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Abstract

The introduction of neural radiance fields has greatly improved the effectiveness
of view synthesis for monocular videos. However, existing algorithms face diffi-
culties when dealing with uncontrolled or lengthy scenarios, and require extensive
training time specific to each new scenario. To tackle these limitations, we propose
DynPoint, an algorithm designed to facilitate the rapid synthesis of novel views for
unconstrained monocular videos. Rather than encoding the entirety of the scenario
information into a latent representation, DynPoint concentrates on predicting the
explicit 3D correspondence between neighboring frames to realize information
aggregation. Specifically, this correspondence prediction is achieved through the
estimation of consistent depth and scene flow information across frames. Subse-
quently, the acquired correspondence is utilized to aggregate information from
multiple reference frames to a target frame, by constructing hierarchical neural
point clouds. The resulting framework enables swift and accurate view synthesis
for desired views of target frames. The experimental results obtained demonstrate
the considerable acceleration of training time achieved - typically an order of mag-
nitude - by our proposed method while yielding comparable outcomes compared to
prior approaches. Furthermore, our method exhibits strong robustness in handling
long-duration videos without learning a canonical representation of video content.

1 Introduction

The computer vision community has directed significant attention towards novel view synthesis (VS)
due to its potential for both emerging techniques in artificial reality and also to enhance a machine’s
ability to comprehend the appearance and geometric properties of target scenarios [37, 8, 39]. State-
of-the-art techniques leveraging neural rendering algorithms, as demonstrated in studies such as
[37, 58, 61], have successfully attained photorealistic reconstruction of views in static scenarios.
However, the dynamic characteristics inherent to most real-world scenarios present a formidable
challenge to the suitability of existing approaches that rely on the epipolar geometric relationship,
traditionally applicable to static scenarios [22, 45].

Recent studies have primarily focused on the synthesis of views in dynamic scenarios by employing
one or multiple multilayer perceptrons (MLPs) to encode the essential spatiotemporal information
of the scene [45, 31, 43, 42]. In one approach, a latent representation is generated to encompass the
comprehensive per-frame details of the target video [31, 16, 62]. Although this method is capable of
producing visually realistic results, its applicability is limited to short videos due to the constrained
memory capacity of MLPs or other representation mechanisms [32]. Alternatively, another approach
seeks to construct a latent representation of canonical scenarios and establish correspondences
between individual frames and the canonical scenario [45, 43, 63]. This alternative approach allows
for the processing of long-term videos; however, it imposes specific requirements on the video
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characteristics being learned. For instance, the videos should consistently feature similar objects
across frames, and some algorithms may require prior knowledge about the video [60, 44].

In order to address this challenge, we introduce DynPoint, a novel approach designed to achieve
efficient view synthesis of lengthy monocular videos without the need for learning a latent canonical
representation. Unlike conventional methods that encode information implicitly, DynPoint employs
an explicit estimation of consistent depth and scene flow for surface points. These estimates are
subsequently utilized to aggregate information from reference frames into the target frame. Sub-
sequently, hierarchical neural point clouds are constructed based on the aggregated information.
This hierarchical point cloud set is then employed to synthesize views of the target frame. Our
contributions can be summarized as follows:

• We introduce a novel module to estimate consistent depth information for monocular video
with the help of a proposed regularization and training strategy.

• We propose an efficient approach to estimate smooth scene flow between adjacent frames
with the proposed training strategy by leveraging the estimated consistent depth maps.

• We present a representation to aggregate information from reference frames to target frame,
facilitating rapid view synthesis of the target frame within a monocular video.

• Comprehensive experiments are conducted on datasets including Nerfie, Nvidia, HyperNeRF,
Iphone, and Davis showcasing the speed and accuracy of DynPoint for view synthesis.

2 Related Works

2.1 Static View Synthesis

The generation of photo-realistic views from arbitrary input viewing angles has been a longstanding
challenge in the field of computer vision. In the scenario of static scenes, early approaches addressed
the challenge of synthesizing photo-realistic views by employing local warping techniques to handle
densely sampled views [19, 30, 2, 5, 7]. Additionally, the gradient domain was utilized to handle
the single-view case [29]. In order to tackle the challenges associated with view synthesis, several
subsequent works have been developed. These works aim to address issues such as reflections,
repetitive patterns, and untextured regions [28, 15, 24, 14, 48, 9, 34, 36, 41, 50, 51, 52, 53, 59, 69]. In
more recent developments, researchers have explored the representation of scenes as continuous neural
radiance fields (NeRF) using fully connected neural networks. These works, such as [38, 1, 66, 25],
have demonstrated remarkable outcomes with a trade-off between accuracy and computational
complexity (i.e., one network for one scene). To tackle the computational burden associated with
neural radiance fields, recent works have focused on developing approaches that generalize the
representation across multiple scenes using a single network. These methods employ various
techniques, such as fully-convolutional architectures [65], plane-swept cost volumes [8], image-based
rendering [58], disentanglement of shape and texture [27], utilization of local features in 2D [56], as
well as generative methods [6, 49, 40, 20, 3].

2.2 Dynamic View Synthesis

The emergence of static scene advancements has spurred interest in the exploration of view synthesis
for dynamic scenes within the field. Previous research efforts have expanded upon studies conducted
in static scenes, incorporating elements such as globally coherent depth [64] and 3D mask volume [33].
Recent research direction builds upon the concept of NeRF and extends it to dynamic scenes by
integrating time into the learning process of spatio-temporal radiance fields. One category of research
focuses on the assumption of a canonical scenario that spans the entire video [4, 10, 21]. Deformable
radiance field-based approaches, as described in previous works [45, 55, 42, 13, 35], employ temporal
warping techniques to adapt a base NeRF representation of the canonical space for dynamic scenes.
This enables the synthesis of novel views in the context of long monocular videos. Another category
of algorithms aims to encode the temporal dynamics of the scene into a global representation. [31]
employs a MLP to model the 3D dense motion, resulting in a spatial-temporal NeRF. Building upon
this, [12, 57, 16] demonstrate that introducing additional regularization techniques that encourage
consistency and physically plausible solutions can enhance the accuracy of view reconstruction.
The first category of methods, while achieving impressive photorealistic results, is constrained by
the requirement for object-centric videos, thus limiting their generalizability to diverse scenarios.
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Figure 1: Structure of DynPoint. The Stage 1 shows the pipeline of consistent depth estimation
in Sec. 3.2 and scene flow estimation in Sec. 3.3. Initially, the frames are employed in the Flow
Net, Depth Net, and Scale Parameters to produce optic flows and depth. Then, surface points are
calculated based on the estimated depth and utilized in the Scene Flow MLP. The Stage 2 shows the
process of information aggregation presented in Sec. 3.4. Neural Point Clouds is firstly generated
based on pre-computed scene flow. The Rendering MLP utilizes all neural points located within a
specified radius from the queried point as inputs to predict the final color and density.

Conversely, the second category of methods encounters difficulties when dealing with long videos,
leading to limitations in effectively handling such scenarios. To address the aforementioned issue, our
algorithm focuses on achieving novel synthesis by aggregating information from the reference frame
to the target frame. This information aggregation process is accomplished by explicitly modeling the
object movement and depth information. As a result, our algorithm exhibits significant advancements
in both accuracy and speed.

3 Methodology

3.1 Overview

Our algorithm is designed to realize view synthesis for a dynamic scenario by utilizing a monocular
video {I1, I2, ..., IT }. The frames in the video, denoted by It, are captured by a known camera
Ct,c = {Kt,c|[Rt,c, tt,c]}, where c denotes known camera viewpoint. The objective is to generate
the novel view from a specified viewpoint q at a desired time frame Ct,q = {Kt,q|[Rt,q, tt,q]}.

Consistent with previous researches [31, 16, 17, 32, 35, 62], we adopt a training paradigm in which
our model is trained on the input monocular video with the assistance of pre-trained optic flow and
monocular depth models [47, 54, 26]. During the training process, the RGB information obtained
from the observed viewpoint is utilized as the supervision signal, without relying on any canonical
information. Subsequently, the trained model is evaluated on the task of synthesizing corresponding
RGB, depth and scene flow information for unobserved viewpoints.

In contrast to previous methods that utilize one or multiple MLPs to encode the 3D information of
each frame, our work focuses on establishing correspondence relationships, i.e., scene flow, between
the 3D surface points of the current frame and those of adjacent frames. We can infer 3D information
about unobserved points of the current frame by aggregating the information from adjacent frames.

To realize the aforementioned concept, our proposed model should undertake three key tasks. The
first task is to estimate depth information consistently for each frame, as outlined in Sec. 3.2. The
second task involves learning the 3D scene flow between the current frame and its adjacent frames, as
detailed in Sec. 3.3. These two processes are demonstrated in the stage 1 of Fig. 1. The final task is
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Figure 2: Demonstration of Geometric Edge Mask and Scene Flow Estimation. The left section
depicts the conceptual basis for designing the Geometric Edge Mask. The right part demonstrates
the construction of the scene flow objective function shown in Sec. 3.3.

to aggregate information based on learned correspondence and subsequently use this information to
realize view synthesis, as discussed in Sec. 3.4. This process is shown in the stage 2 of Fig. 1.

3.2 Consistent Depth Estimation

Despite the ability of current monocular depth methods [47, 46] to produce accurate depth priors,
the predicted depth maps d′t suffer from scale-variance and shift problems when compared to the
ground truth depth [18, 68]. This characteristic renders d′t inconsistent across the temporal axis of
monocular video. Moreover, since the optic flow ft→t′ between frames could be predicted from a
pretrained model, a depth value dt can be computed using the triangulation relation between frames,
along with the camera parameters and Mid-point method. Compared to d′t, dt can have consistent
scaling across frames. However, dt heavily relies on ft→t′ and Epipolar constraint, and it can only
generate accurate depth information for a limited portion of the frame. The first module of DynPoint
aims to combine d′t and dt to generate the final consistent depth estimation d̂t.

Regularization: To address this issue, DynPoint identifies the accurate region of dt by utilizing three
masks: the corresponding mask, the geometric edge mask, and the dynamic object mask.

Correspondence Mask Mc,t→t′ : The purpose of the optic flow is to capture the pixel-wise correspon-
dence between two frames, making it accurate only for the corresponding regions. These regions can
be identified by masking out areas of occlusion caused by both ego-motion and object movement.
This Correspondence Mask could be formulated as follow:

Mc,t→t′ =

{
0 if |ft→t′(p) + ft′→t(p+ ft→t′(p))| > ϵc,

1 if |ft→t′(p) + ft′→t(p+ ft→t′(p))| ≤ ϵc,
(1)

where ϵc is a predefined threshold for the correspondence mask.

Geometric Edge Mask Mg: Furthermore, it has been observed that the reliability of dt diminishes
when applied to geometric edges as in Fig. 2, particularly in areas where the optic flow exhibits
non-smooth characteristics. To compute the mask Mg , we first estimate the normal vector map of the
surface n = (− dz

dx ,−
dz
dy , 1)/||(−

dz
dx ,−

dz
dy , 1)|| with the help of dt. Then we apply the Canny edge

detector [11] on the n ∈ RH×W to generate the estimation of geometric edge. The intuition of the
geometric edge mask is demonstrated in the left part of Fig. 2. From the error map shown in Fig.
2(b), it is evident that the errors primarily manifest around the geometric boundaries of the scenario.

Dynamic Object Mask Md: In addition to the two masks mentioned above, a Dynamic Object Mask
is necessary to exclude the dynamic regions of the frame where the triangulation relationship does not
hold. Similar to [16], we combine the MASK R-CNN [23] with the Sampson error to generate the
Md. To obtain a valid mask with high accuracy, we apply image erosion on the inverse of Md and
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Mc to mitigate inaccurate boundary detection. We also perform image dilation on Mg to include the
surrounding region of the geometric edge.

Objective Function: Based on the above three masks, the reliable region of the dt could be masked
out by using the final mask Mf = Mc ∩Mg ∩Md. To combine the information of d′t and dt, we
assume that the consistent depth map d̂t ∈ RH×W could be approximated by using d′t, a scale variable
αt ∈ R and a shift variable βt ∈ R. The parameters αt and βt can be generated by optimizing:

αt, βt = argminMf ⊙ |dt − (αtd
′
t + βt)|. (2)

Training Strategy: Dependent solely on the nearest frame for the computation of dt would lack
sufficient reliability due to the combined influence of the accuracy of the camera matrix and the
accuracy of the optic flow on the triangulation process. We employ a series of adjacent 2K frames to
calculate the triangulated depth set denoted as {dkt }2Kk=1. Instead of directly utilizing all {dkt }2Kk=1 in
Eqn. 2, we perform a reevaluation by recomputing the intersection mask as Mf = M1

f ∩ ...∩M2K
f ,

which further refines the triangulated depth dt, ensuring the appropriate scale constraint for d′t. It’s
worth noting that pose estimation may not be accurate for dynamic scenarios in certain datasets, as
it relies on COLMAP-based estimation. In such cases, we utilize the algorithm presented in our
Supplementary material to enhance and fine-tune the pose estimation.

3.3 Scene Flow Estimation

Combined with estimated consistent depth map d̂t and optic flow ft→t′ , DynPoint also aims to
infer the scene flow st→t′ to build the 3D correspondence between the current frame and adja-
cent frames. Unlike previous works [42, 45, 55, 13], which estimate the trajectory of all points
(hundreds of sampled points on the ray of each point) in the scenario, DynPoint only infers the
trajectory of surface point (one point on the ray of each point) of the frame to accelerate both training
and inference process. To realize this process, we use a MLP to estimate the scene flow, which can be
written as ∆Pt→t+1,∆Pt→t−1 = Fθ(P, t) where P ∈ R3 denotes input 3D point; ∆Pt→t′ denotes
the trajectory of P from t to t′. The weight θ can be optimized by using the relationship among the
depth d̂t, the optic flow ft→t′ and the scene flow st→t′ .

Objective Function: Given a pixel pt in frame t, its corresponding pixel in frame t′, denoted as pt′ ,
can be obtained by adding the 2D flow ft→t′(pt) to pt. Additionally, utilizing the depth map d̂t and
camera matrix Ct, which are available at frame t, the 3D point corresponding to pt can be expressed
as Pt = RtK

−1
t d̂t(pt)pt + tt. The same method can be used to compute Pt′ . Thus, we’ve:

st→t′(pt) = d̂t′(pt + ft→t′(pt))Rt′K
−1
t′ (pt + ft→t′(pt)) + tt′ − Pt. (3)

This process is demonstrated in the right part of Fig. 2. For static part masked by Md, we set
st(pt) = 0. For the dynamic part, the loss function can be written as

Ls =
∑

pt∈Mc∩Mg∩¬Md

|st→t′(pt)−∆Pt→t′ |. (4)

In order to enhance the accuracy of scene flow estimation for the dynamic elements within the
scenario, we employ the cycle constraint, a well-established technique utilized in prior studies
[16, 35]. The cycle constraint can be expressed as follows:

Lc =
∑

pt∈¬Md

|∆Pt→t+k +∆Pt+k→t(Pt +∆Pt→t+k)|. (5)

Training Strategy: We have observed that optimizing Eqn. 4 solely with the near frames, where
t′ = t − 1 or t + 1, does not produce accurate results for further information aggregation. To
reconstruct the 3D information of the current frame, it is necessary to compute the correspondence
between the current frame and 2K adjacent frames, in order to aggregate sufficient information.
During the training process, we compute the scene flow between frame t and its 2K adjacent frames,
where K ∈ {1, ...,K}. We then utilize Eqn. 4 to form the loss function between current frame and
2K adjacent frames. The scene flow ∆Pt→t+k could be written as:

∆Pt→t+k = Fθ(Pt, t)[0] + ...+ Fθ(Pt +∆Pt→t+k−1, t+ k − 1)[0]. (6)
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Table 1: Novel View Synthesis Results on Nvidia Dataset. We report the average PSNR and LPIPS
results with comparisons to existing methods on Nvidia dataset [64]. * denotes the number adopted
from DynamicNeRF [16]. The best performance is highlighted. The second-best is also emphasized.

PSNR ↑ / LPIPS ↓ Jumping Skating Truck Umbrella Balloon1 Balloon2 Playground Average

NeRF* [38] (∼ 24 hours) 20.99 / 0.305 23.67 / 0.311 22.73 / 0.229 21.29 / 0.440 19.82 / 0.205 24.37 / 0.098 21.07 / 0.165 21.99 / 0.250
NeRF + time*[38](∼ 24 hours) 18.04 / 0.455 20.32 / 0.512 18.33 / 0.382 17.69 / 0.728 18.54 / 0.275 20.69 / 0.216 14.68 / 0.421 18.33 / 0.427
D-NeRF [45] (> 20 hours) 22.36 / 0.193 22.48 / 0.323 24.10 / 0.145 21.47 / 0.264 19.06 / 0.259 20.76 / 0.277 20.18 / 0.164 21.48 / 0.232
NSFF* [31](∼ 24 hours) 24.65 / 0.151 29.29 / 0.129 25.96 / 0.167 22.97 / 0.295 21.96 / 0.215 24.27 / 0.222 21.22 / 0.212 24.33 / 0.199
DynamicNeRF* [16] (> 36 hours) 24.68 / 0.090 32.66 / 0.035 28.56 / 0.082 23.26 / 0.137 22.36 / 0.104 27.06 / 0.049 24.15 / 0.080 26.10 / 0.082
HyperNeRF [43] (> 24 hours) 18.34 / 0.302 21.97 / 0.183 20.61 / 0.205 18.59 / 0.443 13.96 / 0.530 16.57 / 0.411 13.17 / 0.495 17.60 / 0.367
TiNeuVox [13] (∼ 45 mins) 20.81 / 0.247 23.32 / 0.152 23.86 / 0.173 20.00 / 0.355 17.30 / 0.353 19.06 / 0.279 13.84 / 0.437 19.74 / 0.285
RoDYN [35] (> 36 hours) 25.66 / 0.071 28.68 / 0.040 29.13 / 0.063 24.26 / 0.089 22.37 / 0.103 26.19 / 0.054 24.96 / 0.048 25.89 / 0.065
DynPoint (∼ 30 mins) 24.69 / 0.097 31.34 / 0.045 29.30 / 0.061 24.59 / 0.086 22.77 / 0.099 27.63 / 0.049 25.37 / 0.039 26.53 / 0.068

Figure 3: Demonstration of View Synthesis Results on Nvidia Dataset. This demonstration
compares the view synthesis outcomes of DynPoint with those of NSFF, HyperNeRF, and RoDynRF.

It’s important to mention that achieving better results can be accomplished by fine-tuning the
refinement layers of the pre-trained depth network.

3.4 View Synthesis

Information Aggregation: In order to collate data from the 2K reference frames to the target frame
t, the pixels in the reference frame pt+k are transformed into 3D space as Pt+k through the utilization
of the corresponding depth value d̂t+k and the matrix Ct+k. Next, the DynPoint evaluates the scene
flow ∆Pt+k→t between frame t and frame t+ k by implementing Eqn. 6. By utilizing both the scene
flow ∆Pt+k→t and the 3D point Pt+k, we are able to calculate the 3D point Pt+k→t that corresponds
to reference frame t+k at the target frame t. This is achieved by applying the following computation:
Pt+k→t = Pt+k +∆Pt+k→t. Additionally, a pre-trained 2D convolutional neural network (CNN) is
utilized to generate a 2D image feature vector f , which is subsequently allocated to each of the points
corresponding to pixels.

Finally, we propose the introduction of a hierarchical neural point cloud construction approach to
enhance the "perception field" of individual points. This technique aims to address the problem
of surface irregularities that may arise from using current monocular depth estimation methods
in multi-view depth map fusion. Thus, the point cloud of current frame t could be generated by
combining 2K + 1 point clouds as follows:

P̂t = {
K∑

k=−K

Ph
t+k→t, P

h
t ,

K∑
k=−K

f(Ph
t+k→t), f(P

h
t )}Hh=1, (7)

where H is the number of hierarchical levels. In our case, we set H = 3. At each step within this
framework, we perform a downsampling operation on the neural point cloud (the downsampling
procedure is implemented within the point cloud generation process, whereby the depth map and
scene map are downsampled using linear interpolation technique; it is important to note that when
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Table 2: Novel View Synthesis Results on Nerfie Dataset. We report the average PSNR and LPIPS
results with comparisons to existing methods on Nerfie dataset [42].

PSNR ↑ / LPIPS ↓ CURLS TOBY SIT TAIL BROOM Average

NeRF [38] 14.40 / 0.616 22.80 / 0.463 23.00 / 0.571 21.00 / 0.667 20.30 / 0.579
NeRF + time[38] 17.30 / 0.539 19.40 / 0.385 24.90 / 0.404 21.90 / 0.576 20.87 / 0.476
NSFF [31] 18.00 / 0.432 26.90 / 0.208 30.60 / 0.245 28.20 / 0.202 25.93 / 0.272
Nerfies [42] 24.90 / 0.312 22.80 / 0.174 23.60 / 0.175 21.00 / 0.270 23.08 / 0.233
DynPoint 24.33 / 0.339 24.90 / 0.186 29.12 / 0.218 27.28 / 0.222 26.41 / 0.241

Figure 4: Demonstration of View Synthesis Results on Nerfie Dataset. This demonstration
compares the view synthesis outcomes of DynPoint with those of NSFF.

downsampling the depth map, the intrinsic matrix should also be adjusted accordingly to maintain
accurate spatial information.)

View Synthesis: Given a 3D position q and view direction d, we leverage M proximate neural points
within a radius of R to generate the corresponding density and color data δ, c as in [61]. This process
is shown in the right part of Fig. 1. This can be expressed as follows:

(δ, c) = Fϕ(q, d, P̂
1
t , f

1
t , γ

1
t , ..., P̂

M
t , fMt , γM

t ). (8)

where γ1
t is the per-point confidence introduced in [61]. Finally, we make use the rendering process

in [38] to predict final RGB value C and depth D as:

C =

N∑
j=1

τj(1− exp(−σjδj))cj , (9)

where τj = exp(−
∑j−1

t=1 σtδt); δj denotes the distance between adjacent shading samples; cj is the
color information and δj is the density information. The L2 loss function is used to supervise our
rendered pixel values similar to the setting of [37]. For further information regarding the network
architecture, please consult our supplementary materials.

3.5 Discussion

The purpose of this section is to explicate the dissimilarities between the DynPoint and a recently
published concurrent work, namely DynIBaR [32] which was released in March 2023 and currently
lacks available code. Both DynIBaR and DynPoint harness information aggregation mechanisms
to realize the synthesis of novel views. However, DynIBaR predominantly centers around the
aggregation of information through two-dimensional (2D) pixel units. This approach draws inspiration
from image-based rendering principles, entailing the synthesis of novel perspectives from a collection
of reference images via a weighted fusion of reference pixels. In contrast, DynPoint’s focal point lies
in the information aggregation achieved by constructing three-dimensional (3D) neural point clouds.
The final novel view synthesis is realized by using neural points surrounding queries’ position.
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Table 3: Novel View Synthesis Results of HyperNeRF Dataset. We report the average PSNR and
LPIPS results with comparisons to existing methods on HyperNeRF dataset [43].

PSNR ↑ / LPIPS ↓ Broom
197 Frames

3D printer
207 Frames

Chicken
164 Frames

Expressions
259 Frames

Peel Banana
513 Frames Average

NSFF [31] 26.10 / 0.284 27.70 / 0.125 26.90 / 0.106 26.70 / 0.157 24.60 / 0.198 26.40 / 0.174
Nerfies [42] 19.20 / 0.325 20.60 / 0.108 26.70 / 0.078 21.80 / 0.150 22.40 / 0.147 22.10 / 0.162
Hyper-NeRF [43] 20.60 / 0.613 21.40 / 0.212 27.60 / 0.108 22.00 / 0.196 24.30 / 0.170 23.20 / 0.260

DynPoint 27.40 / 0.248 27.60 / 0.163 28.10 / 0.089 27.90 / 0.147 26.50 / 0.129 27.50 / 0.155

Table 4: Novel View Synthesis Results of Iphone Dataset. We compare the mPSNR and mSSIM
scores with existing methods on the iPhone dataset [17].

mPSNR ↑ / mSSIM ↑ Apple Block Paper-windmill Space-out Spin Teddy Wheel Average

NSFF [31] 17.54 / 0.750 16.61 / 0.639 17.34 / 0.378 17.79 / 0.622 18.38 / 0.585 13.65 / 0.557 13.82 / 0.458 15.46 / 0.569
Nerfies [42] 17.64 / 0.743 17.54 / 0.670 17.38 / 0.382 17.93 / 0.605 19.20 / 0.561 13.97 / 0.568 13.99 / 0.455 16.45 / 0.569
HyperNeRF [43] 16.47 / 0.754 14.71 / 0.606 14.94 / 0.272 17.65 / 0.636 17.26 / 0.540 12.59 / 0.537 14.59 / 0.511 16.81 / 0.550

DynPoint 17.78 / 0.743 17.67 / 0.667 17.32 / 0.366 17.78 / 0.603 19.04 / 0.564 13.95 / 0.551 14.72 / 0.515 16.89 / 0.572

Moreover, DynPoint introduces an efficacious strategy for the seamless integration of monocular
depth estimation within the ambit of monocular video view synthesis. In contrast to DynIBaR, which
endeavors to model the trajectory of all samples (128) traversing each ray, DynPoint exclusively
focuses on the trajectory of surface points, thereby yielding a substantial acceleration in both training
and inference stage.

4 Experiment

4.1 Experimental Setting

To evaluate the view synthesis capabilities of DynPoint, we performed experiments on four extensively
utilized datasets, namely Nvidia dataset in [31], Nerfie in [42], HyperNeRF in [43] and Iphone in
[17]. It is noteworthy to mention that the official website of Nerfie [42] only provides four specific
scenarios. Consequently, our experiments were solely conducted on provided four scenarios as in
[17]. Additionally, we also assessed DynPoint’s performance on a recent dataset Iphone [17], which
specifically addresses the challenge of camera teleportation. Furthermore, we examined the efficacy
of monocular depth estimation and scene estimation by visualizing the results obtained from the
Davis dataset, as in [67].

We conducted a comparative analysis of our work with several recent methods, based on the reported
results in their original papers or the reimplementation results of their official code. The methods
we compared with include NeRF [38], NeRF + time [38] (which directly utilizes embedded time
information as an input to encode all information of the target dynamic scenario), D-NeRF [45],
NSFF [31], DynamicNeRF [16], HyperNeRF [43], Nerfie [42], TiBeuVox [13], and RoDYN [35].
In our research, we employed the pretrained Deep Pruning Transformer (DPT) network in [46],
for monocular depth estimation. For optic flow estimation, we utilized the pretrained FlowFormer
model [26]. To facilitate the fine-tuning process, we initialized the weights of the Rendering MLP by
pretraining it on the DTU dataset, employing a similar training set to that used in [61].

The per-scenario training time is shown in Tab. 1. A notable observation was made regarding the
reduced per-scenario training time of DynPoint in comparison to other algorithms. This enhancement
can be attributed to the implementation of a two-step strategy. In the initial stage, the optimization
process focuses on a limited set of parameters pertaining to monocular depth estimation and scene
flow estimation. Subsequently, for the second stage, leveraging the outcomes obtained from the first
stage, the generation of the neural point cloud for subsequent view synthesis is achieved successfully.
Furthermore, the pretraining stage also contributes to the efficiency of our view synthesis stage,
requiring only a few iterations to produce desirable results on novel scenarios.

Nvidia (Tab. 1): During this experiment, it was observed that DynPoint exhibited superior perfor-
mance compared to other algorithms in terms of peak signal-to-noise ratio (PSNR). Additionally,
DynPoint achieved the second highest ranking among all algorithms when evaluated based on the
Learned Perceptual Image Patch Similarity (LPIPS) metric. Even for scenarios involving multiple
objectives, such as Jumping, DynPoint demonstrates reasonable performance without requiring the
learning of any canonical representation or extensive training time. The results of specific partial
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Table 5: Ablation studies of Nvidia Dataset. We report the average PSNR and LPIPS results with
comparisons to existing methods on Nvidia dataset [64].

PSNR ↑ / LPIPS ↓ Jumping Skating Truck Umbrella Balloon1 Balloon2 Playground Average

w/o multiple-step strategies 15.01 / 0.711 17.43 / 0.691 15.36 / 0.606 14.90 / 0.837 13.98 / 0.583 15.46 / 0.624 11.35 / 0.613 14.78 / 0.666
w/ K = 3 20.22 / 0.262 22.53 / 0.274 22.38 / 0.291 19.13 / 0.383 16.59 / 0.413 16.92 / 0.459 14.83 / 0.416 18.94 / 0.357
w/o Hierarchical Point Cloud 23.82 / 0.174 28.74 / 0.053 27.50 / 0.085 22.73 / 0.192 21.08 / 0.256 24.67 / 0.180 22.14 / 0.189 24.38 / 0.161

DynPoint (K = 6) 24.69 / 0.097 31.34 / 0.045 29.30 / 0.061 24.59 / 0.086 22.77 / 0.099 27.63 / 0.049 25.37 / 0.039 26.53 / 0.068

Figure 5: Demonstration of Depth and Scene Flow Estimation. This figure presents the output
of the target images obtained by warping the reference image using depth estimation (second row)
or using both depth and scene flow estimation (third row). It is important to clarify that the figure
is not intended for comparing view synthesis results. The synthesized figures generated based on
scene flow inherently incorporate object motion as input, resulting in observable motion blur within
the synthesized figures. Additionally, an error map represented by the intensity of red is provided
to visualize the performance, where deeper shades of red indicate larger errors (in terms of pixel
movement compared to corrected optic flow).

scenarios, namely Playground, Skating, Truck, and Umbrella, are presented in Fig. 3. Notably,
leveraging monocular depth estimation, DynPoint generally produces views with improved geometric
features, as evident in the Skating case shown in the second row of Fig. 3. Even in challenging
scenarios like Umbrella, DynPoint successfully generates high-quality views while minimizing
blurring effects. Nerfie (Tab. 2): In the case of the extended scenario, DynPoint exhibits superior
performance in terms of PSNR and achieves comparable results to those obtained in the short video
Nvidia, as presented in Tab. 2. This achievement can be attributed to our information aggregation
approach, which focuses on effectively aggregating information from the target frame by establishing
associations between its points and those in the reference frames. Novel view synthesis results for
scenarios TAIL and TOBY SIT are depicted in Figure 4. It is evident that for longer videos, DynPoint
continues to produce more realistic frames. Notably, the generated views in this figure do not exist
in either the training or test dataset. HyperNeRF (Tab. 3): In the case of longer video sequences,
DynPoint showcases superior performance in PSNR, as highlighted in Table 3. Iphone (Tab. 4):
In the context of monocular videos without camera teleportation, as demonstrated in the work [17],
DynPoint attains comparable outcomes to previous algorithms. Due to the inherent limitations
of having few multi-view perspectives and overlapping information, establishing correspondences
between adjacent frames becomes challenging. Consequently, the view synthesis task based on
monocular videos proves to be more arduous on this dataset compared to other datasets.

4.2 Ablation Studies

In order to evaluate the effectiveness of the strategies proposed in our paper, we conducted three
ablation studies. These studies include: (1) the absence of the multiple-step training strategy outlined
in Sec. 3.2 and Sec. 3.3; (2) the utilization of only six frames in the vicinity (K = 3); and (3) the
exclusion of the hierarchical point cloud. The results are presented in Tab. 5. It is evident from the
results that the omission of the multiple-step training strategy leads to the largest drop in performance.
Without this strategy, the first stage produces noisy outcomes for both monocular depth and scene
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Figure 6: Demonstration of Failure Results on Nvidia Dataset. In this demonstration, we present
the failure results generated by DynPoint.

flow estimation, consequently hindering the generation of the neural point cloud and impacting the
performance of the second stage. Moreover, using a limited number of adjacent frames also adversely
affects the final performance, which aligns with our expectations as limited inputs correspond to
limited information. Although the removal of the hierarchical point cloud does not significantly
degrade performance, it still plays a role in generating finer results.

4.3 Consistent Depth & Scene Flow Estimation On Davis

In order to validate the efficacy of the monocular depth estimation technique and the scene flow
estimation method, we present the following visualization results: (1) Reconstructed Target Image
using Monocular Depth Estimation: We demonstrate the reconstruction of the target image by warping
the reference image based on the monocular depth estimation. (2) Reconstructed Target Image using
Scene Flow and Depth Estimation: We present the visual reconstruction of the target image achieved
through warping the reference image using solely depth estimation or a combination of scene flow
estimation and depth estimation. The results are displayed in Fig. 5. Upon observing the second
row, it is evident that DynPoint demonstrates commendable performance in reconstructing the static
background of the target frame through monocular depth estimation. However, the primary errors
(deep red part) occur in the dynamic region, where accounting for object movement becomes crucial
for accurate warping. Moving to the third row, our scene flow estimation proves to be effective in
capturing the movement of dynamic objects, as in the red error map Fig. 5.

4.4 Failure Cases

Despite the notable achievements of DynPoint, certain failure cases were observed during the
view synthesis process, as demonstrated in Fig. 6. By comparing the first and second images, it
becomes apparent that generating realistic facial features in regions with intricate details proves to be
challenging. Furthermore, when comparing the third and fourth images, it is evident that DynPoint
struggles with handling fine objects and reflections, as these aspects heavily rely on the accurate
geometry inference obtained in the first stage.

5 Conclusion

In this research paper, we present DynPoint, an algorithm specifically designed to address the
view synthesis task for monocular videos. Rather than relying on learning a global representation
encompassing color, geometry, and motion information of the entire scene, we propose an approach
that aggregates information from neighboring frames. This aggregation process is facilitated by
learning correspondences between the target frame and reference frames, aided by depth and scene
flow inference. The experimental results demonstrate that our proposed model exhibits improved
performance in terms of both accuracy and speed compared to existing approaches.
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