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Abstract

Recently, operator learning, or learning mappings between infinite-dimensional
function spaces, has garnered significant attention, notably in relation to learning
partial differential equations from data. Conceptually clear when outlined on paper,
neural operators necessitate discretization in the transition to computer implemen-
tations. This step can compromise their integrity, often causing them to deviate
from the underlying operators. This research offers a fresh take on neural operators
with a framework Representation equivalent Neural Operators (ReNO) designed to
address these issues. At its core is the concept of operator aliasing, which measures
inconsistency between neural operators and their discrete representations. We
explore this for widely-used operator learning techniques. Our findings detail how
aliasing introduces errors when handling different discretizations and grids and
loss of crucial continuous structures. More generally, this framework not only
sheds light on existing challenges but, given its constructive and broad nature, also
potentially offers tools for developing new neural operators.

1 Introduction

Operators are mappings between infinite-dimensional function spaces. Prominent examples are
solution operators for ordinary and partial differential equations (PDEs) [9] which map function
space inputs such as initial and boundary data to the function space valued PDE solution. They are
also the natural mathematical framework for inverse problems, both in the context of PDEs [12] and
in (medical) imaging [3], where the object of interest is the inverse operator which maps observables
to the underlying material property/image that needs to be inferred or reconstructed.

Given the prohibitive cost of traditional physics based algorithms for approximating operators,
particularly those associated with PDEs, increasing attention is being paid in recent years to machine-
learning based operator approximation. Such techniques for learning operators from data fall under
the genre of operator learning. A (by no means comprehensive) list of examples for operator learning
architectures include operator networks [6], DeepONets [20], Graph neural operators [18], multipole
neural operators [19], PCA-Nets [4], Fourier neural operators (FNO) [17], VIDON [21], spectral
neural operators [10], LOCA [13], NOMAD [24], Continuous Generative Neural Networks [1] and
transformer based operator learning models [5].

However, there is still a lack of clarity on what constitutes operator learning? Clearly, an operator
learning framework, or a neural operator in the nomenclature of [15], should be able to process
functions as inputs and outputs. On the other hand, functions are continuous objects and in practice,
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one may not have access to functions either at the input or output level. Instead, one can only
access functions and perform computations with them on digital computers through their discrete
representations such as point values on a grid, cell averages or in general, coefficients of an underlying
basis. Hence, in practice, neural operators have to map discrete inputs to discrete outputs. This leads
to a dichotomy, i.e., neural operators are designed to process functions as inputs/outputs but only have
access to their discrete representations. Consequently, at any finite resolution, possible mismatches
between the discretizations and the continuous versions of neural operators can lead to inconsistencies
in the underlying function spaces. These inconsistency errors can propagate through the networks
and may mar the performance of these algorithms. Moreover, important structural properties of
the underlying operator, such as symmetries and conservation laws, hold at the continuous level.
Inconsistent discretizations may not preserve these structural properties of the operator, leading to
symmetry breaking etc. with attendant adverse consequences for operator approximation.

Addressing this possible inconsistency between neural operators and their discretizations is the central
point of this article. To this end, we revisit and adapt existing notions of the relationship between
continuous and discrete representations in signal processing, applied harmonic analysis and numerical
analysis, with respect to the questions of sampling and interpolation. Roughly speaking, we aim to find
a mathematical framework in which the continuous objects (functions) can be completely (uniquely
and stably) recovered from their discrete representations (point evaluations, basis coefficients, etc.) at
any resolution. Consequently, working with discrete values is tantamount to accessing the underlying
continuous object. This equivalence between the continuous and the discrete is leveraged to define
a class of neural operators, for which the discrete input-output representations or their continuous
function space realizations are equivalent. On the other hand, lack of this equivalence leads to
aliasing errors, which can propagate through the neural operator layers to adversely affect operator
approximation. More concretely, our contributions are

• We provide a novel, very general unifying mathematical formalism to characterize a class
of neural operators such that there is an equivalence between their continuous and discrete
representations. These neural operators are termed as Representation equivalent Neural
Operators or ReNOs. Our definition results in an automatically consistent function space
formulation for ReNOs.

• To define ReNOs, we provide a novel and precise quantification of the notion of aliasing
error for operators. Consequently, ReNOs are neural operators with zero aliasing error.

• We analyze existing operator learning architectures to find whether they are ReNOs or not.

• Synthetic numerical experiments are presented to illustrate ReNOs learn operators without
aliasing and to also point out the practical consequences of aliasing errors particularly, with
respect to evaluations of the neural operators on different grid resolutions.

2 A short background on Frame Theory and Aliasing

We start with a short discussion, revisiting concepts on the relationship between functions and their
discrete representations. This is the very essence of frame theory, widely used in signal processing
and applied harmonic analysis. We refer to SM D for a detailed introduction to frame theory.

Equivalence between functions and their point samples. For simplicity of exposition, we start
with univariate functions f ∈ L2(R) and the following question: Can a function be uniquely and
stably recovered from its values, sampled from equispaced grid points {f(nT )}n∈Z ? The classical
Whittaker-Shannon-Kotel’nikov (WSK) sampling theorem [25], which lies at the heart of digital-to-
analog conversion, answers this question in the affirmative when the underlying function f ∈ BΩ,
i.e., it belongs to the Paley-Wiener space of band-limited functions BΩ = {f ∈ L2(R) : suppf̂ ⊆
[−Ω,Ω]}, for some Ω > 0, f̂ the Fourier transform of f and sampling rate 1/T ≥ 2Ω, with 2Ω
termed as the Nyquist rate. The corresponding reconstruction formula is,

f(x) = 2TΩ
∑
n∈Z

f(nT )sinc(2Ω(x− nT )), sinc(x) = sin(πx)/(πx). (2.1)
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We note that the sequence of functions {ϕn(x) = sinc(2Ωx− n)}n∈Z constitutes an orthonormal
basis for BΩ and denote by PBΩ : L2(R) → BΩ the orthogonal projection operator onto BΩ,

PBΩ
f =

∑
n∈Z

⟨f, ϕn⟩ϕn =
∑
n∈Z

f
( n

2Ω

)
ϕn, (2.2)

where the last equality is a consequence of BΩ being a reproducing kernel Hilbert space with kernel
KΩ(x, y) = sinc(2Ω(x−y)). Hence, PBΩ

f corresponds to the right-hand side of (2.1) for T = 1/2Ω
and formula (2.1) is exact if and only if f ∈ BΩ, i.e., f = PBΩ

f ⇐⇒ f ∈ BΩ.

What happens when we sample a function at a sampling rate below the Nyquist rate, i.e. when
1/T < 2Ω? Alternatively, what is the effect of approximating a function f ̸∈ BΩ by PBΩ

f? Again,
sampling theory provides an answer in the form of the aliasing error:
Definition 2.1. Aliasing for bandlimited functions[2, §5] The aliasing error function ε(f) and the
corresponding aliasing error of f ∈ L2(R) for sampling at the rate 2Ω are given by

ε(f) = f − PBΩf, and ∥ε(f)∥2 = ∥f − PBΩf∥2.
If the aliasing error ε(f) is zero, i.e. if f ∈ BΩ, we say that there is a continuous-discrete equivalence
(CDE) between f and its samples {f(n/2Ω)}n∈Z.

Continuous-Discrete Equivalence in Hilbert spaces. Next, we generalize the above described
concept of continuous-discrete equivalence to any separable Hilbert space H, with inner product ⟨·, ·⟩
and norm ∥ · ∥. A countable sequence of vectors {fi}i∈I in H is a frame for H if there exist constants
A,B > 0 such that for all f ∈ H

A∥f∥2 ≤
∑
i∈I

|⟨f, fi⟩|2 ≤ B∥f∥2. (2.3)

Clearly, an orthonormal basis for H is an example of a frame with A = B = 1. We will now define
maps that will allow us to make the link between functions and their discrete representations, which we
will extensively use in the following sections. The bounded operator T : ℓ2(I) → H, T ({ci}i∈I) =∑

i∈I cifi, is called synthesis operator and its adjoint T ∗ : H → ℓ2(I), T ∗f = {⟨f, fi⟩}i∈I ,
which discretizes the function by extracting its frame coefficients, is called analysis operator. By
composing T and T ∗, we obtain the frame operator S := TT ∗, which is an invertible, self-adjoint
and positive operator. Furthermore, the pseudo-inverse of the synthesis operator is given by T † : H →
ℓ2(I), T †f = {⟨f, S−1fi⟩}i∈I , which will be used in the following to reconstruct the function
from its discrete representation, i.e. its frame coefficients.

With these concepts, one can introduce the most prominent result in frame theory [7], the frame
decomposition theorem, which states that every element in H can be uniquely and stably reconstructed
from its frame coefficients by means of the reconstruction formula

f = TT †f =
∑
i∈I

⟨f, S−1fi⟩fi =
∑
i∈I

⟨f, fi⟩S−1fi, (2.4)

where the series converge unconditionally. Formula (2.4) is clearly a generalization of reconstruction
formula (2.1). However, it is worth pointing out that, in general, the coefficients in (2.4) are not
necessarily point samples of the underlying function f , but more general frame coefficients.

In general, it may not be possible to access all the frame coefficients to reconstruct a function in a
Hilbert space. Instead, just like in the case of reconstructing functions from point samples, one will
need to consider approximations to this idealized situation. This is best encapsulated by the notion
of a frame sequence, i.e., a countable sequence {vi}i∈I ∈ H which is a frame for its closed linear
span, i.e. for span{vi : i ∈ I}. With this notion, we are in a position to generalize aliasing errors and
the CDE, to arbitrary Hilbert spaces. Let H be a separable Hilbert space and let {vi}i∈I be a frame
sequence for H with V = span{vi : i ∈ I} and frame operator S : V → V . Then, the orthogonal
projection of H onto V is given by PVf =

∑
i∈I⟨f, vi⟩S−1vi. Thus, formula (2.4) holds and the

function f can be uniquely and stably recovered from its frame coefficients if and only if f ∈ V . If
f ̸∈ V , reconstructing f from the corresponding frame coefficients results in an aliasing error:
Definition 2.2. Aliasing for functions in arbitrary separable Hilbert spaces. The aliasing error
function ε(f) and the resulting aliasing error ∥ε(f)∥ of f ∈ H for the frame sequence {vi}i∈I ⊆ V
are given by

ε(f) = f − PVf, ∥ε(f)∥ = ∥f − PVf∥.
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(a) An alias-free operator’s
diagram commutes.
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(b) ReNO: an alias-free u can be
constructed by discretizing the op-
erator U for different discretiza-
tions given by Ψ,Φ.
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T †
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(c) ReNO: discrete representations u, u′

for different discretizations are equiva-
lent.

Figure 1: Alias-free framework. U is the underlying operator, u its discrete implementation. The
synthesis operators and their pseudo-inverses make the link between function and discrete space.

If the aliasing error ε(f) is zero, i.e. if f ∈ V, we say that there is a continuous-discrete equivalence
(CDE) between f and its frame coefficients {⟨f, vi⟩}i∈I .

3 Alias-Free Framework for Operator Learning

In this section, we will extend the concept of aliasing of functions to operators. We demonstrate that
this notion of operator aliasing is fundamental to understanding how the neural operator performs
across various discretizations, thereby addressing the shortcomings of possible lack of continuous-
discrete equivalence. We will then define Representation equivalent Neural operators (ReNOs),
whose discrete representations are equivalent across discretizations.

Assume we posit a (neural) operator U , mapping between infinite-dimensional function spaces. As
mentioned before, this operator is never computed in practice, instead a discrete mapping u is used.
The difficulty in formalizing this is that we should be able to compute this discrete mapping for any
discretizations of the input and output function. We formalize this notion below in a practical manner.

Setting. Let U : DomU ⊆ H → K be an operator between two separable Hilbert spaces, and
let Ψ = {ψi}i∈I and Φ = {ϕk}k∈K be frame sequences for H and K, respectively, with synthesis
operators TΨ and TΦ. We denote their closed linear spans by MΨ := span{ψi : i ∈ I} and
MΦ := span{ϕk : k ∈ K}. We note that by classical frame theory [7], the pseudo-inverses T †

Ψ

and T †
Φ, initially defined on MΨ and MΦ, respectively, can in fact be extended to the entire Hilbert

spaces, i.e. T †
Ψ : H → ℓ2(I) and T †

Φ : K → ℓ2(K).

3.1 Operator Aliasing and Representation Equivalence

Once the discretization is chosen – determined by input and output frame sequences (Ψ,Φ) –
connecting the continuous operator U with its discrete counterpart u is the notion of operator aliasing.
Given any mapping u : ℓ2(I) → ℓ2(K), we can build the operator TΦ ◦ u ◦ T †

Ψ : H → K, whose
definition clearly depends on the choices of the frame sequences that we make on the continuous
level. In other words, any mapping u can be interpreted as a discrete representation of an underlying
continuous operator, which in general, may differ from the operator U , that is of interest here. Hence,
in analogy to Definitions 2.1 and 2.2, we can define the aliasing error of U relative to the discrete
representation u as,

Definition 3.1. Operator aliasing. The aliasing error operator ε(U, u,Ψ,Φ): DomU ⊆ H → K is
given by

ε(U, u,Ψ,Φ) = U − TΦ ◦ u ◦ T †
Ψ,

and the corresponding scalar error is ∥ε(U, u,Ψ,Φ)∥, with ∥ · ∥ denoting the operator norm.

An aliasing error of zero implies that the operator U can be perfectly represented by first discretizing
the function with T †

Ψ, applying u, and then reconstructing with TΦ, or equivalently, that the diagram
in Figure 1a commutes, i.e. the black and the blue directed paths in the diagram lead to the same
result. If the aliasing error is zero, we say that (U, u,Ψ,Φ) satisfies a continuous-discrete equivalence
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(CDE), implying that accessing the discrete representation u is exactly the same as accessing the
underlying continuous operator U .
Example 3.2. Aliasing with the magnitude squared operator. Consider the operator U(f) = |f |2
as an operator from BΩ into B2Ω. The choice to discretize inputs and outputs on the same grid{

n
2Ω

}
n∈Z corresponds to choosing Ψ = Φ = {sinc(2Ωx − n)}n∈Z, and to defining the discrete

mapping u : ℓ2(Z) → ℓ2(Z) by u(v) = T †
Ψ ◦ U ◦ TΨ(v) = v ⊙ v, where ⊙ denotes the entrywise

product. Then, for every f ∈ BΩ such that U(f) ∈ B2Ω \ BΩ, we have

ε(U, u,Ψ,Φ)(f) = U(f)− TΦ ◦ T †
Φ(U(f)) = U(f)− PBΩ(U(f)) ̸= 0,

and we encounter aliasing. This occurs because U introduces new frequencies that exceed the
bandwidth Ω. However, we can rectify this by sampling the output functions on a grid with twice the
resolution of the input grid. This corresponds to choosing Φ = {sinc(4Ωx− n)}n∈Z and to defining
u = T †

Φ ◦ U ◦ TΨ, which simply maps samples from grid points
{

n
2Ω

}
n∈Z into squared samples

from the double resolution grid
{

n
4Ω

}
n∈Z. This effectively removes aliasing since the equality

U = TΦ ◦ u ◦ T †
Ψ is satisfied. Furthermore, sampling the input and output functions with arbitrarily

higher sampling rate, i.e. representing the functions with respect to the system {sinc(2Ωx− n)}n∈Z
with Ω > 2Ω, yields no aliasing error since {sinc(2Ωx− n)}n∈Z constitutes a frame for B2Ω ⊇ BΩ.

In practice, the discrete representation u of the operator U depends on the choice of the frame
sequences. This means that – as mentioned at the beginning of the section – there is one map for
every input/output frame sequence Ψ,Φ. The consistency between operations u, u′ with respect to
different frame sequences can be evaluated using the following error.
Definition 3.3. Representation equivalence error. Suppose that u, u′ are discrete maps with
associated frame sequences Ψ,Φ and Ψ′,Φ′, respectively. Then, the representation equivalence error
is given by the function τ(u, u′) : ℓ2(I) → ℓ2(K), defined as:

τ(u, u′) = u− T †
Φ ◦ TΦ′ ◦ u′ ◦ T †

Ψ′ ◦ TΨ

and the corresponding scalar error is ∥τ(u, u′)∥.

Intuitively, this amounts to computing each mapping on their given discretization, and comparing
them by expressing u′ in the frames associated to u. In the following section we leverage the notion
of operator aliasing in the context of operator learning, as well as explore its practical implications
with respect to representation equivalence at the discrete level.

3.2 Representation equivalent Neural Operators (ReNO)

Equipped with the above notion of continuous-discrete equivalence, we can now introduce the concept
of Representation equivalent Neural Operator (ReNO). To this end, for any pair (Ψ,Φ) of frame
sequences for H and K, we consider a mapping at the discrete level u(Ψ,Φ): RanT †

Ψ → RanT †
Φ,

which handles discrete representations of the functions. Notice how this map is indexed by the frame
sequences: this is normal as when the discretization changes, the definition of the function should
also change. In order to alleviate the notation, when this is clear from the context, we will refer to
u(Ψ,Φ) simply as u. See SM D.1 for an explanation of the condition u(Ψ,Φ): RanT †

Ψ → RanT †
Φ.

Definition 3.4. Representation equivalent Neural Operators (ReNO). We say that (U, u) is a ReNO
if for every pair (Ψ,Φ) of frame sequences that satisfy DomU ⊆ MΨ and RanU ⊆ MΦ there is
no aliasing, i.e. the aliasing error operator is identical to zero:

ε(U, u,Ψ,Φ) = 0. (3.1)

We will write this property in short as ε(U, u) = 0.

In other words, the diagram in Figure 1a commutes for every considered pair (Ψ,Φ). In this case, the
discrete representations u(Ψ,Φ) are all equivalent, meaning that they uniquely determine the same
underlying operator U , whenever a continuous-discrete equivalence property holds at the level of the
function spaces. The domain and range conditions in Definition 3.4 simply imply that the frames can
adequately represent input and output functions of U .
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Remark 3.5. If the aliasing error ε(U, u,Ψ,Φ) is zero (as required in Definition 3.4), then the
assumption that u(Ψ,Φ) maps RanT †

Ψ ⊆ ℓ2(I) into RanT †
Φ ⊆ ℓ2(K) implies that

u(Ψ,Φ) = T †
Φ ◦ U ◦ TΨ. (3.2)

We observe that this definition of u(Ψ,Φ) is such that the diagram in Figure 1b commutes. In other
words, once we fix the discrete representations Ψ,Φ associated to the input and output functions, there
exists a unique way to define a discretization u(Ψ,Φ) that is consistent with the continuous operator
U and this is given by (3.2). In practice, we may have access to different discrete representations
of the input and output functions, which in the theory amounts to a change of reference systems in
the function spaces. Note that to avoid any aliasing error, the discrete representation of U has to
depend on the chosen frame sequences, i.e. inevitably, u must depend on Ψ and Φ, and hence, must
be discretization dependent. See A.2 for the proof of Remark 3.5.

In particular, Remark 3.5 directly implies a formula to go from one discrete representation to another,
as

u(Ψ′,Φ′) = T †
Φ′ ◦ TΦ ◦ u(Ψ,Φ) ◦ T †

Ψ ◦ TΨ′ , (3.3)

whenever the pairs of frame sequences (Ψ,Φ) and (Ψ′,Φ′) satisfy the conditions in Definition 3.4.
In other words, the diagram in 1c commutes.

Formula (3.3) immediately implies Proposition 3.6, which establishes a link between aliasing and rep-
resentation equivalence. This highlights the contrast to discretization invariance, discussed at length
in [15]: while this concept establishes an asymptotic consistency, representation equivalence includes
the direct comparison between any two given discretizations and guarantees their equivalence.

Proposition 3.6. Equivalence of ReNO discrete representations. Let (U, u) be a ReNO. For any
two frame sequence pairs (Ψ,Φ) and (Ψ′,Φ′) satisfying conditions in Definition 3.4, we have that

τ(u, u′) = 0,

where, by a slight abuse of notation, u′ denotes u(Ψ′,Φ′).

Hence, under the assumption that the discrete map at each discretization is consistent with the
underlying continuous operator, we have a unique way to express the operator at each discretization.
Moreover, formula (3.3) closely resembles analogous formulas presented in [17, 15, 23] when
evaluating single shot super resolution. However, in Section 5, we offer a nuanced perspective,
indicating variability across different scenarios.

3.3 Layer-wise Instantiation

As shown in Remark 3.5, we can compute the outputs of the ReNO on the computer by first
discretizing the continuous operator U . Typically, if U is a neural operator composed of multiple
layers, as we will show in this section, it is possible to discretize each layer, while remaining consistent
with the underlying operator.

Consider a neural operator U with L layers, each a mapping between separable Hilbert spaces:

U = UL ◦ UL−1 ◦ . . . ◦ U1, Uℓ : Hℓ → Hℓ+1, ℓ = 1, . . . , L, (3.4)

we denote by Ψℓ a frame sequence for Hℓ. The choice of frame sequences for each Hℓ corresponds
to the choice of accessible discrete representations of functions in the underlying function space Hℓ.

Proposition 3.7. Stability of ReNO under composition. Consider the composition U = UL◦. . .◦U1

as in eq. 3.4, as well as a discrete mapping u = uL ◦ . . . ◦ u1. If each layer (Uℓ, uℓ) is a ReNO, the
composition (U, u) also is a ReNO.

As the proof of Proposition 3.7, presented in SM A.1, also shows, if each hidden layer in the operator
(3.4) has an aliasing error (2.2), then these errors may propagate through the network and increase
with increasing number of layers.
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3.4 ϵ−ReNOs

In practice, we may not need to set the aliasing error to zero. But it is essential to be able to control it
and make it as small as desired. The notion of ReNOs, Definition 3.4, can very simply be extended
to the case where we allow for a small, controlled amount of aliasing. Indeed we can introduce
ϵ−ReNOs, which satisfy ∥ε(U, u)∥ ≤ ϵ (for every pair of admissible frame sequences) instead of
ε(U, u) = 0.
Proposition 3.8. Let (U, u) be an ϵ−ReNO. For any two frame sequence pairs (Ψ,Φ) and (Ψ′,Φ′)
satisfying conditions in Definition 3.4 and such that MΦ′ ⊆ MΦ, we have

∥τ(u, u′)∥ ≤ 2ϵ
√
BΨ√
AΦ

,

where, by a slight abuse of notation, u′ denotes u(Ψ′,Φ′).

4 Examples

Equipped with our definition of Representation equivalent Neural Operators (ReNOs), we analyze
some existing operator learning architectures to ascertain whether they are neural operators or not.

Convolutional Neural Networks (CNN). Classical convolutional neural networks are based on the
convolutional layer k, involving a discrete kernel f ∈ R2s+1 and a discrete input c:

k(c)[m] = (f ∗ c) [m] =

s∑
i=−s

c[m− i]f [i].

We can then analyze this layer using our framework to ask whether this operation can be associated
to some underlying continuous operator. Intuitively, if this is the case, the computations conducted
on different discretizations effectively representing the input should be consistent; in the contrary
case, no associated continuous operator exists and the convolutional operation is not a ReNO.

Consider the case where the discrete input c corresponds to pointwise evaluation on a grid of some
underlying bandlimited function f ∈ BΩ, for example c[n] = f

(
n
2Ω

)
, n ∈ Z with associated

orthonormal basis Ψ = {sinc(2Ωx − n)}n∈Z. Consider now an alternate representation of f ,
point samples of a grid twice as fine: d[n] = f

(
n
4Ω

)
, with Ψ′ = {sinc(4Ωx − n)}n∈Z as basis.

Clearly, even though discrete inputs agree, i.e. c[n] = d[2n], this is no longer true for the outputs,
(k ∗ c)[n] ̸= (k ∗ d)[2n]. This in turn implies that there exist frame sequences Ψ,Ψ′ such that:

TΨ ◦ kΨ(c) ◦ T †
Ψ ̸= TΨ′ ◦ kΨ′(d) ◦ T †

Ψ′ (4.1)

thereby defying the representation equivalence property of ReNOs, in the sense of Definition 3.4.
This fact is also corroborated with the experimental analysis, Section 5.

Fourier Neural Operators (FNO). FNOs are defined in [17] in terms of layers, which are either
lifting or projection layers or Fourier layers. As lifting and projection layers do not change the
underlying spatial structure of the input function, but only act on the channel width, these linear
layers will satisfy Definition 3.4 of ReNO here. Hence, we focus on the Fourier layer of the form,

vℓ+1(x) = σ (Aℓvℓ(x) +Bℓ(x) +Kvℓ(x)) , (4.2)

with the Fourier operator given by

Kv = F−1(R⊙F)(v).

Here, F ,F−1 are the Fourier and Inverse Fourier transforms.

For simplicity of exposition, we set Aℓ = Bℓ ≡ 0 and focus on investigating whether the Fourier
layer (4.2) satisfies the requirements of a ReNO. Following [17], the discrete form of the Fourier layer
is given by σ(kv), with kv = F−1(R⊙ F (v)), where F, F−1 denote the discrete Fourier transform
(DFT) and its inverse.
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In SM B.1, we show that the convolution in Fourier space operation for the FNO layer (4.2) sat-
isfies the requirements of a ReNO. However the pointwise activation function σ(f), applied to a
bandlimited input f ∈ BΩ will not necessarily respect the bandlimits, i.e., σ(f) /∈ BΩ. In fact, with
popular choices of activation functions such as ReLU, σ(f) /∈ Bω, for any ω > 0 (see SM C for
numerical illustrations). Thus, the Fourier layer operator (4.2) may not respect the continuous-discrete
equivalence and can lead to aliasing errors, a fact already identified in [10]. Hence, FNO may not be
a ReNO in the sense of Definition 3.4.

Convolutional Neural Operators (CNO). Introduced in [23], the layers of a convolutional neural
operator consist of three elementary operations

vl+1 = Pl ◦ Σl ◦ Kl(vl), 0 ≤ l ≤ L− 1, (4.3)

where Kl is a convolution operator, Σl is a non-linear operator whose definition depends on the
choice of an activation function σ : R → R, and Pl is a projection operator. We show in SM B.2 that
CNO layers respect equation (3.2) and consequently CNOs are Representation equivalent Neural
Operators (ReNOs) in the sense of Definition 3.4. This is the result of the fact that the activation layer
is defined in a way to respect the band-limits of the underlying function space.

5 Empirical Analysis

5.1 Assessing Representation Equivalence

In the previous section, we have studied existing neural operator architectures from a theoretical
perspective. In this section, for the same architectures, we corroborate these findings from an
empirical viewpoint. Aliasing is a quantity that cannot be computed in practice, as we cannot access
the underlying operator U on a computer, we can nonetheless compute representation equivalent
errors introduced in Definition 3.3, which is related to aliasing by Propositions 3.7 and 3.8 (as well as
being a quantity of interest in itself).

Experimental Setting. We wish to learn an unknown target operator Q using a neural operator.
In this experiment, all neural operators (CNN, FNO and SNO) take as input pointwise evaluations
on the grid, and are able to deal with varying input resolutions. A simple way of constructing the
target operator Q : H → H , where H is the space of periodic and K = 30-bandlimited functions,
is by sampling input and output pairs in a random fashion. Sampling of a function in H can be
realized as follows: As we know that ΨK := {dK(. − xk)}k=−K,...,K constitutes a frame for H ,
dK being the Dirichlet kernel of order K and xk = k

2K+1 , any function f ∈ H can be written as

f(x) =
∑K

k=−K f(xk)dK(x− xk). Thus, the discrete representation of f simply corresponds to its
2K + 1 = 61 point-wise evaluations on a grid, i.e. {f(xk)}k=−K,...,K . Note that for simplicity we
have used and will use the same frame sequences for both input and output spaces, as these are the
same.

Training and Evaluation. Once the data is generated, we train neural operators u(ΨK ,ΨK) on
discretizations associated to the frame sequences, which are simply the point-wise evaluations of the
input-target functions in the data. In other words, we regress to the frame coefficients of the target
function, with coefficients of the input function as input. Once training is over, we evaluate how the
different neural operators behave when dealing with changing input and output frame sequences. The
frame sequences here are ΨM for different testing frames, with associated 2M + 1 sized grids, with
associated operator uM : R2M+1 → R2M+1.

The results of this experiment are presented in Figure 2; we also provide results for additional
architectures in Figure 4. The results in Figure 2 clearly show that as predicted by our theory,
neither CNN nor FNO are representation equivalent, in the sense of Definition 3.4 and changing the
resolution, which amounts to a change of frame, does not keep the operator invariant, causing aliasing
errors that materialize themselves as representation equivalence errors (as in Definition 3.3) here. On
the other hand, as predicted by the theory, CNO is more likely to be a ReNO – as long as the frames
selected satisfy conditions of Definition 3.4 (i.e. “Representation Equivalence" zone). When these
conditions no longer hold (“No Equivalence" zone), CNO also generates aliasing errors. Thus, this
experiment clearly demonstrates the practical implications of the ReNO framework. In contrast, the
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Figure 2: Representation equivalence is computed for three classical architectures, CNN, FNO and
CNO trained on a resolution of 61 (yellow dot). The “Resolution Equivalence" zone, located on the
right-hand side, denotes the region where discrete representations have an associated frame, while the
left-hand side represents the area where this is no longer the case (loss of input/output information).
As predicted by the theory, CNN and FNO are not representation equivalent, while CNO is error-free
in the equivalence region, but failing to do so outside of it.

discretization invariance [15] condition only ensures that in the infinite resolution limit, the neural
operator converges, while not making any predictions about the behavior of the neural operator at
finite resolutions.

Minimizing representation equivalence error. Instead of directly tackling aliasing errors from a
theoretical perspective as is done in the previous sections, we select an architecture that may have
aliasing, i.e. FNO, and we try to minimize the representation equivalence error during training. We
observe and detail our findings in SM C.3.

5.2 Assessing Structure Preservation

Representation Equivalence Error (%) 10.38 20.24 42.97 98.55
Translation Equivariance Error (%) 10.54 20.54 45.79 104.44

Table 1: Representation equivalence error vs translation equivariance error. We observe a direct link
between aliasing and preserving continuous structures.

Our methodology aims to maintain the structure of the underlying operator, as defined at the contin-
uous level. Fundamental structural characteristics of the underlying operator, like symmetries and
conservation principles, are maintained at the discrete level. Discretizations that are not aligned may
fail to uphold these intrinsic properties of the operator, resulting in deviations like symmetry breaking
which can negatively influence the results.

As an example of this, we consider FNO. Similarly to what is done in [11], the primary structure
we aim to uphold is translation equivariance, as defined at the operator level. We look at different
trained FNOs – all of which have a different representation equivalence error – and assess whether
they are translation equivariant or not. More specifically, these FNOs are trained by minimizing both
the regression loss and the representation equivalence error simultaneously, introducing a more or
less large multiplier λ on the latter, just like in SM C.3.

As we vary the parameter λ, we observe in Table 1, there is a distinct relationship between the
Discrete Aliasing Error (DAE) and the Translation Equivariance Error. Both errors show a similar
trend with a nearly perfect positive linear association.
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6 Discussion

Summary. Although a variety of architectures for operator learning are available since the last
couple of years, there is still a lack of clarity about what exactly constitutes operator learning.
Everyone would agree that an operator learning architecture should have functions as inputs and
outputs. However, in practice, one does not necessarily have access to functions, either at the input or
output level. Rather the access is limited to some form of discrete representations of the underlying
functions, for instance, point values, cell averages, coefficients with respect to a basis etc. Moreover,
one can only perform computations with discrete objects on digital computers. Hence, given the
necessity of having to work with discrete representations of functions, it is essential to enforce some
relationship between the continuous and discrete representations of the underlying functions or in
other words, demand consistency in function space.

Unlike in [15], where the authors advanced a form of asymptotic consistency in terms of discretization
parameters, we go further to require a stronger form of structure-preserving equivalence of the
continuous and discrete representations of operators. To this end, we leverage the equivalence
between continuous and discrete representations of functions in Hilbert spaces in terms of frame
theory. The main point about this equivalence is the fact that functions, belonging to suitable function
spaces, can be uniquely and stably reconstructed, from their frame coefficients. A failure to enforce
this equivalence results in the so-called aliasing errors that quantitatively measure function space
inconsistencies.

We extend this notion of aliasing error to operators here and use it to define Representation equivalent
Neural Operators (ReNOs), see Definition 3.4. Our framework automatically implies consistency in
function spaces and provides a recipe for deriving ReNOs in terms of changing the underlying frames.
We also employ our framework to analyze whether or not existing operator learning architectures are
ReNOs and also corroborate our results through experiments.

Related Work. Our current paper relies heavily on structure preservation from classical numerical
analysis, [22] and references therein, as well as concepts from signal processing and applied harmonic
analysis [25] and references therein. Among the emerging literature on operator learning, [15] was
one of the first papers to attempt a unifying framework that encompasses many operator learning
architectures and codify them through a particular definition of neural operators. We take an analogous
route here but with our main point of departure from [15] being that unlike their notion of asymptotic
consistency, we require systematic consistency in function space by enforcing the representation
equivalence for the underlying operator at each layer. Another relevant work is [10] where the authors
flag the issue of possible aliasing errors with specific operator learning architectures. We significantly
expand on the approach of [10] by providing a rigorous and very general definition for aliasing
errors. Finally, our definition of Representation equivalent Neural Operators, relying on aliasing
errors for operators, is analogous to a similar approach for computing with functions, rather than
discrete representations, which is the cornerstone of the Chebfun project [8] and references therein.

Limitations and Extensions. Our aim in this paper was to tackle a fundamental question of what
defines a neural operator? We have addressed this question here and shown that enforcing some
form of equivalence between continuous and discrete representations is needed for the architecture to
genuinely learn the underlying operator rather than just a discrete representation of it. What we have
not addressed here are quantitative measures of the error associated with a Representation equivalent
Neural Operator, introduced in Definition 3.4, in approximating the underlying operator. This is
a much broader question than what is addressed here, since sources of error, other than aliasing
errors, such as approximation, training and generalization errors also contribute to the total error (see
[16, 14, 15]).

One interesting direction for further analysis would involve exploring operators and their discretized
counterparts that form ϵ-ReNOs and also enforce the ReNO property approximately. Characterizing
the implications of this concept within operator learning is a topic for future work.
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