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Abstract

Though achieving excellent performance in some cases, current unsupervised learn-
ing methods for single image denoising usually have constraints in applications. In
this paper, we propose a new approach which is more general and applicable to
complicated noise models. Utilizing the property of score function, the gradient of
logarithmic probability, we define a solving system for denoising. Once the score
function of noisy images has been estimated, the denoised result can be obtained
through the solving system. Our approach can be applied to multiple noise models,
such as the mixture of multiplicative and additive noise combined with structured
correlation. Experimental results show that our method is comparable when the
noise model is simple, and has good performance in complicated cases where other
methods are not applicable or perform poorly.

1 Introduction

Image denoising [4, 20, 26] has been studied for many years. Suppose x is a clean image, y is a
noisy image of x, and p (y | x) is the noise model. Supervised learning methods try to train a model
representing a mapping from y to x. Due to the difficulty of collecting paired clean and noisy images
in practice, methods in unsupervised learning manner are focus of research. Noise2Noise [12] is
the first to use pairs of two different noisy images constructed from the same clean image to train a
denoising model. Strictly speaking, Noise2Noise is not an unsupervised learning method. Collecting
noisy pairs is still difficult. Despite all this, many other methods [2, 10, 11, 24, 25] are inspired from
Noise2Noise or borrow the idea behind of it. These methods achieve good performance in some
simple noise models.

The main drawback of current methods is the constraint of application. Once the noise model is
complicated, they either are not applicable or have poor performance. Noisier2Noise [16] can only
handle additive noise and pepper noise. Recorrupted-to-Recorrupted [17] is limited to Gaussian
noise. Neighbor2Neighbor [7] requires that the noise model is pixel-wise independent and unbiased
(i.e. E [y | x] = x). Noise2Score [9] applies Tweedie’s Formula to image denoising and provides
a unified framework for those noise models that follow exponential family distributions. However,
the practical noise model will be more complicated. It may contain both multiplicative and additive
noise, even combining with structural correlation.

In this paper, we propose a new unified approach to handle more noise models. The key of our ap-
proach is a theoretical property about score function,∇y log p(y), which is shown in Proposition 3.1.
This property indicates that the score function of y is the average of the score function of y | x
under the posterior distribution p (x | y). Based on it, we define a system that the score function of y
equals to the score function of y | x, which turns out to be an equation about x since y is known. We
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Figure 1: The overall flow of our approach. The first step is to estimate the score function s(y) and
the second step is to solve an equation.

discover that the solution of this equation can be regarded as the denoised result of y. Implementing
our approach practically contains two steps: the first is to estimate the score function of y and the
second is to solve the system defined above according to the specific noise model. The overall flow is
shown in Figure 1. All the model training is the estimation of score function, which is represented by
a neural network. We adapt the amortized residual denoising autoencoder (AR-DAE) [13] to figure
out it. More details can be seen in Section 3.3.

Our approach is so powerful that as long as the score function of y | x is known and the system
is solvable, any kind of noise model is applicable. It means our approach is even able to solve
sophisticated noise models such as mixture noise. Another advantage of our approach is that
regardless of noise models, the training process of the score function neural network is identical.
Therefore, once the assumption of the noise model does not hold or parameters of noise are corrected,
we only change the equation system to be solved and resolve it without training the model again.
In summary, our main contribution are: (1) We propose a general unsupervised approach for image
denoising, which is based on the score function. (2) Experimental results show that our approach
is competitive for simple noise models and achieves excellent performance for complicated noise
models where other unsupervised methods is invalid.

2 Related Works

Here we briefly review the existing deep learning methods for image denoising. When the pairs
of clean images and noisy images are available, the supervised training [26] is to minimize
Ex,y [d (x, f(y; θ))], where f(·; θ) is a neural network and d (·, ·) is a distance metric. Though
supervised learning has great performance, the difficult acquisition for training data hampers its
application in practice.

To avoid the issues of acquisition for paired clean and noisy images, unsupervised1 approaches are
proposed to use noisy image pairs to learn image denoising, which is started from Noise2Noise
(N2N) [12]. While N2N can achieve comparable results with supervised methods, collecting noisy
image pairs from real world is still intracTable Motivated by N2N, the followed-up works try to
learn image denoising with individual noisy images. Mask-based unsupervised approaches [2] design
mask schemes for denoising on individual noisy images and then they train the network to predict the
masked pixels according to noisy pixels in the input receptive field. Noise2Void [10] also proposes
the blind-spot network (BSN) to avoid learning the identity function. Noisier2Noise [16], Noisy-As-
Clean [25] and Recorrupted-to-Recorrupted [17] require a single noisy realization of each training
sample and a statistical model of the noise distribution. Noisier2Noise first generates a synthetic noisy
sample from the statistical noise model, adds it to the already noisy image, and asks the network to
predict the original noisy image from the doubly noisy image. Besides the blind-spot network design,
Self2Self [19] is proposed on blind denoising to generate paired data from a single noisy image
by applying Bernoulli dropout. Recently, Neighbor2Neighbor [7] proposes to create subsampled
paired images based on the pixel-wise independent noise assumption and then a denoising network is
trained on generated pairs, with additional regularization loss for better performance. Noise2Score
[9] is another type of unsupervised methods that can deal with any noise model which follows an
exponential family distribution. It utilize Tweedie’s Formula [21, 6] and the estimation of score
function to denoise noisy images.

1Sometimes self-supervised is used.
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3 Method

In this section, we provide a more detailed description of the proposed approach. The organization
is as follows: In Section 3.1 we review Noise2Score, introduce the basic theory and present the
relationship between our method and Noise2Score. After that, we derive the specific algorithms for
different examples of noise models in Section 3.2. Finally, we describe the method for estimating the
score function∇y log p (y) in Section 3.3. All the proofs are in Supplementary Material.

3.1 Basic Theory

3.1.1 Noise2Score

Suppose the noise model follows some exponential family distribution and has the following form:

p (y | x) = b (y) exp
{
H(x)⊤T (y)− a (x)

}
, (1)

where T (y) and (x) have the same dimensions, and a (x) and b (y) are both scalar functions. One
of the properties of an exponential family distribution is that:

H ′(x)⊤E [T (y) | x] = a′(x). (2)
According to Bayesian Formula, we have the following derivation:

p (x | y) = p (x) p (y | x)
p (y)

= p (x) e−a(x) exp

(
T (y)

⊤
H (x) + log

b (y)

p (y)

)
. (3)

Therefore, p (x | y) is also an exponential family distribution. According to Eq. 2, we can derive a
conclusion about∇y log p (y) (the score function of y), Tweedie’s Formula, that

∇y log p (y) = ∇y log b (y) + T ′ (y)
⊤ E [H (x) | y] . (4)

In Noise2Score, the denoised result x̂ of y is the solution of following equation:

∇y log p (y) = ∇y log b (y) + T ′ (y)
⊤
H (x̂) . (5)

Since Noise2Score is derived from Tweedie’s Formula, it is limited to the noise models of exponential
family distributions.

3.1.2 Proposed Approach

In this work, the proposed approach generalized Noise2Score to non-exponential family distributions.
We begin with the following proposition.

Proposition 3.1 Let y ∼ y and x ∼ x where x and y are two random variable, then the equation
below holds:

∇y log p (y) =

∫
p (x | y)∇y log p (y | x) dx (6)

The proof of Proposition 3.1 is in Supplementary Material. In the task of image denoising, suppose
y ∈ Rd is the noisy image and x ∈ Rd is the clean image where d represents the number of image
pixels. p (x | y) represents the posterior distribution and p (y | x) denotes the noise model. When
p (y | x) follows some exponential family distribution, it is easy to verify that the right part of Eq. 6
equals to the right part of Tweedie’s Formula (Eq. 4). Therefore, the equation (Eq. 5) to be solved in
Noise2Score in essence can be written as:

∇y log p (y) = ∇y log p (y | x̂) . (7)
We use x̂ rather than x to indicate that x̂ is the unknown variable to be solved in the equation.
Hence, we propose a new unsupervised denoising method that given noisy image y, the denoised
result can be obtained by solving Eq. 7. When the noise model follows some exponential family
distribution, our method is the same as Noise2Score. The specific conclusions of Gaussian, Gamma
and Poisson noise can be seen in Supplementary Material. However, different from Noise2Score, our
approach is applicable to some complex non-exponential family distributions as long as the score
function of y and noise model p (y | x) are known. For convenience, let s (y) = ∇y log p (y) and
f (x,y) = ∇y log p (y | x). Our approach is consist of two steps as shown in Figure 1. The general
algorithm is illustrated in Algorithm 1.

The following theorem explains why the solution of Eq. 7 is a good denoised result of y.
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Algorithm 1 The general denoising process
Input: noisy image y and f (x,y).
Output: x̂, the solution of Eq. 7.

1: Estimate s (y).
2: Solve s (y) = f (x,y).

Theorem 3.1 Given y, suppose the Hessian matrix f (x,y) is bounded, f (x,y) is invertible with
respect to x, and its inverse function is Lipschitz continuous. Denote x̂ as the solution of Eq. 7, then,∥∥x̂− Ex|y [x]

∥∥
2
≤ CTr (Cov [x | y]) + o (Tr (Cov [x | y])) , (8)

where Cov [x | y] is the covariance matrix and C is a constant.

The proof of Theorem 3.1 is in Supplementary Material. Theorem 3.1 shows the lower noise level,
the smaller the error between x̂ and Ex|y [x], which guarantees the effectiveness of proposed method.

Next, in Section 3.2 we will derive the specific algorithm for solving x in Eq. 7 under different noise
models, including additive Gaussian noise in Section 3.2.1, multiplicative noise in Section 3.2.2 and
mixture noise in Section 3.2.3. Estimating score function s (y) will be introduced in Section 3.3.

3.2 Application Examples

3.2.1 Additive Gaussian Noise

Suppose the noise model is y = x+ ϵ where ϵ follows a multi-variable Gaussian distribution with
mean of 0 and covariance matrix of Σ denoted by N (0,Σ), i.e.

p (y | x) =
exp

{
− 1

2 (y − x)
⊤
Σ−1 (y − x)

}
√
2π

d |Σ|
1
2

(9)

Then, we derive that f (x,y) = ∇y log p (y | x) = −Σ−1 (y − x). We consider the following
four kinds of Σ: (1) Σ = σ2I; (2) Σ = σ2A⊤A; (3) Σ = Σ (x) = diag (ax+ b1)

2; (4)
Σ = Σ (x) = A⊤diag (ax+ b1)

2
A. In the second and fourth cases, A usually represents a

convolution transform which describes the correlation between adjacent pixels.

For the first and second cases, Σ is a constant matrix. By solving Eq. 7, we have
x̂ = Σs (y) + y. (10)

While in the third and fourth cases, Σ is related to x and Eq. 10 is a fixed point equation. Therefore,
we use an iterative trick to solve it as shown in Algorithm 2.

Algorithm 2 An iterative trick to solve x = Σ (x) s (y) + y

Input: noisy image y, s (y), the parameters of Σ (·) and the number of iterations n.
Output: x̂, the solution.

1: Initial value of x̂ is set as y.
2: for i = 1, ..., n do
3: x̂← Σ (x̂) s (y) + y.
4: end for

3.2.2 Multiplicative Noise

Firstly, we discuss three types of multiplicative noise model, Gamma, Poisson and Rayleigh noise.
Then, we consider the situation where the convolution transform A exists.

Gamma Noise is constructed from Gamma distribution, G (α, β): p(x;α, β) = βα

Γ(α)x
α−1e−βx, and

is defined as y = η ⊙ x, where ηi ∼ G (α, α), α > 1, and ⊙ means component-wise multiplication,
i.e.

p (y | x) =
d∏

i=1

αα

Γ (α)

(
yi
xi

)α−1

exp

{
−αyi

xi

}
· 1
xi

. (11)
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Then, we derive that f (x,y) = ∇y log p (y | x) = α−1
y − α

x . Here, the division is component-wise
division. In the residual part of this paper, we neglect such annotation if it is not ambiguous. By
solving Eq. 7, we have

x̂ =
αy

α− 1− y ⊙ s (y)
. (12)

Poisson Noise is constructed from Poisson distribution, P (λ): Pr(x = k) = λk

k! e
−λ, k = 0, 1, · · · ,

and is defined as y = 1
λη, ηi ∼ P (λxi), λ > 0, i.e.

Pr (y | x) =
d∏

i=1

(λxi)
λiyi

(λyj)!
e−λxi . (13)

Then, we derive that f (x,y) = ∇y log Pr (y | x) = λ log (λx) − λ log
(
λy + 1

2

)
. By solving

Eq. 7, we have

x̂ =

(
y +

1

2λ

)
⊙ exp

{
s (y)

λ

}
, (14)

Rayleigh Noise is constructed from Rayleigh distribution,R (σ): p(x;σ) = x
σ2 exp

{
− x2

2σ2

}
, and is

defined as y = (η + 1)⊙ x, ηi ∼ R (σ), σ > 0, i.e.

p (y | x) =
d∏

i=1

1

xi

yi − xi

xiσ2
exp

{
− (yi − xi)

2

2x2
iσ

2

}
. (15)

Then, we derive that f (x,y) = ∇y log p (y | x) = 1
y−x −

y−x
σ2x2 . Solving Eq. 7 directly is not easy.

Here we provide an iterative algorithm to solve it. It is illustrated in Algorithm 3.

Algorithm 3 An iterative method to solve Eq. 7 in the case of Rayleigh noise
Input: noisy image y, s (y), the parameter of Rayleigh noise σ and the number of iterations n.
Output: x̂, the solution of Eq. 7.

1: Initial value of x̂ is set as y.
2: for i = 1, ..., n do
3: Compute b = σ2s (y)⊙ x̂.
4: Compute t = 1

2

(
−b+

√
b⊙ b+ 4σ21

)
.

5: x̂← y
t+1 .

6: end for

Now, we consider the situation where the convolution transform A exists. Suppose the noise model is
represented by y = Az, z = N (x), where N (x) can be any multiplicative noise model discussed
above. Then, we have ∇y log py (y | x) = A−1,⊤∇z log pz

(
A−1y | x

)
. To avoid confusion, we

use subscripts to distinguish different distribution. Therefore, we can apply Algorithm 4 to solve
Eq. 7, which is shown as follows.

Algorithm 4 The general framework to solve Eq. 7 for correlated multiplicative noise model

Input: y, s (y), A and f̃ (x, z) = ∇z log pz (z | x).
Output: x̂, the solution of Eq. 7.

1: Computing s̃ = A⊤s (y).
2: Computing z = A−1y.
3: Solve s̃ = f̃ (x, z) by the corresponding Algorithm

3.2.3 Mixture Noise

In this paper, the mixture noise model is composed of a multiplicative noise and an additive Gaussian
noise. We denote it as y = z + ϵ, ϵ ∼ N

(
0, σ2I

)
, z = AN (x), where N (x) is any multiplicative
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noise model that can be solved by our approach and A is either a convolution transform or iden-
tity matrix. It is easy to derive that py (y | x) =

∫
py (y | z) pz (z | x) dz. Generally speaking,

py (y | x) has not an explicit analytical form. In this paper, we assume that the additive Gaussian
noise is far smaller than the multiplicative noise. Thus, we utilize Taylor expansion to approximate
py (y | x). We have the following conclusion:

py (y | x) ≈ pz (z̄ | x) +∇zpz (z̄ | x)T (y − z̄) , (16)

where z̄ = E [z | y]. Then, we can further derive that

∇y log py (y | x) ≈ ∇z log pz (z̄ | x) . (17)

The full and rigorous derivations of Eq. 16 and Eq. 17 are in Supplementary Material. Applying
Eq. 10 in Section 3.2.1, we have z̄ = y+σ2s (y). Thus, the equation to be solve is s (y) = f (x, z̄).
The full denoising process is illustrated in Algorithm 5.

Algorithm 5 The full denoising process for mixture noise y = z + ϵ

Input: y, s (y).
Output: x̂, the solution of s (y) = f (x, z̄).

1: Computing z̄ = y + σ2s (y).
2: Solve s (y) = f (x, z̄) through the corresponding algorithm discussed in Section 3.2.2.

3.3 Estimation of Score Function

So far, we assume that the score function of y, s (y), is known. However, it is usually unknown and
should be estimated from the dataset of noisy images {y}. We use the same method, the amortized
residual Denoising Auto Encoder (AR-DAE) [13] discussed in Noise2Score. Suppose s (·; θ) is a
neural network used to represent the score function of y. The following objective function is used to
train the model:

L = Ey,u∼N (0,I) ∥u+ σas (y + σau; θ)∥22 , (18)

where σa is a fixed value. Given σa, the optimal model s(y; θ∗) that minimizes L is the score
function of perturbed y, y + σau. In other words, we can approximate the score function s (y) by
using a sufficiently small σa. Related analysis can also be seen in [8, 23, 1]. During the training
process, the value of σa will be decreasing gradually to a very small value. This progressive process
is helpful to numerically stabilize the model training. The only model training is to estimate s (y) by
s (·; θ), which is served as the first step of our approach. After the score function model is trained, we
apply the denoising algorithms given in Section 3.1 to obtain denoised results and no more training is
required.

4 Experiment

Dataset and Implementation Details We evaluate the proposed method for color images in the
three benchmark datasets containing RGB natural images: Kodak dataset, CBSD68 [15] and CSet9.
DIV2K [22] and CBSD500 dataset [3] are used as training datasets. The synthetic noise images
for each noise model are generated and fixed through the training process. For the sake of fair
comparison, we use the same modified U-Net [5] for all methods. When training, we randomly
clip the training images to patches with the resolution of 128 × 128. AdamW optimizer [14] is
used to train the network. We train each model for 5000 steps with the batch size of 32. To reduce
memory, we utilize the tricks of cumulative gradient and mixed precision training. The learning rate
is initialized to 1× 10−4 for first 4000 steps and it is decreased to 1× 10−5 for final 1000 steps. All
the models are implemented in PyTorch [18] with NVidia V100. The pixel value range of all clean
images is [0, 255] and the parameters of noise models are built on it. Noisy images will be scaled
when fed into the network. When an iterative algorithm is needed to solve Eq. 7, we set the number
of iterations as 10. The more details of implementation are described in Supplementary Material.

Baseline and Comparison Methods We use supervised learning with MSE loss as the baseline
model. Noisier2Noise and Neighbor2Neighbor are used as comparison methods. Since our approach
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Table 1: The application range of different methods including supervised learning (SL), Noisier2Noise
(Nr2N), Neighbor2Neighbor (Nb2Nb), Noise2Score (N2S) and ours. ✓ means applicable and ×
means not applicable or incapable to perform. For Neighbor2Neighbor, ✓∗ means that direct
application is not feasible but indirect application is; ×∗ means that the application is not feasible but
model training is executable.

No. Noise Model SL Nr2N Nb2Nb N2S Ours

1 y = x+ ϵ, ϵ ∼ N
(
0, σ2I

)
✓ ✓ ✓ ✓ ✓

2 y = x+ ϵ, ϵ ∼ N
(
0, σ2A⊤A

)
✓ ✓ ×∗ ✓ ✓

3 y = x+ ϵ, ϵ ∼ N
(
0,diag (ax+ b1)

2
)

✓ ✓ ✓ × ✓

4 y = x+ ϵ, ϵ ∼ N
(
0,A⊤diag (ax+ b1)

2
A
)

✓ ✓ ×∗ × ✓

5 y = η ⊙ x, ηi ∼ G (α, α) ✓ × ✓ ✓ ✓
6 y = Aη ⊙ x, ηi ∼ G (α, α) ✓ × ✓∗ ✓ ✓
7 y = 1

λη, ηi ∼ P (λxi) ✓ × ✓ ✓ ✓
8 y = 1

λAη, ηi ∼ P (λxi) ✓ × ✓∗ ✓ ✓
9 y = (η + 1)⊙ x, ηi ∼ R (σ) ✓ × ×∗ × ✓
10 y = A (η + 1)⊙ x, ηi ∼ R (σ) ✓ × ×∗ × ✓
11 y = η ⊙ x+ ϵ, ηi ∼ G (α, α) , ϵ ∼ N

(
0, σ2I

)
✓ × ✓ × ✓

12 y = Aη ⊙ x+ ϵ, ηi ∼ G (α, α) , ϵ ∼ N
(
0, σ2I

)
✓ × ×∗ × ✓

13 y = 1
λη + ϵ, ηi ∼ P (λxi) , ϵ ∼ N

(
0, σ2I

)
✓ × ✓ × ✓

14 y = 1
λAη + ϵ, ηi ∼ P (λxi) , ϵ ∼ N

(
0, σ2I

)
✓ × ×∗ × ✓

15 y = (η + 1)⊙ x, ηi ∼ R (σ) , ϵ ∼ N
(
0, σ2I

)
✓ × ×∗ × ✓

16 y = A (η + 1)⊙ x, ηi ∼ R (σ) , ϵ ∼ N
(
0, σ2I

)
✓ × ×∗ × ✓

is identical to Noise2Score when the noise model follows exponential family distributions, we do
not compare to it through metrics. Because Noisier2Noise can only be applied to additive noise,
we do not train models by Noisier2Noise for other noise models. Though Neighbor2Neighbor
is not suitable for some noise models from the perspective of theoretical analysis, we still train
corresponding models and report its results. Table 1 shows the comparison of application range for
different methods, including additive Gaussian noise, multiplicative noise and mixture noise. Based
on it our experiments are conducted. Only supervised learning and our approach can handle all noise
models listed in Table 1.

Parameters of Noise Models Here, we emphasize that for all noise models in our experiments, A
is set as a 3× 3 convolution transform with the kernel of(

0.05 0.1 0.05
0.1 0.4 0.1
0.05 0.1 0.05

)
(19)

if it is used. The additive Gaussian noise in every mixture noise model is set as N (0, 100I). Other
parameters will be given later. Finally, all parameters are assumed to be known in our experiments.

Additive Gaussian Noise Using additive Gaussian noise, we consider four kinds of noise models
with different Σ corresponding from No.1 to No.4 in Table 1. Our method is compared to supervised
learning, Noisier2Noise and Neighbor2Neighbor as shown in Table 2. For the first two noise models
σ is 25, and for the rest a = 0.98 and b = 25. As expected, supervised learning performs best. In the
cases without A Neighbor2Neighbor is the best among three other unsupervised learning methods.
However, in the cases with A Neighbor2Neighbor performs very poorly. Our approach outperform
other unsupervised learning methods in the second noise model and is competitive in the whole.

Multiplicative Noise We consider the combination of three various multiplicative noise model
(Gamma, Poisson and Rayleigh) and a convolution transform A. They are corresponding from No.5
to No.10 in Table 1. Our method is compared to supervised learning and Neighbor2Neighbor and the
results are shown in Table 3. Because Noisier2Noise can not address such multiplicative noise models,
we neglect it. Though the noise is not pixel-wise independent when the convolution transform exists,
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Table 2: Quantitative comparison for various parameters of Σ in additive Gaussian noise using differ-
ent methods in terms of PNSR (dB)/SSIM. Bold indicates the best result among three unsupervised
methods, while underlined indicates the second-best result.

No.1: Gaussian, σ = 25 w/o A No.2: Gaussian, σ = 25 w/ A

Method Kodak CSet9 CBSD68 Kodak CSet9 CBSD68

SL 32.44/0.887 30.27/0.891 31.32/0.892 34.80/0.928 32.53/0.924 34.08/0.938
Nr2N 31.80/0.863 29.75/0.878 30.84/0.871 33.87/0.914 32.02/0.916 33.40/0.926
Nb2Nb 31.96/0.875 29.90/0.882 30.92/0.880 27.89/0.673 27.88/0.742 27.86/0.722
Ours 31.92/0.870 29.86/0.875 30.91/0.877 33.99/0.914 32.16/0.914 33.45/0.926

No.3: Gaussian, a = 0.98, b = 25 w/o A No.4: Gaussian, a = 0.98, b = 25 w/ A

Method Kodak CSet9 CBSD68 Kodak CSet9 CBSD68

SL 30.92/0.856 28.69/0.860 29.68/0.856 33.02/0.904 30.76/0.900 32.11/0.912
Nr2N 30.07/0.813 28.02/0.834 28.99/0.818 32.28/0.884 29.98/0.886 31.55/0.896
Nb2Nb 30.42/0.840 28.22/0.848 29.29/0.842 25.02/0.557 24.44/0.621 25.01/0.619
Ours 29.68/0.797 27.58/0.806 28.70/0.806 31.88/0.884 29.50/0.874 31.14/0.895

Table 3: Quantitative comparison for various multiplicative noise models using different methods in
terms of PNSR (dB)/SSIM. For Neighbor2Neighbor (Nb2Nb), if the noise model is constructed with
A, it can be regarded as the one without A through A−1y. Thus we do not provide the metrics. Bold
indicates the better result between two unsupervised methods.

No.5: Gamma, α = 26 w/o A No.6: Gamma, α = 26 w/ A

Method Kodak CSet9 CBSD68 Kodak CSet9 CBSD68

SL 33.51/0.916 30.72/0.898 32.44/0.922 33.02/0.916 30.41/0.897 32.15/0.921
Nb2Nb 32.98/0.908 30.33/0.890 31.97/0.913 - - -
Ours 32.61/0.894 29.89/0.870 31.51/0.898 31.90/0.877 29.26/0.858 30.63/0.878

No.7: Poisson, λ = 0.2 w/o A No.8: Poisson, λ = 0.2 w/ A

Method Kodak CSet9 CBSD68 Kodak CSet9 CBSD68

SL 32.90/0.902 30.56/0.894 31.87/0.908 32.55/0.902 30.27/0.894 31.64/0.907
Nb2Nb 32.50/0.893 30.17/0.886 31.48/0.899 - - -
Ours 32.38/0.886 29.98/0.874 31.31/0.891 31.84/0.872 29.48/0.864 30.56/0.873

No.9: Rayleigh, σ = 0.3 w/o A No.10: Rayleigh, σ = 0.3 w/ A

Method Kodak CSet9 CBSD68 Kodak CSet9 CBSD68

SL 35.29/0.939 32.44/0.922 34.39/0.947 34.63/0.939 31.97/0.920 33.94/0.946
Nb2Nb 16.55/0.865 15.16/0.844 16.74/0.862 - - -
Ours 34.25/0.915 31.45/0.892 33.34/0.923 32.87/0.894 30.30/0.869 31.85/0.901

we can execute its inverse transform on y so that the requirement of pixel-wise independence is
satisfied for Neighbor2Neighbor. Therefore, tackling noise models with a convolution transform is
equivalent to the situations without A. That is why we do not provide corresponding metrics result for
Neighbor2Neighbor in Table 3. We set α as 26 for the Gamma noise, λ as 0.2 for the Poisson noise,
and σ as 0.3 for the Rayleigh noise. When the noise model is based on Gamma or Poisson noise,
it is unbiased, i.e. E [y | x] = x. In these cases, Neighbor2Neighbor is better than ours. However,
when the noise model is based on Rayleigh noise which is biased our approach still has excellent
performance while Neighbor2Neighbor is poor.

Mixture Noise We also consider the combination of three various multiplicative noise model
(Gamma, Poisson and Rayleigh) and a convolution transform A. For each one, additive Gaussian
noise with Σ = 100I is added to construct mixture noise models. They are corresponding from
No.11 to No.16 in Table 1. Because of the same reason discussed before, our method is compared
to supervised learning and Neighbor2Neighbor, and Noisier2Noise is neglected. The experimental
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Table 4: Quantitative comparison for various mixture noise models using different methods in terms
of PNSR (dB)/SSIM. For each noise model, additive Gaussian noise with Σ = 100I is added. Bold
indicates the better result between two unsupervised methods.

No.11: Gamma, α = 26 w/o A No.12: Gamma, α = 26 w/ A

Method Kodak CSet9 CBSD68 Kodak CSet9 CBSD68

SL 32.86/0.902 30.23/0.889 31.70/0.906 33.02/0.882 29.30/0.875 30.42/0.882
Nb2Nb 32.30/0.892 29.80/0.880 31.21/0.896 26.93/0.676 25.06/0.663 26.33/0.710
Ours 32.13/0.880 29.61/0.861 31.08/0.887 30.74/0.853 28.40/0.841 29.58/0.854

No.13: Poisson, λ = 0.2 w/o A No.14: Poisson, λ = 0.2 w/ A

Method Kodak CSet9 CBSD68 Kodak CSet9 CBSD68

SL 32.49/0.892 30.18/0.887 31.40/0.897 31.44/0.877 29.36/0.876 30.32/0.878
Nb2Nb 32.03/0.884 29.74/0.880 30.98/0.888 26.82/0.646 25.48/0.669 26.32/0.688
Ours 32.10/0.879 29.70/0.870 31.03/0.883 31.11/0.855 28.80/0.851 29.85/0.856

No.15: Rayleigh, σ = 0.3 w/o A No.16: Rayleigh, σ = 0.3 w/ A

Method Kodak CSet9 CBSD68 Kodak CSet9 CBSD68

SL 34.38/0.926 31.79/0.913 33.39/0.933 32.83/0.908 30.48/0.898 31.74/0.910
Nb2Nb 16.54/0.856 15.15/0.838 16.71/0.851 16.40/0.704 15.06/0.738 16.56/0.736
Ours 33.54/0.902 30.94/0.883 32.68/0.913 31.14/0.867 28.94/0.847 30.23/0.876

Figure 2: PSNR V.S. disturbance rate for No.14 and No.15 noise models.

results are shown in Table 4. Due to the additive Gaussian Noise, Neighbor2Neighbor are not able to
handle the cases with A through the inverse convolution transform. The correlation of noise hampers
the performance of Neigh2bor2Neighbor. Except the first noise model in Table 4, our approach all
outperforms Neighbor2Neighbor and achieve excellent performance near to supervised learning.

Robustness Evaluation To apply our approach, the parameters of noise models have to be known
beforehand. Therefore their precision may impact on the performance. We choose No.14 and No.15
noise models in Table 1 as examples to show the robustness to parameters’ precision. Suppose k is
one of parameters, we disturb it by (a+ 1)k where a ∼ N (0, r2) and r is called the disturbance rate.
The larger r, the less precise the noise model. As r is increasing, the PSNR of the denoised result is
shown in Figure 2. When r = 0.1, the PSNR reduces about 1 dB, which displays the robustness.

5 Conclusion

In this paper, we propose a new approach for unsupervised image denoising. The key part is
Proposition 3.1. Based on it, we construct an equation, Eq. 7 about the clean image x and the noisy
image y. After the score function of y is estimated, the denoised result can be obtained by solving
the equation. Our approach can be applied to many different noise model as long as Eq. 7 is solvable.
The denoising performance is competitive for simple noise models and excellent for complicated
ones. We hope that this work is helpful to address sophisticated image denoising problems in practice.
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Figure 3: Qualitative Comparison using CBSD68 dataset (cropped to 256 × 256). From the first
row to the last: (1) Gaussian noise, σ = 25 w/o A; (2) Gaussian noise, σ = 25 w/ A; (3) Rayleigh
noise, σ = 0.3 w/o A; (4) Rayleigh noise, σ = 0.3 w/ A; (5) Poisson noise, λ = 0.2 w/ A
added by Gaussian Noise with σ = 10; (6) Rayleigh noise, σ = 0.3 w/o A added by Gaussian
Noise with σ = 10. Noisy: noisy image, GT: ground-truth image, SL: supervised learning, Nb2Nb:
Neighbor2Neighbor, Nr2N: Noisier2Noise.
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