter 4 of [7] we can demonstrate that for any initial conditions of ω ∈ Bω∗(ρ′), the
continuous state trajectory of ω(t) converges to the locally maximum point ω∗.

Using these aforementioned properties, as well as the facts that 1) ∇ωL(θ
∗(ω), ξ∗(ω), ω) is a Lips-

chitz function, 2) the step-sizes of Assumption on steps sizes, 3) {ωk+1} is a stochastic approximation
of ω(t) with a Martingale difference error, and 4) convex and compact properties in projections used,
we can use Theorem 2 of chapter 6 in [3] to demonstrate the sequence {ωk} converges almost surely
to a locally maximum point ω∗ almost surely, that is L(θ∗(ω), ξ∗(ω), ω∗) ≥ L(θ∗(ω), ξ∗(ω), ω).

From Time scales 2 and 3 we have that L(θ∗(ω), ξ∗(ω), ω) ≤ L(θ, ξ, ω) while from Time
scale 4 we have that L(θ∗(ω), ξ∗(ω), ω∗) ≥ L(θ∗(ω), ξ∗(ω), ω). Thus, L(θ∗(ω), ξ∗(ω), ω) ≤
L(θ∗(ω), ξ∗(ω), ω∗) ≤ L(θ, ξ, ω∗). Therefore, (θ∗, ξ∗, ω∗) is a local saddle point of (θ, ξ, ω). Invok-
ing the saddle point theorem of Proposition 5.1.6 in [6], we can conclude that π(·|·; θ∗) is a locally
optimal policy for our proposed optimization formulation.

3.4.4 Remark on Bounding Lagrange Multiplier

We can say our algorithm learns an REF that is closer to an optimally safe policy’s REF as we take
λmax → ∞. Nonetheless, we want to put a bound on the λmax. This λmax must be large enough
so that choosing a policy that can reduce the expected cost returns by some non-zero amount is
prioritized over increasing the reward returns. So any change in the reward critic terms must be less
than any change in the cost critic term. If H∆ is the minimum non-zero difference between any two
cost values, and Pmin is the minimum sampled non-zero likelihood of reaching a particular state and
a point in the sample trajectory, then we can bound the maximum change in the reward returns and
the maximum change on the weighted cost returns:

∆ E
s∼d0

[V (s)] ≤ Rmax

1− γ

γT ·H∆ · Pmin · (λ+
ϕ(s)

(1− ϕ(s))
) ≤ ∆ E

s∼d0
[Vc(s) · (λ+

ϕ(s)

(1− ϕ(s))
)]

9



So we can find the bound for λmax:

∆ E
s∼d0

[V (s) · (1− ϕ(s))] < ∆ E
s∼d0

[Vc(s) · (λ · (1− ϕ(s)) + ϕ(s))]

∆ E
s∼d0

[V (s)] < ∆ E
s∼d0

[Vc(s) · (λ+
ϕ(s)

(1− ϕ(s))
)]

Rmax

1− γ
< γT ·H∆ · Pmin · (λ+

ϕ(s)

(1− ϕ(s))
)

Rmax

(1− γ) · γT ·H∆ · Pmin
< λ+

ϕ(s)

(1− ϕ(s))

Rmax

(1− γ) · γT ·H∆ · Pmin
− ϕ(s)

(1− ϕ(s))
< λ

The second line holds since we are simply rearranging the comparative weightages of the reward
and cost returns. Now − ϕ(s)

(1−ϕ(s)) ≤ 0 (recall that if ϕ(s) = 1, then λ is irrelevant in the lagrangian

optimization). Thus, if λ > Rmax

(1−γ)·γT ·H∆·Pmin
then minimizing the cost returns is prioritized over

maximizing reward returns.

4 Complete Experiment Details and Analysis

4.1 Baselines

We compare our algorithm RESPO with 7 other safety RL baselines, which can be divided to CMDP
class and hard constraints class, and unconstrained Vanilla PPO for reference.

CMDP Approaches

Proximal Policy Optimization-Lagrangian. PPOLag is a primal-dual method using Proximal Policy
Optimization [8] based off of the implementation found in [9]. The lagrange multiplier is a scalar
learnable parameter.

Constraint-Rectified Policy Optimization. CRPO [10] is a primal approach that switches between
optimizing for rewards and minimizing constraint violations depending on whether the constraints
are violated.

Penalized Proximal Policy Optimization. P3O [11] is another primal approach based on applying the
technique of clipping the surrogate objectives found in PPO [8] to CMDPs.

Projection-Based Constrained Policy Optimization. PCPO [12] is a trust-region approach that takes
a step in policy parameter space toward optimizing for reward and then projects this policy to the
constraint set satisfying the CMDP expected cost constraints.

Hard Constraints Approaches

Reachability Constrained Reinforcement Learning. RCRL [5] is a primal-dual approach where the
constraint is on the reachability value function and the lagrange multiplier is represented by a neural
network parameterized by state.

Control Barrier Function. This CBF-based approach is inspired by the various energy-based certifi-
cation approaches [13, 14, 15, 16, 17, 18]. This is implemented as a primal-dual approach where the
control barrier-based constraint ḣ(s) + ν · h(s) ≤ 0 is to ensure stabilization toward the safe set.

Feasible Actor Critic. FAC [19] is another primal-dual approach similar to RCRL (i.e. it uses the
NN representation of the lagrange multiplier parameterized by state) except that the constraint in
FAC is based on the cumulative discount sum of costs in lieu of the reachability value function. It is
important to note that FAC is originally meant for the CMDP framework (with some positive cost
threshold), but we adapt it to hard constraints by making the cost threshold χ = 0. We do this to make
a better comparison between an algorithm that relies on using the lagrange multiplier represented as a
NN to learn feasibility with our approach of using our proposed REF function to learn the feasibility
likelihood – both approaches enforce a hard constraint on the cumulative discounted costs.
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4.2 Benchmarks

We compare the algorithms on a diverse suite of environments including those from the Safety Gym,
PyBullet, and MuJoCo suites and a multi-constraint, multi-drone environment.

Safety Gym. In Safety Gym [20], we examine CarGoal and PointButton which have 72D and 76D
observation spaces that include lidar, accelerometer, gyro, magnetometer, velocimeter, joint angles,
and joint velocities sensors. In the CarGoal environment, the car agent has a 72D observation space
and is supposed to reach a goal region while avoiding both hazardous spaces and contact with fragile
objects. In PointButton, the point agent has a 76D observation space and must press a series of
specified goal buttons while avoiding 1) quickly moving objects, 2) hazardous spaces, 3) hitting the
wrong buttons.

Safety PyBullet. In Safety PyBullet [21], we evaluate in BallRun and DroneCircle environments.
In the BallRun environment, the ball agent must move as fast as possible under the constraint of a
speed limit, and it must be within some boundaries. In DroneCircle, the agent is based on the AscTec
Hummingbird quadrotor and is rewarded for moving clockwise in a circle of a fixed radius with the
constraint of remaining within a safety zone demarcated by two boundaries. Note that we use this
environment to evaluate our algorithm and the baselines in a stochastic setting. We ensure the MDP
is stochastic by adding a 5% gaussian noise to the transitions per step.

Safety MuJoCo. Furthermore, we compare the algorithms in with complex dynamics in MuJoCo.
Specifically, we look at HalfCheetah and Reacher safety problems. In Safety HalfCheetah, the
agent must move as quickly as possible in the forward direction without moving left of x = −3.
However, unlike the standard HalfCheetah environment, the reward is based on the absolute value of
the distance traveled. In this paradigm, it is easier for the agent to learn to quickly run backward rather
than forward without any directional constraints. In the Safety Reacher environment, the robotic arm
must reach a certain point while avoiding an unsafe region.

Multi-Drone environment. We also compare in an environment with multiple hard and soft constraints.
The environment requires controlling two drones to pass through a tunnel one at a time while
respecting certain distance requirements. The reward is given for quickly reaching the goal positions.
The two hard constraints involve (H1) ensuring neither drone collides into the wall and (H2) the
distance between the two drones is more than 0.5 to ensure they do not collide. The soft constraint is
that the two drones are within 0.8 of each other to ensure real-world communication. It is preferable
to prioritize hard constraint H1 over hard constraint H2, since colliding with the wall may have more
serious consequences to the drones rather than violations of an overly precautious distance constraint
– as we will show, our algorithm RESPO can perform this prioritization in its optimization.
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4.3 Hyperparameters/Other Details

Hyperparameters for Safe RL Algorithms Values
On-policy parameters
Network Architecture MLP

Units per Hidden Layer 256
Numbers of Hidden Layers 2

Hidden Layer Activation Function tanh
Actor/Critic Output Layer Activation Function linear

Lagrange multiplier Output Layer Activation Function softplus
Optimizer Adam

Discount factor γ 0.99
GAE lambda parameter 0.97

Clip Ratio 0.2
Target KL divergence 0.1
Total Env Interactions 9e6

Reward/Cost Critic Learning rate Linear Decay 1e−3 → 0
Actor Learning rate Linear Decay 3e−4 → 0

Lagrange Multiplier Learning rate Linear Decay 5e−5 → 0
Number Seeds per algorithm per experiment 5

RESPO specific parameters
REF Output Layer Activation Function sigmoid

REF Learning rate 1e−4 → 0
CBF specific parameters

ν 0.2
RCRL/FAC Note

Lagrange Multiplier 2-Layer, MLP
(other algs just use scalar parameter)

Table 2: Hyperparameter Settings Details

To ensure a fair comparison, the primal-dual based approaches and unconstrained Vanilla PPO were
implemented based off of the same code base [22]. The other three approaches were implemented
based on [23] with the similar corresponding hyperparameters as the primal-dual approaches. We
run our experiments on Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz with 6 cores. For Safety Gym,
PyBullet, MuJoCo, and the multi-drone environments, each algorithm, per seed, per environment,
takes ∼ 4 hours to train.
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4.4 Double Integrator
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Figure 2: Comparison of the trajectories in the Double Integrator Environment of an agent controlled by policies
obtained by RCRL (in red) and our proposed algorithm RESPO (in green) when starting from the infeasible set
(but still within the safe set). Notice how our approach actively enters the feasible set (blue region), while RCRL
fails to do so. The level set demarcating the feasible/infeasible set boundary is in black. The safe set (i.e. the set
of states that have no violations) is the region within the dashed purple square. The infeasible set is in yellow.

We use the Double Integrator environment as a motivating example to demonstrate how performing
constrained optimization using solely reachability-based value functions as in RCRL can produce
nonoptimal behavior when the agent is outside the feasiblity set. Double Integrator has a 2 dimensional
observation space [x1, x2], 1 dimension action space a ∈ [−0.5, 0.5], system dynamics is ṡ = [x2, a],
and constraint as ||s||∞ ≤ 5. Particularly, we make the cost as 1 if ||s||∞ > 5, and 0 otherwise to
emphasize the importance of capturing the frequency of violation during training.

We train an RCRL controller and RESPO controller in this environment, and the results are visualized
in Figure 2. The color scheme indicates the learned reachability value across the state space while the
black line demarcates the border of the zero level set. We present the behavior of the trajectories of
RCRL and RESPO. Because the RCRL optimizes for reachability value function when outside the
feasible set, it simply minimizes the maximum violation, which as can be seen does not result in the
agent reentering the feasible set since it is uniformly equal to or near 1 in the infeasible set. This is
since it permits many violations of magnitude same or less than that of the maximum violation. On
the other hand, RESPO optimizes for cumulative damage by considering total sum of costs, thereby
re-entering the feasible set.

13



4.5 Safety Gym Environments
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Figure 3: Closer look at comparison of algorithms in Safety Gym CarGoal and PointButton Environments.

RESPO: In the CarGoal Environment, our approach achieves the best performance among the safe
RL algorithms while being within the acceptable range of cost violations. It is important to note
that our algorithm has no access to information on the cost threshold. In PointButton, RESPO
achieves very high reward performance among the safety baselines while maintaining among the
lowest violations.

PPOLag: In both Safety Gym environments, PPOLag maintains relatively high performance, albeit
less than our approach. Nonetheless, it always converges to the cost threshold amount of violations
for the respective environments.

RCRL: RCRL has either high reward and high violations or low reward and low violations. It learns
a very conservative behavior in CarGoal environment where the violations go down but the reward
performance can also be seen to be sacrificed during training. For PointButton, RCRL achieves
slightly higher reward performance but has over 3× the number of violations as RESPO.

FAC: Using a NN to represent the lagrange multiplier in order to capture the feasible sets seems to
produce very conservative behavior that sacrifices performance. In both CarGoal and PointButton
the reward performance and cost violations are very low. This can be explained because the average
observed lagrange multiplier across the states quickly grows, even becoming 9× that of scalar
learnable lagrange multiplier in RESPO.

CBF: The CBF approach has low reward performance in both the Safety Gym benchmarks and its
cost violations are quite high.

CRPO, P3O, & PCPO: These CMDP-based primal approaches have mediocre reward performance
but, with the exception of CRPO, achieve violations within the cost threshold. CRPO, however, has
high cost violations in both CarGoal and PointButton.

Vanilla PPO: This unconstrained algorithm consistently has high rewards and high costs, so maxi-
mizing rewards does not improve costs in these environments.
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4.6 Safety PyBullet Environments
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Figure 4: Closer look at comparison of algorithms in Safety PyBullet DroneCircle and BallRun Environments.

RESPO: In the both BallRun and DroneCircle, our approach achieves the highest or among the
highest reward performance compared to the other safety baselines. Furthermore, RESPO converges
to almost 0 constraint violations for both environments.

PPOLag: In DroneCircle, PPOLag has the best reward performance. Although its costs violations
are around the cost threshold, it is much higher than RESPO. On the other hand, in BallRun, PPOLag
has very low reward performance.

RCRL: We again see RCRL take on behavior with extremes – it has low reward and cost violations
in Drone Circle and has high reward and cost violations in BallRun. Constraining the maximum
violation with the reachability value function as RCRL does seems to provide poor safety in an
environment with non-tangible constraints (i.e. a speed limit in BallRun).

FAC: While in BallRun, we see FAC have the same low reward and low violations behavior,
DroneCircle shows an instance where FAC can achieve decently high rewards while maintaining low
violations.

CBF: In DroneCircle, the CBF approach has low rewards and relatively low violations; in BallRun,
it has a bit higher rewards compared to all the low performance algorithms with very low violations.

CRPO, P3O, & PCPO: These CMDP-based primal approaches have mediocre reward performance
in DroneCircle and very low performance in BallRun. Nonetheless they achieve violations within the
cost threshold.

Vanilla PPO: This unconstrained algorithm consistently has high rewards and high costs (sometimes
out of the scope of the plots), so maximizing rewards does not improve costs in these environments.
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4.7 Safety MuJoCo Environments
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Figure 5: Closer look at comparison of algorithms in Safety MuJoCo Reacher and HalfCheetah Environments.

Note on HalfCheetah: The rewards for HalfCheetah are based on the absolute distance traveled in
each step. Without the cost metric to constrain backward travel, it is easy to learn to run backward, as
is the behavior learned in unconstrained PPO.

RESPO: Our approach achieves the highest reward performance among the safety baselines in
HalfCheetah and decent reward performance in Reacher. Interestingly, RESPO also has 0 constraint
violations in HalfCheetah and the second lowest constraint violations in Reacher.

PPOLag: The performance in Reacher for PPOLag is similar as in most of the previous environments:
decently high rewrad, cost near the threshold. However, for HalfCheetah, interesting PPOLag learns
to maintain the violations well below the cost threshold.

RCRL: We see yet again RCRL has high reward follow by very high constraint violations.

FAC: This approach has decent reward performance in Reacher and low reward performance in
HalfCheetah. However, interestingly, FAC has high cost violations though below the cost threshold.

CBF: In Reacher, the CBF approach has conservative behavior with both low reward and low cost
violations. But in HalfCheetah, it has very low reward performance and very high cost violations (not
seen in the plot since its an order of magnitude larger than the visible range).

CRPO, P3O, & PCPO: These CMDP-based primal approaches have decent reward performance in
Reacher while maintaining violations within cost threshold. In HalfCheetah, however, they achieve
low performance and low cost violations.

Vanilla PPO: This unconstrained algorithm consistently has high rewards and high costs (sometimes
out of the scope of the plots), so maximizing rewards does not improve costs in these environments.

16



4.8 Hard and Soft Constraints
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Figure 6: Closer look at comparison of RESPO with baselines trajectories in hard & soft Constraints multi-Drone
control. Starting at gold circles, drones must enter the tunnel one at a time and reach green star while avoiding
the wall and satisfying distance constraints. The colors indicate time along the trajectories.

RESPO: We manage multiple hard and soft Constraints by extending our framework to optimize the
following Lagrangian:

min
π

max
λ

(
L(π, λ) = E

s∼d0

[[
[−V π(s) + λsc · (V πsc(s)− χ) + λhc2 · V πhc2(s)] · (1− phc2(s))

+V πhc2(s) · phc2(s) + λhc1 · V πhc1(s)
]
· (1− phc1(s)) + V πhc1(s) · phc1(s)

]) (6)

The subscripts hc1 indicates the first hard constraint (i.e. wall avoidance), hc2 indicates the second
hard constraint (i.e. drone cannot be too close), and sc indicates soft constraint (i.e. drone cannot be
too far) – they are all based on discounted sum of costs. Recall V π(s) is reward returns. We color
coded the corresponding parts of the optimization. Notice how we learn a different REF for each hard
constraint. Also notice that the feasible set of the first hard constraint phc1 is placed in a manner so as
to ensure prioritization of the first hard constraint. As can be seen in the top left plot of Figure 6, our
approach successfully reaches the goals and avoids the walls. To enable mobility of the top drone
to pass through the tunnel with wall collision, the second hard constraint is violated temporarily in
the blue to cyan time period. Furthermore to allow the bottom drone to pass through the tunnel, the
soft constraint is violated during the green to orange time period. Nonetheless, RESPO successfully
manages the constraints and reward performance via Equation 6 optimization.

PPOLag, RCRL, FAC: The optimization formulation for these approaches is as follows:

min
π

max
λ

(
L(π, λ) = −V π(s) + λsc · (V πsc(s)− χ) + λhc2 · V πhc2(s) + λhc1 · V πhc1(s)

)
(7)

For PPOLag and FAC, all the constraint value functions are discount sum of cost. For RCRL,
V πsc(s) is based on discount sum of costs but V πhc1(s) and V πhc2(s) are based on the reachability value
function. Furthermore, in PPOLag, all the lagrange multipliers are learnable scalar parameters. In
FAC and RCRL all the lagrange multipliers are NN representations parameterized by state. These
formulations are not able to provide a framework for the prioritization of the constraint satisfaction –
all the constraints are treated the same, weighted only on the learned lagrange multipliers. As can be
seen in the other three images in Figure 6, the algorithms cannot manage the multiple constraints,
and invariably collide with the wall.
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4.9 Ablation – Learning Rate
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Figure 7: Closer look at Ablation study on the learning rate of REF.

We performance Ablation study of varying the learning rate of the REF function to verify the
importance of the multi-timescale assumption. Particular, we compare our algorithm’s approach of
placing the learning rate of the REF between the policy and lagrange multiplier with making the
REF’s learning rate in various orders of magnitudes slower and faster. Our approach with the learning
rate satisfying the multi-timescale assumption experimentally appears to still have the best balance
of reward optimization and constraint satisfaction. Particularly when we change the learning rate
by one order of magnitude (i.e. ×10 or ×0.1), we see the reward performance reduce by around
half and while the cost violations generally don’t change. But when we change the learning rates by
another order of magnitude, there reward performance effective becomes zero and the cost violations
generally reduce further. By increasing the learning rate of the REF function, we can no longer
guarantee that the REF convergences to near the optimally safe REF value. Instead, it becomes the
REF of the policy in question. So instead, the optimization can learn to “hack" the REF function to
obtain a policy (and lagrange multiplier) that is not a local optimal for the optimization formulation.
On the other hand, when the learning rate is too slow, the lagrange multiplier quickly explodes,
thereby creating a very conservative solution – notice the similarity of the orange line in Figure 7
with learning rate 0.01 times that of standard in training behavior with PPOLag where χ = 0 in the
ablation study on optimization.
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4.10 Ablation – Optimization
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Figure 8: Closer look at Ablation study on hard constraints optimization frameworks.
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In this ablation study, we examine the various optimization frameworks within the context of hard
constraints. Particularly, we compare our RESPO framework with RCRL and CMDP. However,
for RCRL we implement using our REF function method while still keeping the reachability value
function. For CMDP, we make the cost threshold χ = 0. These comparisons answer important
questions about our design choices – specifically is it sufficient to simply to just use the REF
component or to just learn the cost returns alone? From this ablation study, we propose that though
we have provided theoretical support for adding each of these design components individually, in
practice they are both required together in our algorithm. In RCRL implemented with our REF, we
generally see decently high rewards but the cost violations are always very large. This highlights the
problems of the reachability function again – if the agent starts or ever wanders into the infeasible set,
there is no guarantee of (re)entrance into the feasible set. So the agent can indefinitely remain in the
infeasible set, thereby incurring potentially an unlimited number of constraint violations. In PPOLag
with χ = 0, both the reward performance and constraint violations are very low. By using such
hard constraints versions of these purely learning-based methods, even when using the cumulative
discounted cost rather than reachability value function, the reward performance is very low because
the lagrange multiplier becomes too large quickly and thereby overshadows the reward returns in
the optimization. Ultimately, both the REF approach and the usage of the cumulative discounted
costs are important components of our algorithm RESPO that encourage a good balance between the
reward performance and safety constraint satisfaction in such stochastic settings.
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