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A Proofs

A.1 Proof of Proposition 3.7

We show the proof of Proposition 3.7 for a two layer Representation equivalent Neural Operator. The
proof generalizes to the case of ℓ > 2 layers. We want to show that the aliasing error ε(U2 ◦ U1, u2 ◦
u1,Ψ1,Ψ3) is identically zero whenever the frame sequences satisfy the conditions in Definition 3.4,
or equivalently whenever the diagram

H1 H2 H3

ℓ2(I1) ℓ2(I2) ℓ2(I3)

U1

T †
Ψ1

T †
Ψ2

U2

u1(Ψ1,Ψ2)

TΨ2

u2(Ψ2,Ψ3)

TΨ3

is commutative. We directly compute

U2 ◦ U1 = (TΨ3
◦ u2(Ψ2,Ψ3) ◦ T †

Ψ2
) ◦ (TΨ2

◦ u1(Ψ1,Ψ2) ◦ T †
Ψ1

)

= TΨ3
◦ u2(Ψ2,Ψ3) ◦ u1(Ψ1,Ψ2) ◦ T †

Ψ1
.

The first equality simply follows by the definition of ReNO. The last equality can be seen as
follows: first, MΨ2

= Ran(TΨ2
T ∗
Ψ2

) ⊆ Ran(TΨ2
) ⊆ MΨ2

, so that Ran(TΨ2
) is closed. This, in

combination with Lemma 2.5.2 in [7], implies that Ran(T †
Ψ2

) is also closed. Hence, T †
Ψ2

◦ TΨ2
is

the orthogonal projection onto (Ker(TΨ2
))⊥ = Ran(T †

Ψ2
) and, by assumption, Ran(u1(Ψ1,Ψ2) ◦

T †
Ψ1

) ⊆ Ran(T †
Ψ2

). As a consequence, the aliasing error operator (3.1) of U2 ◦U1 for the discretized
version u2(Ψ2,Ψ3) ◦ u1(Ψ1,Ψ2) is identically zero, which proves the hypothesis.

A.2 Proof of Remark 3.5

We keep the notation as in Section 3.2. If the aliasing error ε(U, u,Ψ,Φ) is zero, then

U = TΦ ◦ u(Ψ,Φ) ◦ T †
Ψ. (A.1)

By equation (A.1) we readily obtain

T †
Φ ◦ U ◦ TΨ = T †

Φ ◦ TΦ ◦ u(Ψ,Φ) ◦ T †
Ψ ◦ TΨ = u(Ψ,Φ),

where the last equality follows by the fact that T †
Ψ ◦ TΨ is the orthogonal projection onto

(Ker(TΨ))
⊥ = Ran(T †

Ψ) and, by assumption, u(Ψ,Φ) maps RanT †
Ψ into RanT †

Φ. This concludes
the proof of Remark 3.5.

A.3 Proof of Proposition 3.8

Let (Ψ,Φ) and (Ψ′,Φ′) be two frame sequence pairs satisfying conditions in 3.4, and let AΦ be the
lower frame bound of Φ and BΨ the upper frame bound of Ψ. A standard result in frame theory is that
T †
Φ is a bounded operator on MΦ with ∥T †

Φ∥ ≤ 1/
√
AΦ. Also, the norm of the synthesis operator is

bounded by the upper frame bound, resulting in ∥TΨ∥ ≤
√
BΨ. By assumption, we know that

∥U − TΦ ◦ u(Ψ,Φ) ◦ T †
Ψ∥ ≤ ϵ, ∥U − TΦ′ ◦ u(Ψ′,Φ′) ◦ T †

Ψ′∥ ≤ ϵ.

The representation equivalence error reads

τ(u(Ψ,Φ), u(Ψ′,Φ′)) = u(Ψ,Φ)− T †
Φ ◦ TΦ′ ◦ u(Ψ′,Φ′) ◦ T †

Ψ′ ◦ TΨ.
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Therefore, employing the linearity of the synthesis operators and their pseudo-inverses, we can
estimate

∥τ(u(Ψ,Φ), u(Ψ′,Φ′))∥
≤ ∥u(Ψ,Φ)− T †

Φ ◦ U ◦ TΨ∥+ ∥T †
Φ ◦ U ◦ TΨ − T †

Φ ◦ TΦ′ ◦ u(Ψ′,Φ′) ◦ T †
Ψ′ ◦ TΨ∥

≤ ∥u(Ψ,Φ)− T †
Φ ◦ U ◦ TΨ∥+ ∥T †

Φ∥∥U − TΦ′ ◦ u(Ψ′,Φ′) ◦ T †
Ψ′∥∥TΨ∥

≤ ∥u(Ψ,Φ)− T †
Φ ◦ U ◦ TΨ∥+

ϵ
√
BΨ√
AΦ

.

In the above, we have used the fact that T †
Φ acts on U − TΦ′ ◦ u(Ψ′,Φ′) ◦ T †

Ψ′ , which is an operator
with range in RanU ∪MΦ′ ⊆ MΦ, on which T †

Φ is bounded with ∥T †
Φ∥ ≤ 1/

√
AΦ.

We observe that if u(Ψ,Φ): Ran(T †
Ψ) → Ran(T †

Φ), then

u(Ψ,Φ) = T †
Φ ◦ TΦ ◦ u(Ψ,Φ) ◦ T †

Ψ ◦ TΨ,

where the equality follows by the fact that T †
Φ ◦ TΦ and T †

Ψ ◦ TΨ are respectively the orthogonal
projections onto (Ker(TΦ))

⊥ = Ran(T †
Φ) and (Ker(TΨ))

⊥ = Ran(T †
Ψ). As a consequence,

∥τ(u(Ψ,Φ), u(Ψ′,Φ′))∥ ≤ ∥T †
Φ ◦ TΦ ◦ u(Ψ,Φ) ◦ T †

Ψ ◦ TΨ − T †
Φ ◦ U ◦ TΨ∥+

ϵ
√
BΨ√
AΦ

= ∥T †
Φ∥∥TΦ ◦ u(Ψ,Φ) ◦ T †

Ψ − U∥∥TΨ∥+
ϵ
√
BΨ√
AΦ

≤ ϵ
√
BΨ√
AΦ

+
ϵ
√
BΨ√
AΦ

=
2ϵ
√
BΨ√
AΦ

,

where for the last inequality, similarly as before, we employ that the range of TΦ ◦ u(Ψ,Φ) ◦ T †
Ψ −U

lies in MΦ. This concludes the proof.

B Analyzing Operator Learning Architectures

B.1 Fourier layer in FNOs

We focus here on the Fourier layer of FNOs, i.e.

Kv = F−1(R⊙F)(v), (B.1)

where F ,F−1 denote the Fourier transform and its inverse, and where R denotes a low-pass filter. In
[17], the authors define the Fourier layer on the space L2(T) of 2-periodic functions and, with slight
abuse of notation, they refer to the mappings F : L2(T) → ℓ2(Z) and F−1 : ℓ2(Z) → L2(T),

Fw(k) = ⟨w, eiπkx⟩, F−1({Wk}k∈Z) =
∑
k∈Z

Wke
iπkx,

as the Fourier transform and the inverse Fourier transform. Furthermore, the authors define the
discrete version of (B.1) as F−1(R⊙ F ), where F, F−1 denote the discrete Fourier transform (DFT)
and its inverse, and where they assume to have access only to point-wise evaluations of the input
and output functions. However, the space of 2-periodic functions is too large to allow for any form
of continuous-discrete equivalence (CDE) when the input v and the output Kv are represented by
their point samples. Consequently, here we consider smaller subspaces of L2(T) which allow for
CDEs. More precisely, we are able to show that FNO Fourier layers can be realized as Representation
equivalent Operators (crf. Definition 3.4) between bandlimited and periodic functions. Let K > 0
and let PK be the space of bandlimited 2-periodic functions

PK =

{
w(x) =

K∑
k=−K

Wke
iπkx : {Wk}Kk=−K ∈ C2K+1

}
.
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Every function w ∈ PK can be uniquely represented by its Fourier coefficients {Wk}Kk=−K as well as
by its samples {w( k

2K+1 )}
K
k=−K , see [26, Section 5.5.2]. Indeed, the latter ones are the coefficients

of w with respect to the orthonormal basis

ΨK =

{
1√

2(2K + 1)
d

(
· − 2k

2K + 1

)}2K

k=0

, (B.2)

where d denotes the Dirichlet kernel of order K and period 2, defined as

d(t) =

K∑
k=−K

eiπkt.

Furthermore, the DFT {Ŵk}Kk=−K of the sample sequence {w( k
2K+1 )}

K
k=−K is related to the Fourier

coefficients of w via the equation

Ŵk = (2K + 1)Wk, k = −K, . . . ,K,

and we refer to [26, Section 5.5.2] for its proof. Thus, this yields the commutative diagram

PK C2K+1,

C2K+1 C2K+1

F

T †
ΨK

(2K+1)·F

Id

where T †
ΨK

: PK → C2K+1 denotes the analysis operator associated to the basis (B.2). Analogously,
we can build the commutative diagram

C2K′+1 PK′

C2K′+1 C2K′+1

Id

F−1

1
(2K′+1)

·F-1

TΨ
K′

where TΨK′ : C2K′+1 → PK′ denotes the synthesis operator associated to the basis (B.2) with
K = K ′. Then, R = {Rk}K

′

k=−K′ , with K ′ ≤ K, denotes the Fourier coefficients of a 2-periodic
function, and the mapping R⊙F : PK → C2K′+1 is defined as

(R⊙Fw)(k) = RkWk, k = −K ′, . . . ,K ′.

Therefore, by definition, R⊙F yields a continuous-discrete equivalence operation. Overall, we get
the commutative diagram

PK C2K+1 C2K′+1 PK′

C2K+1 C2K+1 C2K′+1 C2K′+1

F

T †
ΨK

R⊙ F−1

(2K+1)·F

Id

R⊙

Id

1
(2K′+1)

·F-1

TΨ
K′

which shows that the discretization of the Fourier layer B.1, the blue path in the above commutative
diagram, is defined via Equation (3.2). As a consequence, the Fourier layer B.1, regarded as an
operator from PK into PK′ satisfies the requirements of a Representation equivalent Operator
(crf. Definition 3.4). However, as pointed out in 4, the pointwise activation function applied to
a bandlimited input will not necessarily respect the bandwidth. In fact, with popular choices of
activation functions such as ReLU, σ(f) /∈ PK , for any K ∈ N (see also SM C for numerical
illustrations). Thus, the FNO layer

σ(Kv) = σ(F−1(R⊙F)(v))

may not respect the continuous-discrete equivalence and can lead to aliasing errors, a fact already
identified in [10]. Hence, FNOs may not be ReNOs in the sense of Definition 3.4.

15



B.2 Layer in CNO

We start by setting some notation. For every w > 0, we denote by Bw(R2) the space of multivariate
bandlimited functions

Bw(R2) = {f ∈ L2(R2) : suppf̂ ⊆ [−w,w]2}.
The set Ψw = {sinc(2wx1 − m) · sinc(2wx2 − n)}m,n∈Z constitutes an orthonormal basis for
Bw(R2).

The convolutional operator appearing in (4.3) takes the form

Kwf(x) =

k∑
m,n=−k

km,nf(x− zm,n), x ∈ R,

for some w > 0, where k ∈ N, km,n ∈ C and zm,n =
{(

m
2w ,

n
2w

)}
m,n∈Z. By definition, Kw is a

well-defined operator from Bw(R2) into itself. Moreover, its discretized version is defined by the
mapping{
f
( m
2w

,
n

2w

)}
m,n∈Z

→
{
Kwf

( m
2w

,
n

2w

)}
m,n∈Z

=


k∑

m′,n′=−k

km′,n′f(zm,n − zm′,n′)


m,n∈Z

,

and thus results in the commutative diagram

Bw Bw

ℓ2(Z2) ℓ2(Z2)

Kw

T∗
Ψw

TΨw

Equivalently, the discretized verion of Kw is defined via (3.2), which was to be shown. In order to
define the activation layer Σl, we first assume that the activation function σ : R2 → R2 is such that
for every f ∈ Bw(R2)

σ(f) ∈ Bw(R2), (B.3)
for some w > w. In fact, in [23] the authors assume that the pointwise activation can be ap-
proximated by an operator between bandlimited spaces and consequently (B.3) is satisfied up to
negligible frequencies. Thus, the activation layer Σw,w : Bw(R2) → Bw(R2) in (4.3) is defined by
the composition

Σw,w = PBw(R2) ◦ σ ◦ PBw(R2), (B.4)
where PBw(R2) : Bw(R2) → Bw(R2) denotes the orthogonal projection onto Bw(R2) and
PBw(R2) : Bw(R2) → Bw(R2) denotes the natural embedding of Bw(R2) into Bw(R2). The dis-
cretized version of each mapping in (B.4) is defined in order to guarantee a continuous-discrete
equivalence between the continuous and discrete levels. More precisely, PBw(R2) and PBw(R2) are
discretized via (3.2) as

Dw,w = T ∗
Ψw

◦ PBw(R2) ◦ TΨw , Uw,w = T ∗
Ψw

◦ PBw(R2) ◦ TΨw ,

which are respectively called downsampling and upsampling. Consequently, the discretized version
of the activation layer is given by the composition

Dw,w ◦ σ ◦ Uw,w,

which yields the commutative diagram

Bw Bw Bw Bw

ℓ2(Z2) ℓ2(Z2) ℓ2(Z2) ℓ2(Z2)

PBw(R2) σ

T∗
Ψw

PBw(R2)

T∗
Ψw

Uw,w

TΨw

σ Dw,w

TΨw

which we wanted to show. Finally, the activation layer might be followed by an additional projective
operator, i.e., by a downsampling or an upsampling. Thus, this exact correspondence between its
constituent continuous and discrete operators establishes CNO as an example of Representation
equivalent neural operators or ReNOs in the sense of Definiton 3.4. It is worth observing that the
above proofs can be readily adapted to bandlimited periodic functions, i.e. periodic functions with a
finite number of non-zero Fourier coefficientswith the Dirichlet kernel as a counterpart of the sinc
function, see [26, Section 5.5.2] for further details.
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B.3 DeepONets

Following [20] and for simplicity of exposition, we consider sensors, located on a uniform grid on
[−1, 1] with grid size 1/(2N+1). We assume that the input function f ∈ PN ,where PN is defined as
in SM B.1 with orthonormal basis ΨN chosen according to (B.2). Denote the corresponding synthesis
and analysis operators as TΨN

, T ∗
ΨN

, respectively. Let τk : R → R, for 1 ≤ k ≤ K be neural
networks that form the so-called trunk nets in a DeepONet [20] and denote QK = span{τk : k =

1, . . . ,K}. Clearly TK = {τk}Kk=1 constitutes a frame for QK and we can denote the corresponding
synthesis and analysis operators by TTK

, T ∗
TK

. Then a DeepONet [20] is given by the composition
TTK

◦ N ◦ T ∗
ΨN

, with N : R2N+1 → RK , being a neural network of the form (B.5) that is termed
as the branch net of the DeepONet. Written in this manner, DeepONet satisfies Definition 3.4 as it
corresponds to the following commutative diagram,

PN R2N+1 RK QK

R2N+1 R2N+1 RK RK

T∗
ΨN

T∗
ΨN

Id

N

Id

TTK

T∗
TK

Id

TΨN

N Id

TTK

However, it is essential to emphasize that the choice of the underlying function spaces is essential
in regard to the Definition 3.4 of Representation equivalent Neural Operators. For instance, if the
sensors are randomly distributed rather than located on a uniform grid, then it can induce aliasing
errors for DeepONets (see also [16] for a discussion on this issue). Similarly, DeepONets are only
ReNOs with respect to the function space QK as the target space. Changing the target function space
to another space, say for instance PN ′ , for some N ′, will lead to aliasing errors as the trunk nets do
not necessarily form a frame for the space of bandlimited 2-periodic functions.

B.4 Spectral Neural Operators (SNO)

Introduced in [10], this architecture is defined as follows. Let K > 0 and denote by

PK =

{
g(x) =

K∑
k=−K

cke
iπkx : {ck}Kk=−K ∈ C2K+1

}
,

the space of 2-periodic signals bandlimited to πK. Clearly, ΨK = {eiπk·}Kk=−K constitutes an
orthonormal basis for PK , and the corresponding synthesis operator TΨK

: C2K+1 → PK and
analysis operator T ∗

ΨK
: PK → C2K+1 are given by

TΨK
({ck}Kk=−K) =

K∑
k=−K

cke
iπk·, T ∗

ΨK
f = {⟨f, eiπk·⟩}Kk=−K .

A spectral neural operator is defined as the compositional mapping TΨK′ ◦ N ◦ T ∗
ΨK

, where
N : C2K+1 → C2K′+1 is an ordinary feedforward neural network with activation function σ,

N (x) =W (L+1)σ(W (L) · · ·σ(W (2)σ(W (1)x− b(1))− b(2)) · · · − b(L))− b(L+1) (B.5)

for some weights W (ℓ) and biases b(ℓ), ℓ = 1, . . . , L + 1. It is straightforward to see that this
architecture corresponds to the commutative diagram,

PK C2K+1 C2K′+1 PK′

C2K+1 C2K+1 C2K′+1 C2K′+1

T∗
ΨK

T∗
ΨK

Id

N

Id

TΨ
K′

T∗
Ψ

K′

Id

TΨK

N Id

TΨ
K′

A discretized version of spectral neural operators simply corresponds to an ordinary feedforward
neural network mapping Fourier coefficients to Fourier coefficients. We conclude that for SNOs to
be ReNOs with respect to the function spaces PK ,P ′

K , we have to enforce that for more general
choices of frame sequences, equation (3.3) is satisfied. Moreover, the architecture of SNOs can be
generalized with respect to any frames in finite-dimensional inner-product spaces.

17



C Empirical Analysis

C.1 Illustration of the effect of the activation function

We consider the same setting as for the FNO in Section 4 and SM B.1, i.e. considering f ∈ PK ,K =
20 to be both periodic and bandlimited. On the upmost plot of Figure 3, we observe the values of f ,
as well as relu(f) and gelu(f). In this case, pointwise samples on the grid of size 2K +1 are enough
to characterize f , as its Fourier coefficients are zero above the Nyquist frequency K. However, as we
can clearly observe on the lower plot, this is no longer the case for functions relu(f) and gelu(f),
and as a consequence the continuous functions are no longer represented uniquely on the grid, and
aliasing errors occur.
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Figure 3: The activation function increases the bandwidth of the input function beyond the Nyquist
frequency, causing aliasing errors.

C.2 Additional Details for Experimental Analysis Section 5.1

On the continuous level, SNO maps from H into H . Thus, at the discrete level, u(ΨM ,ΨM )
corresponds to the following: it takes in 2M + 1 point samples, synthesizes these to a function in
H which is then sampled on the training grid. Then, u(ΨK ,ΨK) is applied to this input vector of
length 2K + 1. Finally, the output vector is synthesized to a function in H and then sampled on
the evaluation grid. PCANetJitter models the fact that there may be slightly different data at each
resolution. This is done by performing a PCA at each resolution, randomly removing one data sample
beforehand. This is due to the fact that even a small change of ordering in the eigenfunctions can
introduce large errors.

C.3 Minimizing representation equivalence errors

In this section, instead of directly tackling aliasing errors from a theoretical perspective, we select an
architecture that may have aliasing, i.e. FNO, and we try to minimize the representation equivalence
error during training. To this extent, we repeat the same experiment as with FNO Section 5.1, aiming
now to minimize both the regression loss and the representation equivalence error simultaneously,
introducing a multiplier λ on the latter term. For each batch we have the total loss:

l(u) = ∥(u(ΨK ,ΨK)− u∗K∥1 + λ · τ(u(ΨK ,ΨK), u(ΨM ,ΨM )), (C.1)
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Figure 4: Representation equivalence analysis is conducted by training SNO, PCANet, and PCANet
with jittering on a fixed resolution and examining their performance when input resolution is varied.
The “Representation Equivalence" zone, located on the right-hand side, denotes the region where
discrete representations have an associated frame, while the left-hand side represents the area where
this is no longer the case.
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Figure 5: Minimizing the representation equivalence error. We compare FNOs trained by minimizing
different weighted combinations of the supervised and discrete aliasing error. We observe reduced
aliasing for all resolutions when λ increases, without much change in training loss.

where M ∼ Unif{K, . . . , 2K}. The outcomes are illustrated in Figure 5. These results showcase
that as λ increases, the aliasing error is indeed minimized for M ∈ [K, 2K]. Remarkably, for λ = 1,
the error is almost negligible, extending beyond the range observed during training to M > 2K. This
could perhaps be due to the fact that the representation equivalence error and operator aliasing are
linked, and that by minimizing the representation equivalence error, we are also minimizing aliasing
errors as well. Additionally, the training error depicted in Fig. 5 (right) remains small even with
increasing values of λ, indicating no discernible trade-off between approximation error and aliasing
error for FNO.

D An Introduction to Frame Theory

Let H be a separable Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥. A countable sequence of
vectors {fi}i∈I in H is a frame for H if there exist constants A,B > 0 such that for all f ∈ H

A∥f∥2 ≤
∑
i∈I

|⟨f, fi⟩|2 ≤ B∥f∥2.
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We say that {fi}i∈I is a tight frame if A = B and, in particular, a Parseval frame if A = B = 1.
Clearly, by the Parseval identity, an orthonormal basis for H is a Parseval frame. The lower inequality
implies that

⟨f, fi⟩ = 0, ∀i ∈ I =⇒ f = 0,

which is equivalent to
span{fi : i ∈ I} = H.

On the other hand, the upper inequality implies that the operator

T : ℓ2(I) → H, T ({ci}i∈I) =
∑
i∈I

cifi,

is bounded with ∥T∥ ≤
√
B [7, Theorem 3.1.3], and we call T the synthesis operator. Its adjoint is

given by
T ∗ : H → ℓ2(I), T ∗f = (⟨f, fi⟩)i∈I ,

[7, Lemma 3.1.1] and is called the analysis operator. By composing T and T ∗, we obtain the frame
operator

S : H → H, Sf = TT ∗f =
∑
i∈I

⟨f, fi⟩fi,

which is a bounded, invertible, self-adjoint and positive operator [7, Lemma 5.1.6]. We note that the
frame operator is invertible since it is bounded, being a composition of two bounded operators, and the
frame property implies that ∥ Id−B−1S∥ < 1, where Id denotes the identity operator. Furthermore,
the pseudo-inverse of the synthesis operator is given by

T † : H → ℓ2(I), T †f = (⟨f, S−1fi⟩)i∈I ,

[7, Theorem 5.3.7] and ∥T †∥ ≤ 1/
√
A [7, Proposition 5.3.8]. The composition TT † gives the identity

operator on H, and consequently every element in H can be reconstructed via the reconstruction
formula

f = TT †f =
∑
i∈I

⟨f, S−1fi⟩fi =
∑
i∈I

⟨f, fi⟩S−1fi, (D.1)

where the series converge unconditionally. Formula (D.1) is known as the frame decomposition
theorem [7, Theorem 5.1.7]. In particular, if {fi}i∈I is a tight frame, then S = A Id and formula
(D.1) simply reads

f =
1

A

∑
i∈I

⟨f, fi⟩fi.

On the other hand, the composition T †T gives the orthogonal projection of ℓ2(I) onto RanT † [7,
Lemma 2.5.2].

In what follows, we consider sequences which are not complete in H, and consequently are not
frames for H, but they are frames for their closed linear span.

Definition D.1. Let {vi}i∈I be a countable sequence of vectors in H. We say that {vi}i∈I is a frame
sequence if it is a frame for span{vi : i ∈ I}.

A frame sequence {vi}i∈I in H with synthesis operator T : ℓ2(I) → span{vi : i ∈ I} is a frame
for H if and only T ∗ is injective, whilst in general T ∗ is not surjective and consequently T is not
injective. We denote V = span{vi : i ∈ I}. Then, the orthogonal projection of H onto V is given by

PVf = TT † =
∑
i∈I

⟨f, S−1vi⟩vi,

where S : V → V denotes the frame operator. Hence, reconstruction formula (D.1) holds if and only
if f ∈ V .
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D.1 Condition u : RanT †
Ψ → RanT †

Φ

Once we choose how to discretize the functions in the input and output spaces, which amounts to
choosing a frame pair (Ψ ⊆ H,Φ ⊆ K), we want to define a mapping u : ℓ2(I) → ℓ2(K) which
handles such discrete representations. Notice that, by the frame decomposition theorem (D.1), every
function in H is uniquely determined by a sequence in RanT †

Ψ, and analogously every function
in K is uniquely determined by a sequence in RanT †

Φ. It is therefore sufficient to define u as a
mapping from RanT †

Ψ into RanT †
Φ. By enforcing this condition, we ensure that when two different

discretizations both yield zero aliasing, indeed (3.3) holds, and thus the representation equivalence
error is zero.

E Depiction of a ReNO architecture

Figure 6: Sketch of the ReNO framework. The learned operator UL ◦ . . . U2 ◦ U1 on the continuous
level must be realized by discrete operations. Any discrete representation uL ◦ . . . u2 ◦u1 corresponds
to the continuous level by a stable 1-to-1 correspondence (blue arrows) between Ui and ui for each
layer i. In this way, any two discretizations u and u′ are also linked.
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