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Abstract

Multivariate time series (MTS) forecasting has shown great importance in nu-
merous industries. Current state-of-the-art graph neural network (GNN)-based
forecasting methods usually require both graph networks (e.g., GCN) and temporal
networks (e.g., LSTM) to capture inter-series (spatial) dynamics and intra-series
(temporal) dependencies, respectively. However, the uncertain compatibility of the
two networks puts an extra burden on handcrafted model designs. Moreover, the
separate spatial and temporal modeling naturally violates the unified spatiotemporal
inter-dependencies in real world, which largely hinders the forecasting performance.
To overcome these problems, we explore an interesting direction of directly apply-
ing graph networks and rethink MTS forecasting from a pure graph perspective.
We first define a novel data structure, hypervariate graph, which regards each series
value (regardless of variates or timestamps) as a graph node, and represents sliding
windows as space-time fully-connected graphs. This perspective considers spa-
tiotemporal dynamics unitedly and reformulates classic MTS forecasting into the
predictions on hypervariate graphs. Then, we propose a novel architecture Fourier
Graph Neural Network (FourierGNN) by stacking our proposed Fourier Graph
Operator (FGO) to perform matrix multiplications in Fourier space. FourierGNN
accommodates adequate expressiveness and achieves much lower complexity,
which can effectively and efficiently accomplish the forecasting. Besides, our
theoretical analysis reveals FGO’s equivalence to graph convolutions in the time do-
main, which further verifies the validity of FourierGNN. Extensive experiments on
seven datasets have demonstrated our superior performance with higher efficiency
and fewer parameters compared with state-of-the-art methods. Code is available at
this repository: https://github.com/aikunyi/FourierGNN.

1 Introduction

Multivariate time series (MTS) forecasting plays an important role in numerous real-world scenarios,
such as traffic flow prediction in transportation systems [1, 2], temperature estimation in weather
forecasting [3, 4], and electricity consumption planning in the energy market [5, 6], etc. In MTS
forecasting, the core challenge is to model intra-series (temporal) dependencies and simultaneously
capture inter-series (spatial) correlations. Existing literature has primarily focused on the tempo-
ral modeling and proposed several forecasting architectures, including Recurrent Neural Network
(RNN)-based methods (e.g., DeepAR [7]), Convolution Neural Network (CNN)-based methods (e.g.,
Temporal Convolution Network [8]) and more recent Transformer-based methods (e.g., Informer [9]
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and Autoformer [4]). In addition, another branch of MTS forecasting methods has been developed to
not only model temporal dependencies but also places emphasis on spatial correlations. The most
representative methods are the emerging Graph Neural Network (GNN)-based approaches [10, 2, 11]
that have achieved state-of-the-art performance in the MTS forecasting task.

Previous GNN-based forecasting methods (e.g., STGCN [12] and TAMP-S2GCNets [11]) heavily rely
on a pre-defined graph structure to specify the spatial correlations, which as a matter of fact cannot
capture the spatial dynamics, i.e., the time-evolving spatial correlation patterns. Later advanced
approaches (e.g., StemGNN [10], MTGNN [13], AGCRN [2]) can automatically learn inter-series
correlations and accordingly model spatial dynamics without pre-defined priors, but almost all of
them are designed by stacking graph networks (e.g., GCN and GAT) to capture spatial dynamics and
temporal networks (e.g., LSTM and GRU) to capture temporal dependencies. However, the uncertain
compatibility of the graph networks and the temporal networks puts extra burden on handcrafted
model designs, which hinders the forecasting performance. Moreover, the respective modeling for the
two networks separately learn spatial/temporal correlations, which naturally violate the real-world
unified spatiotemporal inter-dependencies. In this paper, we explore an opposite direction of directly
applying graph networks for forecasting and investigate an interesting question: can pure graph
networks capture spatial dynamics and temporal dependencies even without temporal networks?

To answer this question, we rethink the MTS forecasting task from a pure graph perspective. We start
with building a new data structure, hypervariate graph, to represent time series with a united view
of spatial/temporal dynamics. The core idea of the hypervariate graph is to construct a space-time
fully-connected structure. Specifically, given a multivariate time series window (say input window)
Xt ∈ RN×T at timestamp t, where N is the number of series (variates) and T is the length of input
window, we construct a corresponding hypervariate graph structure represented as GT

t = (XT
t , A

T
t ),

which is initialized as a fully-connected graph of NT nodes with adjacency matrix AT
t ∈ RNT×NT

and node features XT
t ∈ RNT×1 by regarding each value x

(n)
t ∈ R1 (variate n at step t) of input

window as a distinct node of a hypervariate graph. Such a special structure design formulates both
intra- and inter-series correlations of multivariate series as pure node-node dependencies in the
hypervariate graph. Different from classic formulations that make spatial-correlated graphs and learn
dynamics in a two-stage (spatial and temporal) process [13], our perspective views spatiotemporal
correlations as a whole. It abandons the uncertain compatibility of spatial/temporal modeling,
constructs adaptive space-time inter-dependencies, and brings up higher-resolution fusion across
multiple variates and timestamps in MTS forecasting.

Then, with such a graph structure, the multivariate forecasting can be originally formulated into the
predictions on the hypervariate graph. However, the node number of the hypervariate graph increase
with the number of series (N ) and the window length (T ), leading to a graph of large order and
size. This could make classic graph networks (e.g., GCN [14], GAT [15]) computationally expensive
(usually with quadratic complexity) and suffer from optimization difficulty in obtaining accurate node
representations [16]. To this end, we propose a novel architecture, Fourier Graph Neural Network
(FourierGNN), for MTS forecasting from a pure graph perspective. Specifically, FourierGNN is built
upon our proposed Fourier Graph Operator (FGO), which as a replacement of classic graph operation
units (e.g., convolutions), performs matrix multiplications in Fourier space of graphs. By stacking
FGO layers in Fourier space, FourierGNN can accommodate adequate learning expressiveness and in
the mean time achieve much lower complexity (Log-linear complexity), which thus can effectively
and efficiently accomplish MTS forecasting. Besides, we present theoretical analysis to demonstrate
that the FGO is equivalent to graph convolutions in the time domain, which further explains the
validity of FourierGNN.

Finally, we perform extensive experiments on seven real-world benchmarks. Experimental results
demonstrate that FourierGNN achieves an average of more than 10% improvement in accuracy
compared with state-of-the-art methods. In addition, FourierGNN achieves higher forecasting
efficiency, which has about 14.6% less costs in training time and 20% less parameter volumes,
compared with most lightweight GNN-based forecasting methods.

2 Related Work

Graph Neural Networks for Multivariate Time Series Forecasting Multivariate time series
(MTS) have embraced GNN due to their best capability of modeling structural dependencies between
variates [17, 2, 13, 12, 11, 18, 19]. Most of these models, such as STGCN [12], DCRNN [18],
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and TAMP-S2GCNets [11], require a pre-defined graph structure which is usually unknown in
most cases. For this limitation, some studies enable to automatically learn the graphs by the inter-
series correlations, e.g., by node similarity [20, 2, 17] or self-attention mechanism [10]. However,
these methods always adopt a graph network for spatial correlations and a temporal network for
temporal dependencies separately [20, 17, 10, 2]. For example, AGCRN [2] use a GCN [14] and a
GRU [21], GraphWaveNet [17] use a GCN and a TCN [8], etc. In this paper, we propose an unified
spatiotemporal formulation with pure graph networks for MTS forecasting.

Multivariate Time Series Forecasting with Fourier Transform Recently, many MTS forecasting
models have integrated the Fourier theory into deep neural networks [22, 23]. For instance, SFM [24]
decomposes the hidden state of LSTM into multiple frequencies by Discrete Fourier Transform (DFT).
mWDN [25] decomposes the time series into multilevel sub-series by discrete wavelet decomposition
(DWT) and feeds them to LSTM network. ATFN [26] proposes a Discrete Fourier Transform-
based block to capture dynamic and complicated periodic patterns of time series data. FEDformer
[27] proposes Discrete Fourier Transform-based attention mechanism with low-rank approximation
in frequency. While these models only capture temporal dependencies with Fourier Transform,
StemGNN [10] takes the advantages of both spatial correlations and temporal dependencies in the
spectral domain by utilizing Graph Fourier Transform (GFT) to perform graph convolutions and
Discrete Fourier Transform (DFT) to calculate the series relationships.

3 Problem Definition

Given the multivariate time series input, i.e., the lookback window Xt = [xt−T+1, ...,xt] ∈ RN×T

at timestamps t with the number of series (variates) N and the lookback window size T , where
xt ∈ RN denotes the multivariate values of N series at timestamp t. Then, the multivariate time
series forecasting task is to predict the next τ timestamps Yt = [xt+1, ...,xt+τ ] ∈ RN×τ based on
the historical T observations Xt = [xt−T+1, ...,xt]. The forecasting process can be given by:

Ŷt := Fθ(Xt) = Fθ([xt−T+1, ...,xt]) (1)

where Ŷt are the predictions corresponding to the ground truth Yt. The forecasting function is denoted
as Fθ parameterized by θ. In practice, many MTS forecasting models usually leverage a graph
network (assume parameterized by θg) to learn the spatial dynamics and a temporal network (assume
parameterized by θt) to learn the temporal dependencies, respectively [17, 10, 2, 13, 11]. Thus, the
original definition of Equation (1) can be rewritten to:

Ŷt := Fθg,θt(Xt) = Fθg,θt([xt−T+1, ...,xt]) (2)

where original parameters θ are exposed to the parameters of the graph network θg and the temporal
network θt to make prediction based on the learned spatial-temporal dependencies.

4 Methodology

In this section, we elaborate on our proposed framework: First, we start with our pure graph
formulation with a novel hypervariate graph structure for MTS forecasting in Section 4.1. Then,
we illustrate the proposed neural architecture, Fourier Graph Neural Network (FourierGNN), for
this formulation in Section 4.2. Besides, we theoretically analyze FourierGNN to demonstrate its
architecture validity, and also conduct complexity analysis to show its efficiency. Finally, we introduce
certain inductive bias to instantiate FourierGNN for MTS forecasting in Section 4.3.

4.1 The Pure Graph Formulation

To overcome the uncertain compatibility of the graph network and the temporal network as afore-
mentioned in Section 1, and learn the united spatiotemporal dynamics, we propose a pure graph
formulation that refines Equation (2) by a novel data structure, hypervariate graph, for time series.
Definition 1 (Hypervariate Graph). Given a multivariate time series window as input Xt ∈ RN×T

of N variates at timestamp t, we construct a hypervariate graph of NT nodes, Gt = (XG
t , A

G
t ), by

regarding each element of Xt as one node of Gt such that XG
t ∈ RNT×1 stands for the node feature

and AG
t ∈ RNT×NT is the adjacency matrix initialized to make Gt as a fully-connected graph.
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Figure 1: Illustration of a hypervariate
graph with three time series. Each value
in the input window is considered as a
node of the graph.

Since the prior graph structure is usually unknown in most
multivariate time series scenarios [10, 2, 13], and the el-
ements of Xt are spatially or temporally correlated with
each other because of time lag effect [28], we assume all
nodes in the hypervariate graph Gt are fully-connected. The
hypervariate graph Gt contains NT nodes representing the
values of each variate at each timestamp in Xt, which can
learn a high-resolution representation across timestamps
and variates (more explanations of the hypervariate graph
can be seen in Appendix C.1). We present an example hy-
pervariate graph of three time series in Figure 1. Thus, with
such a data structure, we can reformulate the multivariate
time series forecasting task into the predictions on the hypervariate graphs, and accordingly rewrite
Equation (2) into:

Ŷt := FθG (X
G
t , A

G
t ) (3)

where θG stands for the network parameters for hypervariate graphs. With such a formulation, we can
view the spatial dynamics and the temporal dependencies from an united perspective, which benefits
modeling the real-world spatiotemporal inter-dependencies.

4.2 FourierGNN

Though the pure graph formulation can enhance spatiotemporal modeling, the order and size of
hypervariate graphs increase with the number of variates N and the size of window T , which
makes classic graph networks (e.g., GCN [14] and GAT [15]) computationally expensive (usually
quadratic complexity) and suffer from optimization difficulty in obtaining accurate hidden node
representations [16]. In this regard, we propose an efficient and effective method, FourierGNN, for
the pure graph formulation. The main architecture of FourierGNN is built upon our proposed Fourier
Graph Operator (FGO), a learnable network layer in Fourier space, which is detailed as follows.
Definition 2 (Fourier Graph Operator). Given a graph G = (X,A) with node features X ∈ Rn×d

and the adjacency matrix A ∈ Rn×n, where n is the number of nodes and d is the number of features,
we introduce a weight matrix W ∈ Rd×d to acquire a tailored Green’s kernel κ : [n]× [n] −→ Rd×d

with κ[i, j] := Aij ◦W and κ[i, j] = κ[i − j]. We define SA,W := F(κ) ∈ Cn×d×d as a Fourier
Graph Operator (FGO), where F denotes Discrete Fourier Transform (DFT).

According to the convolution theorem [29] (see Appendix B), we can write the multiplication between
F(X) and FGO SA,W in Fourier space as:

F(X)F(κ) = F((X ∗ κ)[i]) = F(

n∑
j=1

X[j]κ[i− j]) = F(

n∑
j=1

X[j]κ[i, j]), ∀i ∈ [n] (4)

where (X ∗ κ)[i] denotes the convolution of X and κ. As defined κ[i, j] = Aij ◦ W , it yields∑n
j=1 X[j]κ[i, j] =

∑n
j=1 AijX[j]W = AXW . Accordingly, we can get the convolution equation:

F(X)SA,W = F(AXW ). (5)

In particular, turning to our case of the fully-connected hypervariate graph, we can adopt a n-invariant
FGO S ∈ Cd×d that has a computationally low cost compared to previous Cn×d×d. We provide
more details and explanations in Appendix C.2.

From Equation (5), we can observe that performing the multiplication between F(X) and FGO
S in Fourier space corresponds to a graph shift operation (i.e., a graph convolution) in the time
domain [20]. Since the multiplications in Fourier space (O(n)) have much lower complexity than the
above shift operations (O(n2)) in the time domain (See Complexity Analysis below), it motivates us
to develop a highly efficient graph neural network in Fourier space.

To this end, we propose the Fourier Graph Neural Networks (FourierGNN) based on FGO. Specifi-
cally, by stacking multiple layers of FGOs, we can define the K-layer Fourier graph neural networks
given a graph G = (X,A) with node features X ∈ Rn×d and the adjacency matrix A ∈ Rn×n as:

FourierGNN(X,A) :=

K∑
k=0

σ(F(X)S0:k + bk), S0:k =

k∏
i=0

Si. (6)
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Herein, Sk is the FGO in the k-th layer, satisfying F(X)Sk = F(AkXWk) with Wk ∈ Rd×d being
the weights and Ak ∈ Rn×n corresponding to the k-th adjacency matrix sharing the same sparsity
pattern of A, and bk ∈ Cd are the complex-valued biases parameters; F stands for Discrete Fourier
Transform; σ is the activation function. In particular, S0, W0, A0 are the identity matrix, and we
adopt identical activation at k = 0 to obtain residual F(X). All operations in FourierGNN are
performed in Fourier space. Thus, all parameters, i.e., {Sk, bk}Kk=1, are complex numbers.

The core operation of FourierGNN is the summation of recursive multiplications with nonlinear
activation functions. Specifically, the recursive multiplications between F(X) and S , i.e., F(X)S0:k,
are equivalent to the multi-order convolutions on the graph structure (see Theoretical Analysis below).
Nonlinear activation functions σ are introduced to address the capability limitations of modeling
nonlinear information diffusion on graphs in the summation.

Theoretical Analysis We theoretically analyze the effectiveness and interpretability of FourierGNN
and verify the validity of its architecture. For convenience, we exclude the non-linear activation
function σ and learnable bias parameters b from Equation (6), and focus on F(X)S0:k.

Proposition 1. Given a graph G = (X,A) with node features X ∈ Rn×d and adjacency matrix
A ∈ Rn×n, the recursive multiplication of FGOs in Fourier space is equivalent to multi-order
convolutions in the time domain:

F−1(F(X)S0:k) = Ak:0XW0:k, S0:k =

k∏
i=0

Si, Ak:0 =

0∏
i=k

Ai,W0:k =

k∏
i=0

Wi (7)

where A0,S0,W0 are the identity matrix, Ak ∈ Rn×n corresponds to the k-th diffusion step sharing
the same sparsity pattern of A, Wk ∈ Rd×d is the k-th weight matrix, Sk ∈ Cd×d is the k-th FGO
satisfying F(AkXWk) = F(X)Sk, and F and F−1 denote DFT and its inverse, respectively.

In the time domain, operation Ak:0XW0:k adopts different weights Wk ∈ Rd×d to weigh the
information of different neighbors in different diffusion orders, beneficial to capture the extensive
dependencies on graphs [20, 30, 31]. This indicates FourierGNN is expressive in modeling the
complex correlations among graph nodes, i.e., spatiotemporal dependencies in the hypervariate graph.
The proof of Proposition 1 and more explanations of FourierGNN are provided in Appendix C.3.

Complexity Analysis The time complexity of F(X)S is O(nd log n + nd2), which includes
the Discrete Fourier Transform (DFT), the Inverse Discrete Fourier Transform (IDFT), and the
matrix multiplication in the Fourier space. Comparatively, the time complexity of the equivalent
operations of F(X)S in the time domain, i.e., AXW , is O(n2d + nd2). Then, as a K-order
summation of a recursive multiplication of F(X)S, FourierGNN, achieves the time complexity of
O(nd log n+Knd2), including DFT and IDFT, and the recursive multiplication of FGOs. Overall,
the Log-linear O(n log n) complexity makes FourierGNN much more efficient.

FourierGNN vs Other Graph Networks We analyze the connection and difference between our
FourierGNN with GCN [14] and GAT [15]. From the complexity perspective, FourierGNN with
log-linear complexity shows much higher efficiency than GCN and GAT. Regarding the network
architecture, we analyze them from two main perspectives: (1) Domain. GAT implements operations
in the time domain, while GCN and FourierGNN are in Fourier space. However, GCN achieves
the transformation through the Graph Fourier Transform (GFT), whereas FourierGNN utilizes the
Discrete Fourier Transform (DFT). (2) Information diffusion: GAT aggregates neighbor nodes with
varying weights to via attention mechanisms. FourierGNN and GCN update node information
via convoluting neighbor nodes. Different from GCN, FourierGNN assigns varying importance to
neighbor nodes in different diffusion steps. We provide a detailed comparison in Appendix D.

4.3 Multivariate Time Series Forecasting with FourierGNN

In this section, we instantiate FourierGNN for MTS forecasting. The overall architecture of our model
is illustrated in Figure 2. Given the MTS input data Xt ∈ RN×T , first we construct a fully-connected
hypervariate graph Gt = (XG

t , A
G
t ) with XG

t ∈ RNT×1 and AG
t ∈ {1}n×n. Then, we project XG

t

into node embeddings XG
t ∈ RNT×d by assigning a d-dimension vector for each node using an

embedding matrix Eϕ ∈ R1×d, i.e., XG
t = XG

t × Eϕ.

5



N
o

d
e

E
m

b
ed

d
in

g

D
F

T

Fourier Space

ID
F

T

F
F

NFGO +… FGO
Output

FGO

Time Domain Time Domain

Fourier Graph Neural Network

Hypervariate Graph

Y t

𝜎 𝜎 𝜎 𝜎

...
...

...

𝒮1 ෑ

𝑖=1

𝐾

𝒮𝑖𝒳

At
𝓖𝘹t

𝓖
) ,𝓖 = (

t
𝓖

𝒳

t
𝓖

𝗬
t

𝒮2 𝒮𝐾

t
𝓖

𝒴

At
𝓖

t
𝓖
𝐗

Figure 2: The network architecture of MTS forecasting with FourierGNN (blue characters denote
complex values, such as X G

t Si). Given the hypervariate graph G = (XG
t , A

G
t ), we 1) embed nodes

of XG
t ∈ RNT×1 to obtain node embeddings XG

t ∈ RNT×d; 2) feed embedded hypervariate graphs
to FourierGNN: (i) transform XG

t with DFT to X G
t ∈ CNT×d; (ii) conduct recursive multiplications

and make summation to output YG
t ; (iii) transform YG

t back to time domain by IDFT, resulting in
YG

t ∈ RNT×d; 3) generate τ -step predictions Ŷt ∈ RN×τ via feeding YG
t to fully-connected layers.

Subsequently, to capture the spatiotemporal dependencies simultaneously, we aim to feed multiple
embeded hypervariate graphs with XG

t to FourierGNN. First, we perform Discrete Fourier Transform
(DFT) F on each discrete spatio-temporal dimension of the embeddings XG

t and obtain the frequency
output X G

t := F(XG
t ) ∈ CNT×d. Then, we perform a recursive multiplication between X G

t and
FGOs S0:k in Fourier space and output the resulting representations YG

t as:

YG
t = FourierGNN(XG

t , A
G
t ) =

K∑
k=0

σ(F(XG
t )S0:k + bk), S0:k =

k∏
i=0

Si. (8)

Then YG
t are transformed back to the time domain using Inverse Discrete Fourier Transform (IDFT)

F−1, which yields YG
t := F−1(YG

t ) ∈ RNT×d.

Finally, according to the FourierGNN output YG
t which encodes spatiotemporal inter-dependencies,

we use two layer feed-forward networks (FFN) (see Appendix E.4 for more details) to project it onto
τ future steps, resulting in Ŷt = FFN(YG

t ) ∈ RN×τ .

5 Experiments

To evaluate the performance of FourierGNN, we conduct extensive experiments on seven real-world
time series benchmarks to compare with state-of-the-art graph neural network-based methods.

5.1 Experimental Setup

Datasets. We evaluate our proposed method on seven representative datasets from various application
scenarios, including traffic, energy, web traffic, electrocardiogram, and COVID-19. All datasets
are normalized using the min-max normalization. Except the COVID-19 dataset, we split the other
datasets into training, validation, and test sets with the ratio of 7:2:1 in a chronological order. For the
COVID-19 dataset, the ratio is 6:2:2. More detailed information about datasets are in Appendix E.1.

Baselines. We conduct a comprehensive comparison of the forecasting performance between our
FourierGNN and several representative and state-of-the-art (SOTA) models on the seven datasets,
including classic method VAR [32], deep learning-based models such as SFM [24], LSTNet [33],
TCN [8], DeepGLO [34], and CoST [36]. We also compare FourierGNN against GNN-based models
like GraphWaveNet [17], StemGNN [10], MTGNN [13], and AGCRN [2], and two representative
Transformer-based models like Reformer [35] and Informer [9], as well as two frequency enhanced
Transformer-based models including Autoformer [4] and FEDformer [27]. In addition, we compare
FourierGNN with SOTA models such as TAMP-S2GCNets [11], DCRNN [18], and STGCN [1],
which require pre-defined graph structures. Please refer to Appendix E.2 for more implementation
details of the adopted baselines.

Experimental Settings. All experiments are conducted in Python using Pytorch 1.8 [37] (except for
SFM [24] which uses Keras) and performed on single NVIDIA RTX 3080 10G GPU. Our model
is trained using RMSProp with a learning rate of 10−5 and MSE (Mean Squared Error) as the loss
function. The best parameters for all comparative models are chosen through careful parameter tuning
on the validation set. We use Mean Absolute Errors (MAE), Root Mean Squared Errors (RMSE), and
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Table 1: Overall performance of forecasting models on the six datasets.

Models
Datasets Solar Wiki Traffic

MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

VAR [32] 0.184 0.234 577.10 0.057 0.094 96.58 0.535 1.133 550.12
SFM [24] 0.161 0.283 362.89 0.081 0.156 104.47 0.029 0.044 59.33
LSTNet [33] 0.148 0.200 132.95 0.054 0.090 118.24 0.026 0.057 25.77
TCN [8] 0.176 0.222 142.23 0.094 0.142 99.66 0.052 0.067 -
DeepGLO [34] 0.178 0.400 346.78 0.110 0.113 119.60 0.025 0.037 33.32
Reformer [35] 0.234 0.292 128.58 0.048 0.085 73.61 0.029 0.042 112.58
Informer [9] 0.151 0.199 128.45 0.051 0.086 80.50 0.020 0.033 59.34
Autoformer [4] 0.150 0.193 103.79 0.069 0.103 121.90 0.029 0.043 100.02
FEDformer [27] 0.139 0.182 100.92 0.068 0.098 123.10 0.025 0.038 85.12
GraphWaveNet [17] 0.183 0.238 603 0.061 0.105 136.12 0.013 0.034 33.78
StemGNN [10] 0.176 0.222 128.39 0.190 0.255 117.92 0.080 0.135 64.51
MTGNN [13] 0.151 0.207 507.91 0.101 0.140 122.96 0.013 0.030 29.53
AGCRN [2] 0.123 0.214 353.03 0.044 0.079 78.52 0.084 0.166 31.73

FourierGNN 0.120 0.162 116.48 0.041 0.076 64.50 0.011 0.023 28.71

Models
Datasets ECG Electricity COVID-19

MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

VAR [32] 0.120 0.170 22.56 0.101 0.163 43.11 0.226 0.326 191.95
SFM [24] 0.095 0.135 24.20 0.086 0.129 33.71 0.205 0.308 76.08
LSTNet [33] 0.079 0.115 18.68 0.075 0.138 29.95 0.248 0.305 89.04
TCN [8] 0.078 0.107 17.59 0.057 0.083 26.64 0.317 0.354 151.78
DeepGLO [34] 0.110 0.163 43.90 0.090 0.131 29.40 0.169 0.253 75.19
Reformer [35] 0.062 0.090 13.58 0.078 0.129 33.37 0.152 0.209 132.78
Informer [9] 0.056 0.085 11.99 0.070 0.119 32.66 0.200 0.259 155.55
Autoformer [4] 0.055 0.081 11.37 0.056 0.083 25.94 0.159 0.211 136.24
FEDformer [27] 0.055 0.080 11.16 0.055 0.081 25.84 0.160 0.219 134.45
GraphWaveNet [17] 0.093 0.142 40.19 0.094 0.140 37.01 0.201 0.255 100.83
StemGNN [10] 0.100 0.130 29.62 0.070 0.101 - 0.421 0.508 141.01
MTGNN [13] 0.090 0.139 35.04 0.077 0.113 29.77 0.394 0.488 88.13
AGCRN [2] 0.055 0.080 11.75 0.074 0.116 26.08 0.254 0.309 83.37

FourierGNN 0.052 0.078 10.97 0.051 0.077 24.28 0.123 0.168 71.52

Table 2: Performance comparison under different prediction lengths on the COVID-19 dataset.
Length 3 6 9 12
Metrics MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

GraphWaveNet [17] 0.092 0.129 53.00 0.133 0.179 65.11 0.171 0.225 80.91 0.201 0.255 100.83
StemGNN [10] 0.247 0.318 99.98 0.344 0.429 125.81 0.359 0.442 131.14 0.421 0.508 141.01
AGCRN [2] 0.130 0.172 76.73 0.171 0.218 79.07 0.224 0.277 82.90 0.254 0.309 83.37
MTGNN [13] 0.276 0.379 91.42 0.446 0.513 133.49 0.484 0.548 139.52 0.394 0.488 88.13
TAMP-S2GCNets [11] 0.140 0.190 50.01 0.150 0.200 55.72 0.170 0.230 71.78 0.180 0.230 65.76
CoST [36] 0.122 0.246 68.74 0.157 0.318 72.84 0.183 0.364 77.04 0.202 0.377 80.81

FourierGNN(ours) 0.071 0.103 61.02 0.093 0.131 65.72 0.109 0.148 69.59 0.123 0.168 71.52

Mean Absolute Percentage Error (MAPE) to measure the performance. The evaluation details are in
Appendix E.3 and more experimental settings are in Appendix E.4.

5.2 Main Results

We present the evaluation results with an input length of 12 and a prediction length of 12 in Table
1. Overall, FourierGNN achieves a new state-of-the-art on all datasets. On average, FourierGNN
makes an improvement of 9.4% in MAE and 10.9% in RMSE compared to the best-performing
across all datasets. Among these baselines, Reformer, Informer, Autoformer, and FEDformer are
Transformer-based models that demonstrate competitive performance on Electricity and COVID-
19 datasets, as they excel at capturing temporal dependencies. However, they have limitations in
capturing the spatial dependencies explicitly. GraphWaveNet, MTGNN, StemGNN, and AGCRN are
GNN-based models that show promising results on Wiki, Traffic, Solar, and ECG datasets, primarily
due to their capability to handle spatial dependencies among variates. However, they are limited in
their capacity to simultaneously capture spatiotemporal dependencies. FourierGNN outperforms the
baseline models since it can learn comprehensive spatiotemporal dependencies simultaneously and
attends to time-varying dependencies among variates.

Multi-Step Forecasting To further evaluate the performance in multi-step forecasting, we com-
pare FourierGNN with other GNN-based MTS models (including StemGNN [10], AGCRN [2],
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GraphWaveNet [17], MTGNN [13], and TAMP-S2GCNets [11]) and a representation learning model
(CoST [36]) on COVID-19 dataset under different prediction lengths, and the results are shown in
Table 2. It shows that FourierGNN achieves an average 30.1% and 30.2% improvement on MAE
and RMSE respectively over the best baseline. In Appendix F, we include more experiments and
analysis under different prediction lengths, and further compare FourierGNN with models that require
pre-defined graph structures.

5.3 Model Analysis

Efficiency Analysis We investigate the parameter volumes and training time costs of FourierGNN,
StemGNN [10], AGCRN [2], GraphWaveNet [17], and MTGNN [13] on two representative datasets,
including the Wiki dataset and the Traffic dataset. The results are reported in Table 3, showing the
comparison of parameter volumes and average time costs over five rounds of experiments. In terms
of parameters, FourierGNN exhibits the lowest volume of parameters among the comparative models.
Specifically, it achieves a reduction of 32.2% and 9.5% in parameters compared to GraphWaveNet
on Traffic and Wiki datasets, respectively. This reduction is mainly attributed that FourierGNN
has shared scale-free parameters for each node. Regarding training time, FourierGNN runs much
faster than all baseline models, and it demonstrates efficiency improvements of 5.8% and 23.3%
over the fast baseline GraphWaveNet on Traffic and Wiki datasets, respectively. Considering variate
number of Wiki dataset is about twice larger than that of Traffic dataset, FourierGNN exhibits larger
efficiency superiority with the baselines. These findings highlight the high efficiency of FourierGNN
in computing graph operations and its scalability to large datasets with extensive graphs, which is
important for the pure graph formulation due to the larger size of hypervariate graphs with NT nodes.
Table 3: Comparisons of parameter volumes and training time costs on datasets Traffic and Wiki.

Traffic Wiki
Models Parameters Training (s/epoch) Parameters Training (s/epoch)

StemGNN 1, 606, 140 185.86±2.22 4, 102, 406 92.95±1.39
MTGNN 707, 516 169.34±1.56 1, 533, 436 28.69±0.83
AGCRN 749, 940 113.46±1.91 755, 740 22.48±1.01

GraphWaveNet 280, 860 105.38±1.24 292, 460 21.23±0.76

FourierGNN 190, 564 99.25±1.07 264, 804 16.28±0.48

Ablation Study We perform an ablation study on the METR-LA dataset to assess the individual
contributions of different components in FourierGNN. The results, presented in Table 4, validate
the effectiveness of each component. Specifically, w/o Embedding emphasizes the significance of
performing node embedding to improve model generalization. w/o Dynamic FGO using the same
FGO verifies the effectiveness of applying different FGOs in capturing time-varying dependencies.
In addition, w/o Residual represents FourierGNN without the K = 0 layer, while w/o Summation
adopts the last order (layer) output, i.e., XS0:K , as the output of FourierGNN. These results demon-
strate the importance of high-order diffusion and the contribution of multi-order diffusion. More
results and analysis of the ablation study are provided in Appendix G.3.

Table 4: Ablation study on METR-LA dataset.

metrics w/o Embedding w/o Dynamic FGO w/o Residual w/o Summation FourierGNN

MAE 0.053 0.055 0.054 0.054 0.050
RMSE 0.116 0.114 0.115 0.114 0.113

MAPE(%) 86.73 86.69 86.75 86.62 86.30

5.4 Visualization

To gain a better understanding of the hypervariate graph and FourierGNN in spatiotemporal modeling
for MTS forecasting, We conduct visualization experiments on the METR-LA and COVID-19
datasets. Please refer to Appendix E.5 for more information on the visualization techniques used.

Visualization of temporal representations learned by FourierGNN In order to showcase the
temporal dependencies learning capability of FourierGNN, we visualize the temporal adjacency
matrix of different variates. Specifically, we randomly select 8 counties from the COVID-19 dataset
and calculate the relations of 12 consecutive time steps for each county. Then, we visualize the

8



(a) N=7 (b) N=18 (c) N=24 (d) N=29

(e) N=38 (f) N=45 (g) N=46 (h) N=55

Figure 3: The temporal adjacency matrix of eight variates on COVID-19 dataset.

adjacency matrix by a heatmap, and the results are illustrated in Figure 3, where N denotes the index
of the country (variate). It shows that FourierGNN learns distinct temporal patterns for each county,
indicating that the hypervariate graph can encode rich and discriminative temporal dependencies.

Visualization of spatial representations learned by FourierGNN To investigate the spatial corre-
lations learning capability of FourierGNN, we visualize the generated adjacency matrix based on the
representations learned by FourierGNN on the METR-LA dataset. Specifically, we randomly select
20 detectors and visualize their corresponding adjacency matrix via a heatmap, as depicted in Figure 4.

Figure 4: The adjacency matrix (right) learned by Fouri-
erGNN and the corresponding road map (left).

By examining the adjacency matrix in con-
junction with the actual road map, we ob-
serve: 1) the detectors (7, 8, 9, 11, 13,
18) are very close w.r.t. the physical dis-
tance, corresponding to the high values of
their correlations with each other in the
heatmap; 2) the detectors 4, 14 and 16
have small overall correlation values since
they are far from other detectors; 3) how-
ever, compared with detectors 14 and 16,
the detector 4 has slightly higher correla-
tion values to other detectors, e.g., 7, 8,
9, which is because although they are far
apart, the detectors 4, 7, 8, 9 are on the same road. The results verify that the hypervariate graph
structure can represent highly interpretative correlations.

Moreover, to gain a understanding of how FGO works, we visualize the output of each layer of
FourierGNN, and the visualization results demonstrate that FGO can adaptively and effectively
capture important patterns while removing noises to a learn discriminative model. Further details
can be found in Appendix H.1. Additionally, to investigate the ability of FourierGNN to capture
time-varying dependencies among variates, we further visualize the spatial correlations at different
timestamps. The results illustrate that FourierGNN can effectively attend to the temporal variability
in the data. For more information, please refer to Appendix H.2.

6 Conclusion Remarks
In this paper, we explore an interesting direction of directly applying graph networks for MTS
forecasting from a pure graph perspective. To overcome the previous separate spatial and temporal
modeling problem, we build a hypervariate graph, regarding each series value as a graph node, which
considers spatiotemporal dynamics unitedly. Then, we formulate time series forecasting on the
hypervariate graph and propose FourierGNN by stacking Fourier Graph Operator (FGO) to perform
matrix multiplications in Fourier space, which can accommodate adequate learning expressiveness
with much lower complexity. Extensive experiments demonstrate that FourierGNN achieves state-
of-the-art performances with higher efficiency and fewer parameters, and the hypervariate graph
structure exhibits strong capabilities to encode spatiotemporal inter-dependencies.
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A Notation

Table 5: Notations

Xt multivariate time series input at timestamps t, X ∈ RN×T

xt the multivariate values of N series at timestamp t, xt ∈ RN

Yt the next τ timestamps of multivariate time series, Yt ∈ RN×τ

Ŷt the prediction values of multivariate time series for next τ timestamps, Ŷt ∈ RN×τ

N the number of series

T the lookback window size

τ the prediction length of multivariate time series forecasting

Gt the hypervariate graph, Gt = {XG
t , A

G
t } attributed to XG

t

XG
t the nodes of the hypervariate graph, XG

t ∈ RNT×1

AG
t the adjacency matrix of Gt, AG

t ∈ RNT×NT

S the Fourier Graph Operator

d the embedding dimension

XG
t the embedding of XG

t , XG
t ∈ RNT×d

X G
t the spectrum of XG

t , X G
t ∈ CNT×d

YG
t the output of FourierGNN, YG

t ∈ CNT×d

θg the parameters of the graph network

θt the parameters of the temporal network

θG the network parameters for hypervariate graphs

Eϕ the embedding matrix, Eϕ ∈ R1×d

κ the kernel function

W the weight matrix

b the complex bias weights

F Discrete Fourier Transform

F−1 Inverse Discrete Fourier Transform

F the forecasting model

B Convolution Theorem

The convolution theorem [29] is one of the most important properties of the Fourier transform. It
states the Fourier transform of a convolution of two signals equals the pointwise product of their
Fourier transforms in the frequency domain. Given a signal x[n] and a filter h[n], the convolution
theorem can be defined as follows:

F((x ∗ h)[n]) = F(x)F(h) (9)

where (x ∗ h)[n] =
∑N−1

m=0 h[m]x[(n − m)N ] denotes the convolution of x and h, (n − m)N
denotes (n−m) modulo N, and F(x) and F(h) denote discrete Fourier transform of x[n] and h[n],
respectively.

13



C Explanations and Proofs

C.1 The Explanations of the Hypervariate Graph Structure

Note that the time lag effect between time-series variables is a common phenomenon in real-world
multivariate time series scenarios, for example, the time lag influence between two financial assets
(e.g. dollar and gold) of a portfolio. It is beneficial but challenging to consider dependencies between
different variables under different timestamps.

The hypervariate graph connecting any two variables at any two timestamps aims to encode high-
resolution spatiotemporal dependencies. It embodies not only the intra-series temporal dependencies
(node connections of each individual variable), inter-series spatial dependencies (node connections
under each single time step), and also the time-varying spatiotemporal dependencies (node con-
nections between different variables at different time steps). By leveraging the hypervariate graph
structure, we can effectively learn the spatial and temporal dependencies. This approach is distinct
from previous methods that represent the spatial and temporal dependencies separately using two
network structures.

C.2 The Interpretation of n-invariant FGO

Why F(κ) ∈ Cn×d×d? From Definition 2, we know that the kernel κ is defined as a matrix-
valued projection, i.e., κ : [n] × [n] −→ Rd×d. Note that we assume κ is in the special case of the
Green’s kernel, i.e., a translation-invariant kernel κ[i, j] = κ[i− j]. Accordingly, κ can be reduced:
κ : [n] −→ Rd×d where we can parameterize F(κ) with a complex-valued matrix Cn×d×d.

What is n-invariant FGO? Turning to our case of the fully-connected hypervariate graph, we can
consider a special case of κ, i.e., a space-invariant kernel κ[i, j] = κ[ϱ] with ϱ being a constant scalar.
Accordingly, we can parameterize FGO S with a n-invariant complex-valued matrix Cd×d.

The interpretation of n-invariant FGO. An n-invariant FGO is similar to a shared-weight convo-
lution kernel or filter of CNNs that slide along ([n]× [n]) input features, which effectively reduces
parameter volumes and saves computation costs. Note that although we adopt the same transforma-
tion (i.e., the n-invariant FGO) over NT frequency points, we embed the raw MTS inputs in the
d-dimension distributive space beforehand and then perform FourierGNN over MTS embeddings,
which can be analogized as d convolution kernels/filters in each convolutional layer in CNNs. This
can ensure FourierGNN is able to learn informative features/patterns to improve its model capacity
(See the following analysis of the effectiveness of n-invariant FGO).

The effectiveness of n-invariant FGO. In addition, the n-invariant parameterized FGO is empirically
proven effective to improve model generalization and achieve superior forecasting performance (See
the ablation study in Section 5.3 for more details). Although parameterizing F(κ) ∈ Cn×d×d

(i.e., an n-variant FGO) may be more powerful and flexible than the n-invariant FGO in terms of
forecasting performance, it introduces much more parameters and training time costs, especially in
case of multi-layer FourierGNN, and may obtain inferior performance due to inadequate training
or overfitting. As indicated in Table 6, the FourierGNN with the n-invariant FGO achieves slightly
better performance than that with the n-variant FGO on ECG and COVID-19, respectively. Notably,
the FourierGNN with the n-variant FGO introduces a much larger parameter volume proportional
to n and requires significantly more training time. In contrast, n-invariant FGO is n-agnostic and
lightweight, which is a more wise and efficient alternative. These results confirm our design and
verify the effectiveness and applicability of n-invariant FGO.

Table 6: Comparison between FourierGNN models with n-invariant FGO and n-variant FGO on the
ECG and COVID-19 datasets.

Datasets Models Parameters (M) Training (s/epoch) MAE RMSE MAPE (%)

ECG n-invariant 0.18 12.45 0.052 0.078 10.97
n-variant 82.96 104.06 0.053 0.078 11.05

COVID-19 n-invariant 1.06 0.62 0.123 0.168 71.52
n-variant 130.99 7.46 0.129 0.174 72.12
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C.3 Proof of Proposition 1 and Interpretation of FourierGNN

Proposition 1. Given a graph G = (X,A) with node features X ∈ Rn×d and adjacency matrix
A ∈ Rn×n, the recursive multiplication of FGOs in Fourier space is equivalent to multi-order
convolutions in the time domain:

F−1(F(X)S0:k) = Ak:0XW0:k, S0:k =

k∏
i=0

Si, Ak:0 =

0∏
i=k

Ai,W0:k =

k∏
i=0

Wi

where A0,S0,W0 are the identity matrix, Ak ∈ Rn×n corresponds to the k-th diffusion step sharing
the same sparsity pattern of A, Wk ∈ Rd×d is the k-th weight matrix, Sk ∈ Cd×d is the k-th FGO
satisfying F(AkXWk) = F(X)Sk, and F and F−1 denote DFT and its inverse, respectively.

Proof. The proof aims to demonstrate the equivalence between the recursive multiplication of FGOs
in Fourier space and multi-order convolutions in the time domain. According to F(AkXWk) =
F(X)Sk, we expand the multi-order convolutions A0:KXW0:K in the time domain using a set of
FGOs in Fourier space:

F(AKAK−1 · · ·A0XW0 · · ·WK−1WK) = F(AK(AK−1...A0XW0 · · ·WK−1)WK)

= F(AK−1...A0XW0 · · ·WK−1)SK

= F(AK−1(AK−2...A0XW0 · · ·WK−2)WK−1)SK

= F(AK−2...A0XW0 · · ·WK−2)SK−1SK

= · · ·
= F(X)S0 · · · SK−1SK

= F(X)S0:K

(10)
where it yields F−1(F(X)S0:K) = AK:0XW0:K with S0:K =

∏K
i=0 Si,AK:0 =

∏0
i=K Ai and

W0:K =
∏K

i=0 Wi. Proved.

Thus, the FourierGNN can be rewritten as (for convenience, we exclude the non-linear activation
function σ and learnable bias parameters b):

F−1(

K∑
k=0

F(X)S0:K) = A0XW0 +A1(A0XW0)W1 + ...+AK:0XW0:K (11)

From the right part of the above equation, we can observe that it assigns different weights to weigh
the information of different neighbors in each diffusion order. This property enable FourierGNN to
capture the complex correlations (i.e., spatiotemporal dependencies) in the hypervariate graph, which
is empirically verified in our visualization experiments.

D Compared with Other Graph Neural Networks

Graph Convolutional Networks. Graph convolutional networks (GCNs) depend on the Laplacian
eigenbasis to perform the multi-order graph convolutions over a given graph structure. Compared
with GCNs, FourierGNN as an efficient alternative to multi-order graph convolutions has three main
differences: 1) No eigendecompositions or similar costly matrix operations are required. FourierGNN
transforms the input into Fourier domain by discrete Fourier transform (DFT) instead of graph Fourier
transform (GFT); 2) Explicitly assigning various importance to nodes of the same neighborhood
with different diffusion steps. FourierGNN adopts different Fourier Graph Operators S in different
diffusion steps corresponding to different dependencies among nodes; 3) FourierGNN is invariant to
the discretization N , T . It parameterizes the graph convolution via Fourier Graph Operators which
are invariant to the graph structure and graph scale.

Graph Attention Networks. Graph attention networks (GATs) are non-spectral attention-based
graph neural networks. GATs use node representations to calculate the attention weights (i.e., edge
weights) varying with different graph attention layers. Accordingly, both GATs and FourierGNN do
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not depend on eigendecompositions and adopt varying edge weights with different diffusion steps
(layers). However, FourierGNN can efficiently perform graph convolutions in Fourier space. For
a complete graph, the time complexity of the attention calculation of K layers is proportional to
Kn2 where n is the number of nodes, while a K-layer FourierGNN infers the graph structure in
Fourier space with the time complexity proportional to n log n. In addition, compared with GATs that
implicitly achieve edge-varying weights with different layers, FourierGNN adopts different FGOs in
different diffusion steps explicitly.

E Experiment Details

E.1 Datasets

We use seven public multivariate benchmarks for multivariate time series forecasting and these
benchmark datasets are summarized in Table 7.

Table 7: Summary of datasets.

Datasets Solar Wiki Traffic ECG Electricity COVID-19 METR-LA

Samples 3650 803 10560 5000 140211 335 34272
Variables 592 2000 963 140 370 55 207

Granularity 1hour 1day 1hour - 15min 1day 5min
Start time 01/01/2006 01/07/2015 01/01/2015 - 01/01/2011 01/02/2020 01/03/2012

Solar2: This dataset is about solar power collected by National Renewable Energy Laboratory. We
choose the power plant data points in Florida as the data set which contains 593 points. The data is
collected from 2006/01/01 to 2016/12/31 with the sampling interval of every 1 hour.

Wiki [34]: This dataset contains a number of daily views of different Wikipedia articles and is
collected from 2015/7/1 to 2016/12/31. It consists of approximately 145k time series and we
randomly choose 2k from them as our experimental data set.

Traffic [34]: This dataset contains hourly traffic data from 963 San Francisco freeway car lanes. The
traffic data are collected since 2015/01/01 with the sampling interval of every 1 hour.

ECG3: This dataset is about Electrocardiogram(ECG) from the UCR time-series classification archive
[38]. It contains 140 nodes and each node has a length of 5000.

Electricity4: This dataset contains the electricity consumption of 370 clients and is collected since
2011/01/01. The data sampling interval is every 15 minutes.

COVID-195: This dataset is about COVID-19 hospitalization in the U.S. states of California (CA)
from 01/02/2020 to 31/12/2020 provided by the Johns Hopkins University with the sampling interval
of every one day.

METR-LA6: This dataset contains traffic information collected from loop detectors in the highway
of Los Angeles County from 01/03/2012 to 30/06/2012. It contains 207 sensors and the data sampling
interval is every 5 minutes.

E.2 Baselines

In experiments, we conduct a comprehensive comparison of the forecasting performance between our
FourierGNN and representative and state-of-the-art (SOTA) models as follows.

VAR [32]: VAR is a classic linear autoregressive model. We use the Statsmodels library (https:
//www.statsmodels.org) which is a Python package that provides statistical computations to
realize the VAR.

2https://www.nrel.gov/grid/solar-power-data.html
3http://www.timeseriesclassification.com/description.php?Dataset=ECG5000
4https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
5https://github.com/CSSEGISandData/COVID-19
6https://github.com/liyaguang/DCRNN
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DeepGLO [34]: DeepGLO models the relationships among variables by matrix factorization and
employs a temporal convolution neural network to introduce non-linear relationships. We download
the source code from: https://github.com/rajatsen91/deepglo. We follow the recommended
configuration as our experimental settings for wiki, electricity, and traffic datasets. For covid datasets,
the vertical and horizontal batch size is set to 64, the rank of the global model is set to 64, the number
of channels is set to [32, 32, 32, 1], and the period is set to 7.

LSTNet [33]: LSTNet uses a CNN to capture inter-variable relationships and an RNN to discover
long-term patterns. We download the source code from: https://github.com/laiguokun/
LSTNet. In our experiment, we use the recommended configuration where the number of CNN
hidden units is 100, the kernel size of the CNN layers is 4, the dropout is 0.2, the RNN hidden units
is 100, the number of RNN hidden layers is 1, the learning rate is 0.001 and the optimizer is Adam.

TCN [8]: TCN is a causal convolution model for regression prediction. We download the source code
from: https://github.com/locuslab/TCN. We utilize the same configuration as the polyphonic
music task exampled in the open source code where the dropout is 0.25, the kernel size is 5, the
number of hidden units is 150, the number of levels is 4 and the optimizer is Adam.

Reformer [35]: Reformer combines the modeling capacity of a Transformer with an architecture
that can be executed efficiently on long sequences and with small memory use. We download
the source code from: https://github.com/thuml/Autoformer. We follow the recommended
configuration as the experimental settings.

Informer [9]: Informer leverages an efficient self-attention mechanism to encode the dependen-
cies among variables. We download the source code from: https://github.com/zhouhaoyi/
Informer2020. We follow the recommended configuration as our experimental settings where the
dropout is 0.05, the number of encoder layers is 2, the number of decoder layers is 1, the learning
rate is 0.0001, and the optimizer is Adam.

Autoformer [4]: Autoformer proposes a decomposition architecture by embedding the series de-
composition block as an inner operator, which can progressively aggregate the long-term trend part
from intermediate prediction. We download the source code from: https://github.com/thuml/
Autoformer. We follow the recommended configuration as our experimental settings with 2 encoder
layers and 1 decoder layer.

FEDformer [27]: FEDformer proposes an attention mechanism with low-rank approximation in
frequency and a mixture of expert decomposition to control the distribution shifting. We download the
source code from: https://github.com/MAZiqing/FEDformer. We use FEB-f as the Frequency
Enhanced Block and select the random mode with 64 as the experimental mode.

SFM [24]: On the basis of the LSTM model, SFM introduces a series of different frequency compo-
nents in the cell states. We download the source code from: https://github.com/z331565360/
State-Frequency-Memory-stock-prediction. We follow the recommended settings where the
learning rate is 0.01, the frequency dimension is 10, the hidden dimension is 10 and the optimizer is
RMSProp.

StemGNN [10]: StemGNN leverages GFT and DFT to capture dependencies among variables in
the frequency domain. We download the source code from: https://github.com/microsoft/
StemGNN. We use the recommended configuration of stemGNN as our experiment setting where the
optimizer is RMSProp, the learning rate is 0.0001, the number of stacked layers is 5, and the dropout
rate is 0.5.

MTGNN [13]: MTGNN proposes an effective method to exploit the inherent dependency relation-
ships among multiple time series. We download the source code from: https://github.com/
nnzhan/MTGNN. Because the experimental datasets have no static features, we set the parameter
load_static_feature to false. We construct the graph by the adaptive adjacency matrix and add the
graph convolution layer. Regarding other parameters, we adopt the recommended settings.

GraphWaveNet [17]: GraphWaveNet introduces an adaptive dependency matrix learning to cap-
ture the hidden spatial dependency. We download the source code from: https://github.com/
nnzhan/Graph-WaveNet. Since our datasets have no prior defined graph structures, we use only
adaptive adjacent matrix. We add a graph convolution layer and randomly initialize the adjacent
matrix. We adopt the recommended configuration as our experimental settings where the learning
rate is 0.001, the dropout is 0.3, the number of epochs is 50, and the optimizer is Adam.
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AGCRN [2]: AGCRN proposes a data-adaptive graph generation module for discovering spatial
correlations from data. We download the source code from: https://github.com/LeiBAI/
AGCRN. We follow the recommended configuration as our experimental settings where the embedding
dimension is 10, the learning rate is 0.003, and the optimizer is Adam.

TAMP-S2GCNets [11]: TAMP-S2GCNets explores the utility of MP to enhance knowledge represen-
tation mechanisms within the time-aware DL paradigm. We download the source code from: https:
//www.dropbox.com/sh/n0ajd5l0tdeyb80/AABGn-ejfV1YtRwjf_L0AOsNa?dl=0. TAMP-
S2GCNets requires predefined graph topology and we use the California State topology provided by
the source code as input. We adopt the recommended configuration as our experimental settings on
COVID-19.

DCRNN [18]: DCRNN uses bidirectional graph random walk to model spatial dependency and
recurrent neural network to capture the temporal dynamics. We download the source code from:
https://github.com/liyaguang/DCRNN. We follow the recommended configuration as our
experimental settings with the batch size is 64, the learning rate is 0.01, the input dimension is 2 and
the optimizer is Adam. DCRNN requires a pre-defined graph structure and we use the adjacency
matrix as the pre-defined structure provided by the METR-LA dataset.

STGCN [1]: STGCN integrates graph convolution and gated temporal convolution through
spatial-temporal convolutional blocks. We download the source code from:https://github.com/
VeritasYin/STGCN_IJCAI-18. We use the recommended configuration as our experimental set-
tings where the batch size is 50, the learning rate is 0.001 and the optimizer is Adam. STGCN requires
a pre-defined graph structure and we leverage the adjacency matrix as the pre-defined structures
provided by the METR-LA dataset.

CoST [36]: CoST separates the representation learning and downstream forecasting task and proposes
a contrastive learning framework that learns disentangled season-trend representations for time series
forecasting tasks. We download the source code from: https://github.com/salesforce/CoST.
We set the representation dimension to 320, the learning rate to 0.001, and the batch size to 32.
Inputs are min-max normalization, we perform a 70/20/10 train/validation/test split for the METR-LA
dataset and 60/20/20 for the COVID-19 dataset.

E.3 Evaluation Metrics

We use MAE (Mean Absolute Error), RMSE (Root Mean Square Error), and MAPE (Mean Absolute
Percentage Error) as the evaluation metrics in the experiments.

Specifically, given the groudtruth at timestamps t, Yt = [xt+1, ...,xt+τ ] ∈ RN×τ , and the predictions
Ŷt = [x̂t+1, ..., x̂t+τ ] ∈ RN×τ for future τ steps at timestamp t, the metrics are defined as follows:

MAE =
1

τN

N∑
i=1

τ∑
j=1

|xij − x̂ij | (12)

RMSE =

√√√√ 1

τN

N∑
i=1

τ∑
j=1

(xij − x̂ij)
2 (13)

MAPE =
1

τN

N∑
i=1

τ∑
j=1

∣∣∣∣xij − x̂ij

xij

∣∣∣∣× 100% (14)

with xij ∈ Yt and x̂ij ∈ Ŷt.

E.4 Experimental Settings

We summarize the implementation details of the proposed FourierGNN as follows. Note that the
details of the baselines are introduced in their corresponding descriptions (see Section E.2).
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Network details. The fully connected feed-forward network (FFN) consists of three linear transfor-
mations with LeakyReLU activations in between. The FFN is formulated as follows:

X1 = LeakyReLU(YG
t W1 + b1)

X2 = LeakyReLU(X1W2 + b2)

Ŷ = X2W3 + b3

(15)

where W1 ∈ R(Td)×dffn
1 , W2 ∈ Rdffn

1 ×dffn
2 and W3 ∈ Rdffn

2 ×τ are the weights of the three
layers respectively, and b1 ∈ Rdffn

1 , b2 ∈ Rdffn
2 and b3 ∈ Rτ are the biases of the three layers

respectively. Here, dffn1 and dffn2 are the dimensions of the three layers. In addition, we adopt a
ReLU activation function in Equation 6.

Training details. We carefully tune the hyperparameters, including the embedding size, batch
size, dffn1 and dffn2 , on the validation set and choose the settings with the best performance for
FourierGNN on different datasets. Specifically, the embedding size and batch size are tuned over
{32, 64, 128, 256, 512} and {2, 4, 8, 16, 32, 64, 128} respectively. For the COVID-19 dataset, the
embedding size is 256, and the batch size is set to 4. For the Traffic, Solar, and Wiki datasets, the
embedding size is 128, and the batch size is set to 2. For the METR-LA, ECG, and Electricity
datasets, the embedding size is 128, and the batch size is set to 32.

To reduce the number of parameters, we adopt a linear transform to reshape the original time
domain representation YG

t ∈ RNT×d to Yt ∈ RN×T×d, and map Yt to a low-dimensional tensor
Yt ∈ RN×l×d with l < T . We then reshape Yt ∈ RN×(ld) and feed it to FFN. We perform a grid
search on the dimensions of FFN, i.e., dffn1 and dffn2 , over {32, 64, 128, 256, 512} and tune the
intermediate dimension l over {2, 4, 6, 8, 12}. The settings of the three hyperparameters over all
datasets are shown in Table 8. By default, we set the diffusion step (layers) K = 3 for all datasets.

Table 8: Dimension settings of FFN on different datasets. ∗ denotes that we feed the original time
domain representation to FFN without the dimension reduction.

Datasets Solar Wiki Traffic ECG Electricity COVID-19 META-LR

l 6 2 2 ∗ 4 8 4

dffn1 64 64 64 64 64 256 64

dffn2 256 256 256 256 256 512 256

E.5 Details for Visualization Experiments

To verify the effectiveness of FourierGNN in learning the spatiotemporal dependencies on the
hypervariate graph, we obtain the output of FourierGNN as the node representation, denoted as YG

t =
IDFT(FourierGNN(XG

t )) ∈ RNT×d with Inverse Discrete Fourier Transform (IDFT). Then, we
visualize the adjacency matrix A calculated based the flatten node representation YG

t ∈ RNT×d,
formulated as A = YG

t (Y
G
t )

T ∈ RNT×NT , to show the variable correlations. Note that A is
normalized via A/max(A). Since it is not feasible to directly visualize the huge adjacency matrix
A of the hypervariate graph, we visualize its different subgraphs in Figures 3, 4, 9, and 10 to better
verify the learned spatiotemporal information on the hypervariate graph from different perspectives.

Figure 3. We select 8 counties and visualize the correlations between 12 consecutive time steps for
each selected county respectively. Figure 3 reflects the temporal correlations within each variable.

Figure 4: On the METR-LA dataset, we average its adjacency matrix A over the temporal dimension
(i.e., marginalizing T ) to A′ ∈ RN×N . Then, we randomly select 20 detectors out of all N = 207
detectors and obtain their corresponding sub adjacency matrix (R20×20) from A′ for visualization.
We further compare the sub-adjacency with the real road map (generated by the Google map tool) to
verify the learned dependencies between different detectors.

Figure 9. Since we adopt a 3-layer FourierGNN, we can calculate four adjacency matrices based on
the spectrum input X G

t of FourierGNN and the outputs of each layer in FourierGNN. Following the
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way of visualization in Figure 4, we select 10 counties and two timestamps on the four adjacency
matrices for visualization. Figure 9 shows the effects of each layer of FourierGNN in filtering or
enhancing variable correlations.

Figure 10. On the COVID-19 dataset, we randomly select 10 counties out of N = 55 counties and
obtain their four sub-adjacency matrices of four consecutive days for visualization. Each of the four
sub adjacency matrices R10×10 embodies the dependencies between counties in one day. Figure 10
reflects the time-varying dependencies between counties (i.e., variables).

F Additional Results

To further evaluate the performance of our model FourierGNN in multi-step forecasting, we conduct
more experiments on the Wiki, METR-LA, and ECG datasets, respectively. We compare our
model FourierGNN with five models (including StemGNN [10], AGCRN [2], GraphWaveNet [17],
MTGNN [13], and Informer [9]) on the Wiki dataset under different prediction lengths, and the results
are shown in Table 9. From the table, we observe that FourierGNN outperforms other models on MAE,
RMSE, and MAPE metrics for all the prediction lengths. On average, FourierGNN improves MAE,
RMSE, and MAPE by 7.4%, 3.5%, and 22.3%, respectively. Among these models, AGCRN shows
promising performances since it captures the spatial and temporal correlations adaptively. However,
it fails to simultaneously capture spatiotemporal dependencies, limiting its forecasting performance.
In contrast, our model captures comprehensive spatiotemporal dependencies simultaneously on a
hypervariate graph for multivariate time series forecasting.

Table 9: Accuracy comparison under different prediction lengths on the Wiki dataset.
Length 3 6 9 12
Metrics MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

GraphWaveNet [17] 0.061 0.105 138.60 0.061 0.105 135.32 0.061 0.105 132.52 0.061 0.104 136.12
StemGNN [10] 0.157 0.236 89.00 0.159 0.233 98.01 0.232 0.311 142.14 0.220 0.306 125.40
AGCRN [2] 0.043 0.077 73.49 0.044 0.078 80.44 0.045 0.079 81.89 0.044 0.079 78.52
MTGNN [13] 0.102 0.141 123.15 0.091 0.133 91.75 0.074 0.120 85.44 0.101 0.140 122.96
Informer [9] 0.053 0.089 85.31 0.054 0.090 84.46 0.059 0.095 93.80 0.059 0.095 95.09

FourierGNN 0.040 0.075 58.18 0.041 0.075 60.43 0.041 0.076 60.95 0.041 0.076 64.50

Table 10: Accuracy comparison under different prediction lengths on the METR-LA dataset.
Horizon 3 6 9 12
Metrics MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

DCRNN [18] 0.160 0.204 80.00 0.191 0.243 83.15 0.216 0.269 85.72 0.241 0.291 88.25
STGCN [1] 0.058 0.133 59.02 0.080 0.177 60.67 0.102 0.209 62.08 0.128 0.238 63.81
GraphWaveNet [17] 0.180 0.366 21.90 0.184 0.375 22.95 0.196 0.382 23.61 0.202 0.386 24.14
MTGNN [13] 0.135 0.294 17.99 0.144 0.307 18.82 0.149 0.328 19.38 0.153 0.316 19.92
StemGNN [10] 0.052 0.115 86.39 0.069 0.141 87.71 0.080 0.162 89.00 0.093 0.175 90.25
AGCRN [2] 0.062 0.131 24.96 0.086 0.165 27.62 0.099 0.188 29.72 0.109 0.204 31.73
Informer [9] 0.076 0.141 69.96 0.088 0.163 70.94 0.096 0.178 72.26 0.100 0.190 72.54
CoST [36] 0.064 0.118 88.44 0.077 0.141 89.63 0.088 0.159 90.56 0.097 0.171 91.42

FourierGNN 0.050 0.113 86.30 0.066 0.140 87.97 0.076 0.159 88.99 0.084 0.165 89.69

Furthermore, we compare our model FourierGNN with seven MTS models (including STGCN [1],
DCRNN [18], StemGNN [10], AGCRN [2], GraphWaveNet [17], MTGNN [13], Informer [9], and
CoST [36]) on the METR-LA dataset which has a predefined graph topology in the data, and the
results are shown in Table 10. On average, we improve 5.7% on MAE and 1.5% on RMSE. Among
these models, StemGNN achieves competitive performance because it combines GFT to capture the
spatial dependencies and DFT to capture the temporal dependencies. However, it is also limited to
simultaneously capturing spatiotemporal dependencies. CoST learns disentangled seasonal-trend
representations for time series forecasting via contrastive learning and obtains competitive results.
But, our model still outperforms CoST. Because, compared with CoST, our model not only can learn
the dynamic temporal representations, but also capture the discriminative spatial representations.
Besides, STGCN and DCRNN require pre-defined graph structures. But StemGNN and our model
outperform them for all steps, and AGCRN outperforms them when the prediction lengths are 9 and
12. This also shows that a novel adaptive graph learning can precisely capture the hidden spatial
dependency. In addition, we compare FourierGNN with the baseline models under the different
prediction lengths on the ECG dataset, as shown in Figure 5. It reports that FourierGNN achieves the
best performances (MAE, RMSE, and MAPE) for all prediction lengths.
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(a) MAE (b) RMSE (c) MAPE

Figure 5: Performance comparison in multi-step prediction on the ECG dataset.

G Further Analyses

G.1 Scalability Analysis

We further conduct experiments on the Wiki dataset to investigate the performance of FourierGNN
under different graph sizes (N ×T ). The results are shown in Figure 6, where Figure 6(a), Figure 6(b)
and Figure 6(c) show MAE, RMSE, and MAPE at the different number of nodes, respectively. From
these figures, we observe that FourierGNN keeps a leading edge over the other state-of-the-art MTS
models as the number of nodes increases. The results demonstrate the superiority and scalability of
FourierGNN on large-scale datasets.

(a) MAE (b) RMSE (c) MAPE

Figure 6: Scalability analyses in terms of MAE, RMSE, and MAPE under different number of nodes
on the Wiki dataset.

G.2 Parameter Analysis

Table 11: Performance at different diffusion steps (lay-
ers) on the COVID-19 dataset.

K=1 K=2 K=3 K=4

MAE 0.136 0.133 0.123 0.132
RMSE 0.181 0.177 0.168 0.176

MAPE(%) 72.30 71.80 71.52 72.59

We evaluate the forecasting performance of
our model FourierGNN under different diffu-
sion steps (layers) on the COVID-19 dataset,
as illustrated in Table 11. The table shows
that FourierGNN achieves increasingly bet-
ter performance from K = 1 to K = 4
and achieves the best results when K = 3.
With the further increase of K, FourierGNN
obtains inferior performance. The results in-
dicate that high-order diffusion information
is beneficial for improving forecasting accuracy, but the diffusion information may gradually weaken
the effect or even bring noises to forecasting with the increase of the order.

In addition, we conduct additional experiments on the ECG dataset to analyze the effect of the input
lookback window length T and the embedding dimension d, as shown in Figure 7 and Figure 8,
respectively. Figure 7 shows that the performance (including RMSE and MAPE) of FourierGNN
gets better as the input lookback window length increases, indicating that FourierGNN can learn
a comprehensive hypervariate graph from long MTS inputs to capture the spatial and temporal
dependencies. Moreover, Figure 8 shows that the performance (RMSE and MAPE) first increases and
then decreases with the increase of the embedding size, which is attributed that a large embedding
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Figure 7: Influence of input window. Figure 8: Influence of embedding size.

size improves the fitting ability of FourierGNN but it may easily lead to the overfitting issue especially
when the embedding size is too large.

G.3 Ablation Study

We provide more details about each variant used in this section and Section 5.3.

• w/o Embedding. A variant of FourierGNN feeds the raw MTS input instead of its embed-
dings into the graph convolution in Fourier space.

• w/o Dynamic FGO. A variant of FourierGNN uses the same FGO for all diffusion steps
instead of applying different FGOs in different diffusion steps. It corresponds to a vanilla
graph filter.

• w/o Residual. A variant of FourierGNN does not have the K = 0 layer output, i.e., X G
t , in

the summation.
• w/o Summation. A variant of FourierGNN adopts the last order (layer) output as the final

frequency output of the FourierGNN.

We conduct another ablation study on the COVID-19 dataset to further investigate the effects of the
different components of our FourierGNN. The results are shown in Table 12, which confirms the
results in Table 4 and further verifies the effectiveness of each component in FourierGNN. Both Table
12 and Table 4 report that the embedding and dynamic FGOs in FourierGNN contribute more than
the design of residual and summation to the state-of-the-art performance of FourierGNN.

Table 12: Ablation studies on the COVID-19 dataset.

Metric w/o Embedding w/o Dynamic FGO w/o Residual w/o Summation FourierGNN

MAE 0.157 0.138 0.131 0.134 0.123
RMSE 0.203 0.180 0.174 0.177 0.168

MAPE(%) 76.91 74.01 72.25 72.57 71.52

H Visualizations

H.1 Visualization of the Diffusion Process in FourierGNN

To gain insight into the operation of the FGO, we visualize the frequency output of each layer in
our FourierGNN. We select 10 counties from the COVID-19 dataset and visualize their adjacency
matrices at two different timestamps, as shown in Figure 9. From left to right, the results correspond
to the original spectrum of the input, as well as the outputs of the first, second, and third layers of
the FourierGNN. From the top, we can find that as the number of layers increases, some correlation
values are reduced, indicating that some correlations are filtered out. In contrast, the bottom case
illustrates some correlations are enhanced as the number of layers increases. These results show that
FGO can adaptively and effectively capture important patterns while removing noises, enabling the
learning of a discriminative model.
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Figure 9: The diffusion process of FourierGNN at two timestamps (top and bottom) on COVID-19.

H.2 Visualization of Time-Varying Dependencies Learned by FourierGNN

Furthermore, we explore the capability of FourierGNN in capturing time-varying dependencies
among variables. To investigate this, we perform additional experiments to visualize the adjacency
matrix of 10 randomly-selected counties over four consecutive days on the COVID-19 dataset. The
visualization results, displayed as a heatmap in Figure 10, reveal clear spatial patterns that exhibit
continuous evolution in the temporal dimension. This is because FourierGNN can attend to the
time-varying variability of the spatiotemporal dependencies. These results verify that our model
enjoys the feasibility of exploiting the time-varying dependencies among variables.

Based on the insights gained from these visualization results, we can conclude that the hypervariate
graph structure exhibits strong capabilities to encode spatiotemporal dependencies. By incorporating
FGOs, FourierGNN can effectively attend to and exploit the time-varying dependencies among
variates. The synergy between the hypervariate graph structure and FGOs empowers FourierGNN to
capture and model intricate spatiotemporal relationships with remarkable effectiveness.

Figure 10: The adjacency matrix for four consecutive days on the COVID-19 dataset.
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