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Abstract

Recently an influx of studies claims emergent cognitive abilities in large language
models (LLMs). Yet, most rely on anecdotes, overlook contamination of training
sets, or lack systematic Evaluation involving multiple tasks, control conditions,
multiple iterations, and statistical robustness tests. Here we make two major
contributions. First, we propose CogEval, a cognitive science-inspired protocol for
the systematic evaluation of cognitive capacities in LLMs. The CogEval protocol
can be followed for the evaluation of various abilities. Second, here we follow
CogEval to systematically evaluate cognitive maps and planning ability across eight
LLMs (OpenAI GPT-4, GPT-3.5-turbo-175B, davinci-003-175B, Google Bard,
Cohere-xlarge-52.4B, Anthropic Claude-1-52B, LLaMA-13B, and Alpaca-7B).
We base our task prompts on human experiments, which offer both established
construct validity for evaluating planning, and are absent from LLM training sets.
We find that, while LLMs show apparent competence in a few planning tasks
with simpler structures, systematic evaluation reveals striking failure modes in
planning tasks, including hallucinations of invalid trajectories and falling in loops.
These findings do not support the idea of emergent out-of-the-box planning ability
in LLMs. This could be because LLMs do not understand the latent relational
structures underlying planning problems, known as cognitive maps, and fail at
unrolling goal-directed trajectories based on the underlying structure. Implications
for application and future directions are discussed.

1 Introduction

Large language models (LLMs) are generatively pre-trained and display apparent competence on
some cognitive tasks [8]. This has led to a recent surge in studies claiming LLMs have emergent
human-level cognitive abilities, which may encourage applications that interact with LLMs in a
zero-shot or few-shot manner with expectations of human-level cognition. However, most claims
of competence are based on anecdotes rather than systematic evaluation. In response, we make
two contributions. First, we propose CogEval, a Cognitive Science-Inspired [12, 5, 39] protocol for
Measurement and Evaluation of cognitive abilities in LLMs (Figure 1, top), such as planning, theory
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of mind, causal inference, or other abilities. Second, we apply this evaluation protocol to the domain
of cognitive maps and planning, and systematically evaluate these capacities across eight LLMs. We
build our task prompts according to established human experiments, but our goal is not a comparison
with human performance nor any assumptions of LLMs being "human-like" [27]. We evaluate LLMs’
functional as opposed to formal linguistic abilities [21], and by that we have both a functionalist and
multiple-realizability-based notion of cognitive ability [9] in mind.

We investigated whether LLMs (OpenAI GPT-4, GPT-3.5-175B, and davinci-003-175B, Google
Bard, Cohere-52.4B, Anthropic Claude-1-52B, LLaMA-13B, and Alpaca-7B) understand the latent
structure of planning problems (cognitive maps). We hypothesized that failure in planning may relate
to cognitive map deficits. To address these questions, we followed the CogEval protocol (Figure 1).
First, we operationalized the latent ability (cognitive map and planning) in terms of multiple tasks
with variations in three factors: (a) the latent structure of the tasks’ environment (different Markov
decision processes (MDPs) or graphs), (b) the domain (spatial vs. social ties vs. object relations), and
(c) multiple planning tasks for each latent graph structure (c.f. Section 2 for detail). These domains
were selected due to their prevalence in everyday problems as well as the cognitive science literature
on cognitive maps [4, 44, 35]. We then generated repeated measurements across small and large
LLMs (c.f. Section 2 for choice of LLMs) and conducted statistical analysis to compare the results.
We found that LLMs only show apparent competence in simpler tasks, where route memorization
was sufficient to find a solution, but fail on closer systematic observation. Our evidence suggests
against out-of-the-box emergent planning capacities in recently introduced LLMs.

What is a cognitive map? A cognitive map is a representation of latent relational structures that
underlies a task or environment, and facilitates planning, reasoning, and inference in biological and
artificial problems [46, 4, 26, 7]. The concept originated from Tolman’s latent learning experiments,
demonstrating rodents’ ability to learn maze structures without rewards [46]. This challenged
the dominant behaviorist view that learning only occurs with reinforcement; and paved the way
for a cognitive revolution. Decades later, discoveries of hippocampal place cells [31, 30, 32] and
entorhinal cortex grid cells [13, 15, 29], together referred to as "the brain’s GPS," further substantiated
cognitive maps and earned the 2014 Nobel Prize [1]. Cognitive maps have since been studied
behaviorally, computationally, and neurally; revealing that multi-step, multi-scale, and compressed
neural representations are crucial for inference in both memory and planning [4, 26, 7]. Over the
past decades, a number of reinforcement learning (RL) and deep neural network models have been
proposed to capture the computations involved in cognitive maps and planning in the hippocampus
and the prefrontal cortex of humans, rodents, bats, monkeys, and birds [4, 37, 7].

Why would LLMs plan with a cognitive map? It has been suggested that the transformer architecture
and its learned representations, which lie at the heart of modern LLMs, are comparable to the
hippocampus of the brain and the representations it learns [55]. Other studies show that GPT-3 is
capable of event segmentation of narrative transcripts similar to human evaluators [23], and evaluate
some cognitive capacities of GPT-3 using cognitive science and psychological methods applied in the
evaluation of human cognition [5, 38, 48, 56]. Other cognitive scientists have distinguished formal
linguistic ability (e.g., the ability to form grammatically correct sentences) from functional cognitive
capacities (e.g., theory of mind, sequential planning, etc) and call for a meticulous evaluation of
LLMs’ functional competence without conflating them with their formal linguistic competence -
much like the dissociation of language and thought [21]. Taken together, these studies raise the
hypothesis that LLMs would be able to extract and use cognitive maps from text, and second, that
LLMs’ failure in capturing cognitive maps could underlie failure modes in planning.

To test these hypotheses, we designed prompts to measure behavioral signatures of extraction
and use of cognitive maps in a set of tasks adapted from existing human behavioral experiments
[25, 24, 28, 34, 36]. We operationalized cognitive maps and planning with a number of tasks
(Figure 1) with variations in environmental structures or graphs, varying items from different domains
(spatial, social, object relations), and across a number of different conditions (e.g., value-based
planning, reward and transition revaluation, shortcut, and detour).

Notably, the corresponding human experiments that inspired our prompts were never in linguistic
form, and this is the first adaptation of them to prompts to the best of our knowledge. This is an
important consideration since contamination of the training data with the test set is one of the most
challenging obstacles to testing LLM capacities. To prevent any possible contamination, we avoided
BIG-bench [40], which has been flagged by OpenAI for contamination [2], and a planning benchmark

2



Figure 1: The CogEval protocol, task structure, and example task prompt. (top) In the CogEval
protocol, a latent ability can be evaluated by first, being operationalized as tasks, and second, be
measured multiple times and with variations and controls. We followed this protocol to evaluate
cognitive map and planning. To robustly evaluate these abilities, multiple task prompts were generated
with varying task structures (graph), the item domains (e.g., spatial or social), and task conditions
(e.g., value-based path, detour). LLM responses were generated 30 times per task prompt and
temperature for the three OpenAI models studied in this work and once per task and temperature
for other LLMs. The results were compared across task configurations, LLMs, and temperatures
using statistical analysis. (middle) The prompts’ underlying task structures were six graphs based on
human experiments. A: simple line graph from [25]. B: simple tree graphs based on [24]. C: graph A
with double depth and stochastic transitions. D, E, and F represent community graphs from [36], [28],
and [34] respectively. (bottom) An example prompt for graph A. This procedure evaluates planning
behavior in value-based navigation (see Table 1). The colored transitions in the figure are for clarity,
showing different stages of the latent transition structure (cognitive map or graph).

for GPT-3 [49] as both pre-date GPT-4 and raise data contamination issues. Here we introduce and
generate novel prompts inspired by human experiments with established validity in cognitive science.
To our knowledge, a systematic evaluation of planning and cognitive map capacities in GPT-4 and
comparison to other LLMs remain unexplored. In what follows we elaborate on a protocol and two
related experiments to address this.
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2 Methods

The CogEval protocol. In order to evaluate cognitive-map-related planning and navigation in LLMs,
we propose and use the CogEval protocol (Figure 1). Please note that CogEval is not a benchmark
nor limited to cognitive maps, it is a general protocol for evaluating any cognitive capacity, such as
planning, theory of mind, causal reasoning, etc. As an example, here we have applied it to the domain
of cognitive maps and planning.

CogEval adheres to four methodological best practices suggested by cognitive scientists [12]. First,
the latent construct or ability: here we evaluate cognitive maps, which are representations that capture
a model of the task structure, and adaptive planning, which requires an internal representation of
task structures (similar to model-based RL [42] or task-oriented model-free RL [16–19]). Second,
operationalization with construct validity: we operationalize planning ability by generating unique
variations of established experimental tasks that measure the comprehension and use of cognitive
maps in multi-step planning behavior [25, 36, 24]. Third, multiple tasks and multiple response
generations: we generated many tasks for each condition of interest varying graph structure, and
domain (spatial with ordered states such as room numbers, spatial with unordered states, social ties,
object relations). Most task conditions include a partial change in the environment to test adaptive
planning (e.g., changing the location of rewards or the structure of the environment, see Table 1).
Collectively, these tasks allow us to robustly measure the latent construct: cognitive map and planning
ability. Fourth, including multiple task conditions allows us to control for multiple factors when
making inference about the ability.

Thus, we evaluate the construct using multiple environments with different graph structures (based
on existing human experiments on cognitive maps [25, 36, 24], see graphs in Figure 1), controlling
for robustness to variations in graphs, task conditions, and item domains (e.g., rooms, people, objects,
random letters), using multiple generations (30 generations per condition), and across different
temperatures (0, 0.5, and 1).

LLMs evaluated. We compared the following LLMs: GPT-4-* [2], GPT-3.5-turbo-175B [33],
text-Davinci-3-175B [6] (Azure OpenAI API), Bard-* [45], Anthropic Claude-1-52B [3], LLaMA-
13B [47], Cohere-52.4B [10], Alpaca-7B [43] (nat.dev API), where * means the number of parameters
is undisclosed.

Experiments. We conducted planning experiments to systematically compare the performance of all
LLMs across task conditions created with 3 factors of graph structure (6 graphs), domain (3 domains),
and tasks (15 tasks) over 3 temperatures (0, 0.5, 1)).

2.1 A cognitive science inspired evaluation of cognitive maps and planning capacity in LLMs

We designed our experiment prioritizing robustness and control conditions. Model performance on
cognitive tasks can be influenced by various factors beyond the primary cognitive capacity, such as
the specific prompts, the temperature parameter, experimental conditions (Table 1, Figure 1, bottom),
the specific items the task is presented with or domain (e.g., spatial connections vs. social ties),
and the specific relational graph underlying the problem (e.g., this could be a graph structure such
as line graphs, trees, community graphs with different size and density). For instance, perhaps an
LLM performs better when the items in a task are rooms that are numbered in order in a line graph
(item or domain effect), or when the graph structure is finite rather than a community graph with
potential loops (graph effect). Thus, we implemented measures to mitigate such effects, like potential
performance variations due to task item selection or its underlying graph structure. We measured the
results for each combination of factors and parameters 30 times for OpenAI models (for which we
had API access) and once for the remaining models with no API access. We compared the results
across 10 LLMs.

Why vary temperature? Temperature in LLMs determines randomness in the generated response, by
manipulating the probabilities of the next word in a sequence. Thus, temperature can be thought of
as a parameter controlling the diversity of the output. A temperature of 0 results in deterministic or
greedy responses with less variance (Note: OpenAI has made it known that even a temperature of
0 is not entirely deterministic). With higher temperatures, especially closer to 1, the LLM creates
more diverse and varied text upon repetition, akin to exploration. While a higher temperature may be
helpful for tasks that require varied responses or creativity, it could go either way for planning: on the
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one hand, precision in planning trajectories may seem more in line with a deterministic temperature,
and on the other, a higher temperature leads to exploration, which may improve behavior by getting
out of local minima. Repeating the experiments with varying temperature can help address its possible
effect in either direction.

Statistical analysis. We evaluated the robustness of each LLM’s performance by applying a statistical
model of how each of the factors and their combinations contribute to variance in performance.
Specifically, we fit a logistic regression analysis with domain, condition, and graph types as categorical
regressors, and included second and third-order interaction terms between these three terms. We
made sure that each combination of domain, condition, and graph had several replicates, though
the approach is robust to imbalance issues. We included model version and temperature as separate
independent variables that account for technical variation distinct from our conditions of interest. See
supplement for full details on analysis and results.

2.1.1 Task prompts

Navigating cognitive maps requires adaptive multi-step planning using compressed representations of
the environment, not mere memorization of all routes. Thus, cognitive map experiments test flexible
adaptivity to local changes in the environment to evaluate biological and reinforcement learning
agents [25, 25, 26, 14]. Latent learning experiments found that rodents who explored a maze with
no reward could quickly find the shortest route to a newly introduced reward, i.e., find an optimal
policy in RL context. This was taken as their ability to learn the cognitive maps of their mazes [46],
but various additional experimental conditions were then designed and evaluated to confirm that
they could flexibly adapt their cognitive map and planning to local environment alterations such as
reward relocation (revaluation), changes to the map (transition revaluation) [25], or the introduction
of shortcuts and detours [41]. Previous research has adapted these experiments to investigating the
robustness and flexibility of deep model-based RL in the face of local changes to the reward structure
(LoCA), and shown that deep model-based RL agents such as Dreamer v2, muZero, and PlaNet failed
at flexible planning in reward revaluation scenarios [52]. Here we operationalized our tasks inspired
by similar conditions in human reinforcement learning and deep MBRL experiments on learning,
updating, and using cognitive maps for adaptive and flexible planning [25, 52].

Importantly, the corresponding human experiments were never conducted using texts, but were
presented either as videos or a sequence of images that human participants moved forward by
choosing an action (e.g. pressing left, right, up, or down). We believe this mitigates the risks
of contamination. Moreover, when possible, we set the date earlier than our pilot studies to avoid
potential contamination due to our experiments in the past month. To also ensure that the model cannot
infer any answers from the papers, we asked GPT-4 to explain the experimental paradigm and draw
the map of the environments after providing it a reference to a specific figure in a corresponding paper,
and it failed. Thus, we believe our prompts have a negligible to no chance of having contaminated
the training sets.

Below we provide examples of task prompts for graph A and a spatial domain (number ordered rooms).
All prompts are available in the supplementary material and on https://github.com/cogeval/cogmaps.

I. Value-based or goal-driven planning. Below is an example prompt for value-driven or goal-
directed planning in graph A in Figure 1. Success requires an understanding of the start and goal
positions, comparison of the paths to find the shortest path that leads to the highest rewards, and
planning a multi-step navigation or traversal of the underlying graph structure of the task.

Imagine a world with six rooms. From the lobby you have two choices, room 1 and room 2.
You enter room 1, at the end there’s a door that leads to room 3, and room 3 leads to room 5.
There’s a chest in room 5. You open it and there’s 10 dollars. Then you exit and start over.
This time in the lobby you choose room 2, then enter room 4, which leads to room 6. There’s
a chest with 50 dollars. You return to the lobby. Which room will you choose to make the
most money?

II. Transition Revaluation, after prompt I. This condition occurs when the structure of the
environment (e.g., an edge of the graph or Markov decision process) locally changes, and planning
requires integrating or ‘piecing together’ different parts of the cognitive map to update one’s plan or
policy.
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Now you’re dropped in room 3 and the door at its end suddenly leads to room 6, and then
you’re dropped in room 4 and the door at its end suddenly leads to room 5. you return to the
lobby. Which room will lead to more rewards?

III. Reward Revaluation, after prompt I. A common local change in any environment is when the
location of rewards or goals change, without any changes to the map or structure of the states (or the
cognitive map). This is known as Reward Revaluation or retrospective revaluation of rewards [25].

Now you’re dropped into room 3, then you enter room 5 and the chest has 100 dollars. Then
you’re taken out, and dropped into room 4, then you enter room 6 and the chest has the same
amount as before. When you return to the lobby, which room do you choose to make the most
reward?

V. Shortcut prompts with and without teleportation, after prompt I. Tolman’s experiments on
cognitive maps [46] included a condition evaluating the animal’s ability to discover shortcuts. Since
the early 1990s, evaluating the ability of various Dyna architectures [42] in discovering shortcuts has
been an important part of evaluating planning behavior. Below are two different shortcut prompts.

In the lobby you’re presented with a portal, and you can choose which room to teleport into.
Which room do you choose to maximize rewards?

In the lobby you’re presented with a new door which leads to a new room, room 7. Room
7’s door leads directly to room 6. Remember that you will only be able to choose one path
that leads to the most money. Which room from the lobby will lead to the path where one can
make the most money?

V. Detour prompts with and without Teleportation, after prompt I.

You enter the lobby and this time you encounter a new room, room 7. Room 7’s door leads to
room 8, and room 8 leads to room 9. From room 9 you can teleport anywhere. You return to
the lobby, and choose the room that leads to the most reward, but the door to the next room is
blocked. You go back to the lobby. Which room do you choose to reach the most rewards?

You enter the lobby and this time you encounter a new room, room 7. Room 7’s door leads to
room 8, and room 8 leads to room 6. When you return to the lobby and choose the previous
path that led to the most reward, you discover that the regular door to the room with the most
money is now blocked. You go back to the lobby. You will only be able to choose one path
that leads to the most money. Which room from the lobby will lead to the path where one can
make the most money?

3 Results

3.1 Repeated measures comparison of planning across LLMs

We evaluated out-of-the-box emergent or native ability of different LLMs on the cognitive map
tasks. Table 2 shows the statistical analysis highlighting the contributions of each factor to a logistic
regression model’s fit of LLM model performance. The magnitude of chi-square test statistics indicate
contribution to overall model fit. Figure 2 compares the performance of all LLMs across all latent
graph structures. Table 3 shows mean and standard error for planning performance across tasks and
LLMs.

The results in Table 2 indicate that the LLM (χ2(11) = 2357.87, p < .001), graph (χ2(11) = 3431.53,
p < .001), condition (χ2(11) = 2080.04, p < .001), and domain (χ2(11) = 304.06, p < .001) each
yielded significant chi-squared statistics. This means that not only did different LLMs performed
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Table 1: Brief descriptions of the task conditions applied to varying graphs and domains

Condition Description Group

valuePath The optimal solution is to find the optimal policy, or shortest path, which yields the highest reward
 Traversal

1stepPath The optimal solution is a 1-hop policy, i.e., goal is adjacent to the starting state
2stepPath The optimal solution is a 2-step policy
3stepPath The optimal solution is a 3-step policy
nstepPath The optimal solution is an n-step policy, where max n is the diameter of the graph (longest shortest path)

rewardReval Upon a local change in the reward structure, the goal has changed and the optimal solution requires finding a new path
}

RewRevalpolicyReval Upon a local change in the reward structure, the optimal solution requires finding a new policy

transReval Upon a local change in the transition structure, the goal is the same but the optimal solution requires finding a new policy
}

TransRevaltransRevalStochastic Upon a local change in the transition structure, the goal is the same but the optimal solution requires finding a new policy
in a stochastic environment

nonteleShortcut Upon a change in the graph structure, the optimal solution requires finding a shortcut
 Shortcut

nonteleShortcutCoT Upon a change in the graph structure, the optimal solution requires finding a shortcut, an additional CoT prompt is given
teleShortcut Upon a local change in the transition structure, the optimal solution requires finding a shortcut using a teleportation portal
teleShortcutCoT Upon a local change in the graph or transition structure, the optimal solution requires finding a shortcut using

a teleportation portal, an additional CoT prompt is given

nonteleDetour Upon a change in the graph structure, the optimal solution requires finding a detour
}

DetourteleDetour Upon a local change in the transition structure, the optimal solution requires finding a detour using a teleportation step

Figure 2: Results for planning experiments in 8 LLMs. (left) Mean and standard error of perfor-
mance on all tasks for each of the different graphs (see Figure 1 for graph details) across different
LLMs studied in this work. (right) Mean performance compared across per main task category (see
Table 3 for details).

differently, but performance varied as a result of varying graphs, domains, and conditions. Conversely,
the temperature showed a non-significant chi-squared statistic (χ2(11) = 1.28, p = .53) and the
interaction between the LLM and temperature was also non-significant (χ2(11) = 10.69, p =
.71). Noteworthy, the interactions among graph-domain, graph-condition, domain-condition, and
graph-domain-condition were all significant (all p’s < .001). The interactions among graph-domain
(χ2(11) = 334.41, p < .001), graph-condition (χ2(50) = 1651.33, p < .001), domain-condition
(χ2(39) = 310.53, p < .001), and graph-domain-condition (χ2(108) = 1133.16, p < .001) were all
significant. A full table of regression coefficient estimates is included in the supplement.

In summary, while the ’temperature’ and the interaction of ’LLM’ and ’temperature’ do not show
significant effects on planning tasks, all other factors and their interactions significantly contribute to
the variations in the dependent variable. These effects show that LLM performance on cognitive map
and planning tasks was not robust to the graph structure of the problems, the domain, nor the task
conditions, and it also varied across models (see Tables 2 and 3 and Figure 2).

3.2 Failure modes

We note three main failure modes when the task had an underlying graph with a dense com-
munity structure. Notably, when we probe the LLMs to list connected rooms or items as
(state, actions, state) tuples, they do well (e.g., (room1, opendoor, room3) is a tuple for graph
A in Figure 1). However, when asked to do any tasks with a community graph structure using this
tuple knowledge, LLMs display the following failure modes; (1) hallucinate edges that do not exist,
or (2) produce longer trajectories instead of shortest paths, or (3) produce trajectories that fall in
loops. For example in the task of finding the shortest path to a state that is 1 cluster away, out of 30
runs GPT-4 has a success rate of 0 at temperature 0. Even with changing the temperature to 0.5 or
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Table 2: Step-wise contribution of adding each factor to the logistic regression fit of LLM model
performance (number of successes out of max possible successes in dialog).

term Chi-squared Stat (Deviance) df p value
1 LLM 2357.87 7 <0.001
2 graph 3431.53 5 <0.001
3 domain 458.74 2 <0.001
4 temperature 1.28 2 0.53
5 condition 2080.04 4 <0.001
6 LLM and temperature 10.69 14 0.71
7 graph and domain 334.41 10 <0.001
8 graph and condition 1651.33 20 <0.001
9 domain and condition 310.53 8 <0.001

10 graph, domain, condition 1133.16 44 <0.001

Table 3: Mean and standard errors for planning performance across all task conditions in all 10
LLMs. ARI scores closer to zero represent poor performance by the LLM and ARI scores reaching
1.0 represent performance matching Leiden.

gpt-4-32k gpt-35 davinci-003 claude-v1 pythia-20b cohere llama-13b alpaca-7b bard
Condition
1stepPath 0.99, 0.08 0.76, 0.32 0.52, 0.45 0.57, 0.37 0.64, 0.41 0.27, 0.42 0.23, 0.38 0.27, 0.41 0.05, 0.10
2stepPath 0.82, 0.35 0.73, 0.38 0.16, 0.25 0.61, 0.41 0.67, 0.42 0.29, 0.44 0.22, 0.37 0.35, 0.47 0.25, 0.50
3stepPath 0.55, 0.38 0.37, 0.37 0.58, 0.43 0.27, 0.31 0.35, 0.49 0.04, 0.11 0.04, 0.07 0.06, 0.20 0.11, 0.10
nonteleDetour 0.55, 0.39 0.51, 0.35 0.55, 0.43 0.50, 0.41 0.51, 0.37 0.21, 0.35 0.19, 0.33 0.26, 0.38 0.29, 0.48
nonteleShortcut 0.56, 0.40 0.52, 0.39 0.49, 0.40 0.62, 0.43 0.40, 0.36 0.16, 0.27 0.11, 0.18 0.20, 0.30 0.29, 0.48
nonteleShortcutCoT 1.00, 0.00 1.00, 0.00 0.09, 0.07 0.58, 0.38 0.36, 0.38 0.37, 0.49 0.17, 0.29 0.37, 0.37 -
nstepPath 0.47, 0.38 0.31, 0.34 0.17, 0.27 0.33, 0.37 0.27, 0.42 0.05, 0.11 0.06, 0.08 0.12, 0.32 0.00, 0.00
policyReval 0.21, 0.18 0.18, 0.23 0.13, 0.04 0.28, 0.30 0.00, 0.00 0.00, 0.00 0.04, 0.07 0.05, 0.22 0.00, 0.00
rewardReval 0.67, 0.40 0.57, 0.36 0.34, 0.25 0.48, 0.35 0.60, 0.45 0.31, 0.44 0.28, 0.43 0.33, 0.44 0.14, 0.14
teleDetour 0.47, 0.35 0.34, 0.30 0.53, 0.44 0.37, 0.33 0.44, 0.41 0.21, 0.35 0.23, 0.37 0.23, 0.38 0.29, 0.48
teleShortcut 0.54, 0.39 0.35, 0.33 0.44, 0.41 0.45, 0.39 0.27, 0.33 0.16, 0.27 0.16, 0.22 0.12, 0.24 0.29, 0.48
teleShortcutCoT 0.50, 0.00 0.50, 0.00 0.04, 0.01 0.50, 0.50 0.39, 0.36 0.19, 0.40 0.83, 0.29 0.35, 0.36 -
transReval 0.60, 0.42 0.59, 0.40 0.49, 0.38 0.55, 0.36 0.47, 0.42 0.19, 0.28 0.22, 0.33 0.27, 0.37 0.08, 0.17
transRevalStochastic 0.73, 0.36 0.52, 0.36 0.91, 0.24 0.78, 0.34 0.36, 0.32 0.00, 0.00 0.11, 0.19 0.22, 0.39 -
valuePath 0.58, 0.41 0.66, 0.40 0.66, 0.39 0.44, 0.41 0.49, 0.46 0.31, 0.40 0.27, 0.39 0.33, 0.45 0.29, 0.48

1 and repeating the same 30 runs its success rate can not exceed 10%. Please refer to Figure 3 for
examples of above failure modes.

4 Discussion and future directions

This paper makes two main contributions. First, we introduce CogEval, a cognitive science inspired
protocol for systematic and robust evaluation of functional [21] cognitive abilities in LLMs. Second,
we follow the CogEval protocol to evaluate multiple LLMs’ native or emergent ability to extract
cognitive maps for sequential planning, navigation, or graph inference. All tasks and prompts are
based on non-linguistic human cognitive science experiments that we adapted into text prompts for the
first time. We test for robustness of the findings by varying task conditions, graph structure, domains
(spatial, social), and LLM temperature. Our systematic evaluation reveals that while LLMs display
apparent competence on some tasks in simpler graphs, they do not have out-of-the-box zero-shot
emergent cognitive map comprehension or planning competence for other graphs.

Methodological contribution. CogEval, our proposed cognitive-science inspired protocol [12] for
systematic evaluation of LLMs, affords the following contributions. (1) We avoid the reuse of contam-
inated standardized benchmarks by creating novel prompts based on non-text-based experiments that
are known to evaluate cognitive maps and planning in humans, animals, and RL. (2) We use multiple
tasks to probe the cognitive constructs (cognitive maps and planning) and repeat each interaction
multiple times and across different temperatures. (3) We use statistical analysis to evaluate the robust-
ness and reliability of each effect, with three main factors of graph structure, item domain (spatial vs.
social), and task condition (e.g., value-based decision making, shortcut, detour, see Table 1). (4) We
employ chain of thought and instruction prompts to evaluate the limits of out-of-the-box cognitive
abilities of LLMs (Supplementary Experiment 2), and (5) analyze and categorize different types of
failure modes. Please note that CogEval is not a benchmark nor limited to evaluating cognitive maps
and planning, it is a general protocol for evaluating any cognitive capacity in LLMs. As an example,
in this paper we have applied it to the domain of cognitive maps and planning.

No evidence for understanding cognitive maps or planning. Our systematic and incremental evalu-
ations reveal limited to no cognitive map capacities in the current generation of LLMs - including
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Figure 3: Examples of three failure modes. (left) Edge hallucination. (middle) Failure at finding a
1-step policy within the same cluster. (right) Failure at multi-hop path by both falling in a loop and
hallucinating edges. In each example the blue box is the task prompt, the grey box shows the model
response, and the green arrows demonstrate the correct response on the graph.

GPT-4. Specifically, we find that LLMs only show apparent competence on simple sequential infer-
ence tasks where route memorization can help, and given LLMs have received all possible trajectories
in the text prompt. We also observe that the sparsity of graph structure drove performance. However,
when 1-step and multi-step traversal and planning require understanding the underlying relational
structure of the environment graph, LLMs including GPT-4 fail by hallucinations, suboptimally long
routes, or falling in loops.

How did LLMs solve the simpler tasks? Without access to full architectures or training sets, we can
only form hypotheses based on our behavioral observations. We observe that LLMs do better in
problems where the entire trajectories are explicitly available in the text prompts, and they only need
to retrieve and piece together partial changes. However, planning behavior in more complex graphs is
far worse, and this is not just due to graph size: performance was worse for graph B (7-node tree)
than C (12 node, parallel lines). Performance on the 15-node graph with 3 dense clusters was worse
than the 16-node (4-cluster) graph that has better cross-cluster connectivity and more paths among
clusters.

These observations suggest that LLMs may fail at planning problems where they need to use the
transition structure to unroll the trajectories and find the correct path, which is closer to the notion
of planning in model-based RL and in cognitive science. Capturing the underlying structure and
using it to unroll trajectories are quintessential to cognitive maps and planning ability. Thus, the
apparent competence in simpler tasks may be due to using cached or memorized routes rather than
understanding the cognitive map, planning, or inference ability.

LLMs may do better in smaller and simpler graphs because the prompt already expands all the
possible paths or trajectories. When there is a change in the rewards or transition structure, LLMs
only need to change one step in an already laid out path. However, in more complex graphs only the
one-step connections are laid out in the prompt, but not all paths or trajectories between any given
two nodes. We observed that failures significantly increase in tasks with these larger graphs with
community structures, even when an LLM can list the pairwise tuples of connected states (see failure
modes, Figure 3).

Interpreting the results. The experiments in the paper are not meant to be interpreted as a benchmark
for planning. They probe the same construct in different ways, evaluating the ability to use information
about (state, action, state) tuples, e.g., (room1, openleftdoor, room3), to piece together policies
in response to task prompts. A reader may wonder why we claim that LLMs do not display emergent
planning in spite of non-zero performance for some tasks in our experiments (Figure 2. We interpret
the findings as such due to failure modes and various inconsistencies in success cases (Figure 3). For
instance, a common failure mode is generating sequences with hallucinated (state, actions, state)
tuples that do not exist. For GPT-4 this constitutes over 20% of 4-step plans. Another common failure
mode is that they fall into loops when prompted to find the shortest path between two states (Figure 3,
left and right). LLMs sometimes even fail to identify 1-step paths or suggest multi-hop trajectories
for traversing to an adjacent state (Figure 3, middle).
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These observations seem counter-intuitive given some LLMs can generate a list of tuples when asked,
but fail to use the tuples to make (even 1-step) valid plans. This shows that, while LLMs appear to
solve planning problems when given simple routes that can be explicitly memorized, they cannot
generalize from route memory solutions (trajectories directly in the prompt) to using the tuples
to adaptively generate branching plans. Together, these inconsistent observations are in line with
the hypothesis that LLMs do not understand cognitive maps and therefore cannot consistently plan.
Elsewhere propose black box architectures that improve planning performance [54]. However, our
findings point to a lack of out-of-the-box zero-shot emergent planning ability.

Limitations. First, we lack knowledge of LLMs like GPT-4’s architecture or training. To address this
limitation, we did not use existing text-based benchmarks and instead generated novel prompts not in
their training sets. Second, in the human experiments that influenced our prompts participants learn
gradually, experiencing states one-by-one, only tested after they showed signs of learning, similar
to a model-based RL agent having the transition structure and using it for inference and planning.
To address this difference, we present the environment’s structure in linguistic format. The LLM
had to extract the cognitive map, identify the goal location based on instructions. and infer the
policy towards the goal. Third, we do not have a human baseline for the language-based tasks, so a
comparison with human behavior on the exact language prompts remains the topic of future studies.

Implication for applications. LLMs are expected to be applied in fields like gaming, planning, and
social reasoning, with tasks that require understanding the inherent relational structure of the problem
from the input for flexible reasoning and planning. However, here we show various failure modes
in the understanding of the underlying cognitive maps or planning abilities, including hallucination
and falling in loops. Even when provided instructions and Chain of Thought (CoT) prompts like
breadth-first search (BFS), we observe that GPT-4 struggles to process multi-hop paths it has not
experienced (Supplementary Experiment 2). These findings suggest caution in the application of
LLMs in problems that involve planning or complex structures. Below we discuss future directions
that may mitigate these challenges for problems with simpler structures.

LLMs as programmable machines rather than emergent intelligence? While some regard LLMs
as agents with emergent intelligence comparable to humans and animals, our findings are more
consistent with the view that LLMs are programmable machines where natural language is their
programming language [20]. Thus, here we evaluated planning in LLMs in a functionalist and
multiple-realizability sense rather than making any assumptions of them being "human-like" [27].

Future directions. A future direction is to analyze embedding representations and attention in LLMs,
and test hypotheses about representations underlying success and failure in planning. This mirrors
how neuroscience analyzes neural data to understand representations in model-based and predictive
planning and decision-making [25, 7]. A recent study suggests a promising future for this direction
[57]. Another interesting direction is to study the limits of LLMs’ transitive inference using pair-
wise associations [37, 34], given we observed that while some LLMs could list pairwise tuples or
recognize the goal, they still struggled with planning. A further direction is to study whether the use
of schemas, i.e., overused, generalized cognitive maps such as "airport" [50, 22, 11, 51], can improve
performance on real-world scenarios by evoking helpful structures, given LLMs have shown promise
with analogical reasoning tasks [53]. Finally, some have suggested ways to improve planning by
augmenting LLMs with algorithms that enable executive control, an interesting direction that can
contribute to the future of augmenting both larger and especially smaller language models (see [54]).

LLMs need a hippocampus and prefrontal cortex. The hippocampus and prefrontal cortex in the brain
extract the relational structure or cognitive maps from sequential data to flexibly plan at multiple
scales [7, 26]. Their functions can inspire memory, planning, and executive control augmentations
to LLMs in order to mitigate failure modes such as hallucinating edges. Ongoing research shows
that indeed prefrontal cortex-inspired solutions can improve planning performance in an LLM-based
architecture with multiple calls to GPT-4 [54], pointing at a promising future direction.

Summary. We introduced CogEval, a cognitive science inspired protocol for systematic and robust
evaluation of LLMs. We applied CogEval to evaluate planning performance across 8 LLMs and
found poor performance.
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