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Abstract

Recalibrating probabilistic classifiers is vital for enhancing the reliability and
accuracy of predictive models. Despite the development of numerous recalibration
algorithms, there is still a lack of a comprehensive theory that integrates calibration
and sharpness (which is essential for maintaining predictive power). In this paper,
we introduce the concept of minimum-risk recalibration within the framework
of mean-squared-error (MSE) decomposition, offering a principled approach for
evaluating and recalibrating probabilistic classifiers. Using this framework, we
analyze the uniform-mass binning (UMB) recalibration method and establish a
finite-sample risk upper bound of order Õ(B/n+ 1/B2) where B is the number
of bins and n is the sample size. By balancing calibration and sharpness, we further
determine that the optimal number of bins for UMB scales with n1/3, resulting in
a risk bound of approximately O(n−2/3). Additionally, we tackle the challenge
of label shift by proposing a two-stage approach that adjusts the recalibration
function using limited labeled data from the target domain. Our results show
that transferring a calibrated classifier requires significantly fewer target samples
compared to recalibrating from scratch. We validate our theoretical findings through
numerical simulations, which confirm the tightness of the proposed bounds, the
optimal number of bins, and the effectiveness of label shift adaptation.

1 Introduction

Generating reliable probability estimates alongside accurate class labels is crucial in classification
tasks. A probabilistic classifier is considered "well calibrated" when its predicted probabilities
closely align with the empirical frequencies of the corresponding labels [9]. Calibration is highly
desirable, particularly in high-stakes applications such as meteorological forecasting [32, 34, 10, 15],
econometrics [16], personalized medicine [25, 24], and natural language processing [37, 7, 11, 53].
Unfortunately, many machine learning algorithms lack inherent calibration [18].

To tackle this challenge, various methods have been proposed for designing post hoc recalibration
functions. These functions are used to assess calibration error [52, 42, 17, 4], detect miscalibration
[30], and provide post-hoc recalibration [50, 51, 18, 48, 29, 21]. Despite the rapid development
of recalibration algorithms, there is still a lack of a comprehensive theory that encompasses both
calibration and sharpness (retaining predictive power) from a principled standpoint. Furthermore,
existing methods often rely on diverse calibration metrics [17, 4], and the selection of hyperparameters
is often based on heuristic approaches [44, 20] without rigorous justifications. This highlights the
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need for identifying an optimal metric to evaluate calibration, which can facilitate the development of
a unified theory and design principles for recalibration functions.

In addition, the deployment of machine learning models to data distributions that differ from the
training phase is increasingly common. These distribution shifts can occur naturally due to factors
such as seasonality or other variations, or they can be induced artificially through data manipulation
methods such as subsampling or data augmentation. Distribution shifts pose challenges to the
generalization of machine learning models. Therefore, it becomes necessary to adapt the trained
model to these new settings. One significant category of distribution shifts is label shift, where
the marginal probabilities of the classes differ between the training and test sets while the class
conditional feature distributions remain the same. With calibrated probabilistic predictions, label
shift can be adjusted assuming access to class marginal probabilities [12]. However, miscalibration
combined with label shift is common and remains a challenging problem [2, 14, 47, 41].

In this paper, we aim to address these issues in a twofold manner. Firstly, we develop a unified
framework for recalibration that incorporates both calibration and sharpness in a principled manner.
Secondly, we propose a composite estimator for recalibration in the presence of label shift that
converges to the optimal recalibration. Our framework enables the adaptation of a classifier to the
label-shifted domain in a sample-efficient manner.

1.1 Related work

Recalibration algorithms. Recalibration methods can be broadly categorized into parametric and
nonparametric approaches. Parametric methods model the recalibration function in a parametric form
and estimate the parameters using calibration data. Examples of parametric methods include Platt
scaling [40], temperature scaling [18], Beta calibration [28], and Dirichlet calibration [27]. However,
it has been reported that scaling methods are often less calibrated than supposed, and quantifying the
degree of miscalibration can be challenging [29]. In contrast, nonparametric recalibration methods do
not assume a specific parametric form for the recalibration function. These methods include histogram
binning [50], isotonic regression [51], kernel density estimation [52, 42], splines [23], Gaussian
processes [49], among others. Hybrid approaches, integrating both parametric and nonparametric
techniques, have also been proposed. For instance, Kumar et al. [29] combine nonparametric
histogram binning with parametric scaling to reduce variance and improve recalibration performance.
Nevertheless, this hybrid approach is biased when its parametric assumptions fail. In this work, we
consider a nonparametric histogram binning method called uniform-mass binning (UMB), which is
asymptotically unbiased.
Histogram binning method. Histogram binning methods are widely used for recalibration due
to their simplicity and adaptability. The binning schemes can be pre-specified (e.g., uniform-
width binning [18]), data-dependent (e.g., uniform-mass binning [50]), or algorithm-induced [51].
When selecting a binning scheme, it is crucial to consider the trade-off between approximation and
estimation. Coarser binning reduces estimation error (variance), leading to improved calibration,
but at the expense of increased approximation error (bias), which diminishes sharpness. Thus,
determining the optimal binning scheme and hyperparameters, such as the number of bins (B),
remains an active area of research. [36] proposes a Bayesian binning method, but verifying the priors
is often challenging. [44] suggests choosing the largest B that preserves monotonicity, which is
heuristic and computationally inefficient. [20] offers a heuristic for choosing the largest B subject to
a calibration constraint, lacking a quantitative characterization of sharpness. Our work builds upon
the existing upper bounds for calibration risks of binning methods [29, 20] and derived upper bounds
for a complementary risk component known as the sharpness risk. We quantitatively characterize the
calibration-sharpness tradeoff, which yields an optimal choice for the number of bins that achieves
the minimum risk.
Adaptation to label shift. Label shift presents a challenge in generalizing models trained on one
distribution (source) to a different distribution (target). As such, adapting to label shift has received
considerable attention in the literature [12, 45, 31, 3, 2, 14]. In practical scenarios, it is common
to encounter model miscalibration and label shift simultaneously [47, 41]. Empirical observations
have highlighted the crucial role of probability calibration in label shift adaptation [2, 13], which
is justified by subsequent theories [14]. However, to the best of our knowledge, there has been no
prior work that specifically addresses the recalibration with a limited amount of labeled data from
the target distribution. Our theoretical analysis points out that using only target labels achieves risk
bounds of the same order as the methods using only target features [31, 3, 14].
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1.2 Contributions

This paper contributes to the theory of recalibration across three key dimensions.

Firstly, we develop a comprehensive theory for recalibration in binary classification by adopting the
mean-squared-error (MSE) decomposition framework commonly used in meteorology and space
weather forecasting [5, 33, 8, 46]. Our approach formulates the probability recalibration problem as
the minimization of a specific risk function, which can be orthogonally decomposed into calibration
and sharpness components.

Secondly, utilizing the aforementioned framework, we derive a rigorous upper bound on the finite-
sample risk for uniform-mass binning (UMB) (Theorem 1). Furthermore, we minimize this risk
bound and demonstrate that the optimal number of bins for UMB, balancing calibration and sharpness,
scales on the order of n1/3, yielding the risk bound of order n−2/3, where n denotes the sample size.

Lastly, we address the challenge of recalibrating classifiers for label shift when only a limited labeled
sample from the target distribution is available, a challenging situation for a direct recalibration
approach. We propose a two-stage approach: first recalibrating the classfier on the abundant source-
domain data, and then transfering it to the label-shifted target domain. We provide a finite-sample
guarantee for the risk of this composite procedure (Theorem 2). Notably, to control the risk under
ε, our approach requires a much smaller sample size from the target distribution than a direct
recalibration on the target sample (Ω(ε−1) vs. Ω(ε−3/2), cf. Remark 4).

1.3 Organization

This paper is organized as follows. In Section 2, we introduce notation and provide an overview of
calibration and sharpness. Section 3 introduces the notion of minimum-risk recalibration by defining
the recalibration risk that takes into account both calibration and sharpness. In Section 4, we describe
the uniform-mass histogram binning method for recalibration and provide a risk upper bound with
rate analysis. We extend our approach to handle label shift in Section 5. To validate our theory and
framework, we present numerical experiments in Section 6. Finally, in Section 7, we conclude the
paper with a discussion and propose future research directions.

2 Preliminaries

2.1 Notation

Let N and R denote the set of positive integers and the set of real numbers, respectively. For
n ∈ N, let [n] := {1, . . . , n}. For x ∈ R, let ⌊x⌋ = max{m ∈ Z : m ≤ x}. For any finite set
S = {si : i ∈ [n]} ⊂ R and any k ∈ [n], we let s(k) denote the k-th order statistic, which is the k-th
smallest element in S.

Let (Ω, E , P ) denote a generic probability space. For an event A ∈ E , the indicator function
1A : Ω → {0, 1} is defined such that 1A(x) = 1 if and only if x ∈ A. We write A happens P -almost
surely if P (A) = 1. For a probability measure P , define EP as the expectation, with subscript P
omitted when the underlying probability measure is clear. For a probability measure P and a random
variable X : Ω → Rd, let PX := P ◦X−1 be the probability measure induced by X .

Letting f, g : R → R, we write f(x) = O(g(x)) as x → ∞ if there exist M > 0 and x0 > 0 such
that |f(x)| ≤ Mg(x) for all x ≥ x0. Likewise, we write f(x) = Ω(g(x)) if g(x) = O(f(x)). We
write f(x) ≍ g(x) if f(x) = O(g(x)) and g(x) = O(f(x)). We write f(x) = Õ(g(x)) if there is
k ≥ 1 such that f(x) = O(g(x) logk(g(x))).

2.2 Calibration and sharpness

Consider the binary classification problem; let X ∈ X and Y ∈ Y := {0, 1} denote the feature and
label random variables. Letting P denote a probability measure, we want to construct a function
f : X → Z = [0, 1] that estimates the conditional probability, i.e.,

f(X) ≈ P [Y = 1 | X]. (1)
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Since estimating the probability conditioned on the high dimensional X is difficult, the notion of
calibration captures the intuition of (1) in a weaker sense [33, 9, 19].
Definition 1. A function f : X → Z is (perfectly) calibrated with respect to probability measure P ,
if

f(X) = P [Y = 1 | f(X)] P -almost surely.

Calibration itself does not guarantee a useful predictor. For instance, a constant predictor f(X) = EY
is perfectly calibrated, but it does not change with the features. Such a predictor lacks sharpness [26],
also known as resolution [35], another desired property which measures the variance in the target Y
explained by the probabilistic prediction f(X).
Definition 2. The sharpness of a function f : X → Z with respect to probability measure P refers to
the quantity

Var
(
E[Y | f(X)]

)
= E

[(
E[Y | f(X)]− E[Y ]

)2]
.

The following decomposition of the mean squared error (MSE) suggests why it is desirable for a
classifier f to be calibrated and have high sharpness; note that Var[Y ] is a quantity intrinsic to the
problem, unrelated to f .

MSE(f) := E
[(
Y − f(X)

)2]︸ ︷︷ ︸
mean-squared error

= Var[Y ]−Var
(
E
[
Y | f(X)

])︸ ︷︷ ︸
sharpness

+E
[(
f(X)− E[Y | f(X)]

)2]︸ ︷︷ ︸
lack of calibration

(2)

3 Optimal recalibration

For an arbitrary predictor f : X → Z , the aim of recalibration is to identify a post-processing
function h : Z → Z such that h ◦ f is perfectly calibrated while maintaining the sharpness of f as
much as possible. The calibration and sharpness can be evaluated using the following two notions of
risks. We suppress the dependency of risks on f and P when it leads to no confusion.
Definition 3. Let f : X → Z and h : Z → Z . The calibration risk of h over f under P is defined as

Rcal(h) = Rcal
P (h; f) := EP

[(
h ◦ f(X)− EP [Y | h ◦ f(X)]

)2]
. (3)

Definition 4. Let f : X → Z and h : Z → Z . The sharpness risk of h over f under P is defined as

Rsha(h) = Rsha
P (h; f) := EP

[(
EP [Y | h ◦ f(X)]− EP [Y | f(X)]

)2]
. (4)

Note that the calibration risk Rcal(h; f) = 0 if and only if h ◦ f is perfectly calibrated, cf. Definition
1. The sharpness risk Rsha(h; f) quantifies the decrement in sharpness of f incurred by applying the
recalibration map h, and Rsha(h; f) = 0 when h is injective [29].

Next we define a comprehensive notion of risk that we will use to evaluate recalibration functions.
Definition 5. Let f : X → Z and h : Z → Z . The recalibration risk of h over f under P is defined
as

R(h) = RP (h; f) := EP

[
(h ◦ f(X)− EP [Y | f(X)])2

]
. (5)

The following proposition shows that the recalibration risk can be decomposed into calibration risk
and sharpness risk. The proof is deferred to Appendix A.
Proposition 1 (Decomposition of recalibration risk). For any f : X → Z and any h : Z → Z ,

RP (h; f) = Rcal
P (h; f) +Rsha

P (h; f). (6)

Note that RP (h) = 0 if and only if Rcal
P (h) = 0 and Rsha

P (h) = 0. This happens if and only if h ◦ f
is calibrated, and the recalibration h preserves the sharpness of f in predicting Y .

IfR(h) = 0, then we call h an optimal recalibration function (or minimum-risk recalibration function)
of f under P . Let h∗f,P : Z → Z be the function

h∗f,P (z) =

{
EP [Y | f(X) = z], if z ∈ suppPf(X),

0, if z ̸∈ suppPf(X).
(7)
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Then R(h∗f,P ) = 0. Indeed, h is a minimum-risk recalibration function of f if and only if h = h∗f,P
PZ-almost surely.
Problem 1 (Recalibration). Suppose that we have a measurable function f : X → Z and a dataset
D =

{
(xi, yi) : i ∈ [n]

}
that is an independent and identically distributed (IID) sample drawn from

P . The goal of recalibration is to estimate a recalibration function ĥ ≈ h∗f,P using f and D.

Problem 1 can be viewed as a regression problem, where we estimate the function form of E[Y | Z]
from data {(zi, yi) : i ∈ [n]}, where zi = f(xi), ∀i ∈ [n].

4 Recalibration via uniform-mass binning

4.1 Uniform-mass binning algorithm for recalibration

Given a dataset of prediction-label pairs {(zi, yi) ∈ Z × Y : i ∈ [n]}, the histogram binning
calibration method partitions Z = [0, 1] into a set of smaller bins, and estimate E[Y | Z] by taking
the average in each bin. We consider the uniform mass binning, constructed using quantiles of
predicted probabilities.
Definition 6 (Uniform mass binning). Let S = {zi ∈ [0, 1] : i ∈ [n]}. A binning scheme B =
{I1, I2, . . . , IB} is the uniform-mass binning (UMB) scheme induced by S if

I1 = [u0, u1], and Ib = (ub−1, ub] ∀b ∈ [B] \ {1}, (8)
where u0 = 0, uB = 1, and ub = z(⌊nb/B⌋) for b ∈ [B − 1].

For our subsequent discussions, we make the following assumptions on the distribution of Y and Z:

(A1) The cumulative distribution function of Z, denoted by FZ , is absolutely continuous.
(A2) h∗f,P , defined in (7), is monotonically non-decreasing on suppPZ .

(A3) There existsK > 0 such that if z1 ≤ z2, then h∗f,P (z2)−h∗f,P (z1) ≤ K ·
(
FZ(z2)−FZ(z1)

)
.

Assumption (A1) is made for the sake of analytical convenience without loss of generality; see
discussions in [20, Appendix C]. An important implication of Assumption (A1) is that all intervals
in B are non-empty PZ-almost surely if S = {Zi : i ∈ [n]} are IID under PZ . Assumption (A2)
makes sure Z is informative to preserve the rankings of P [Y | Z] [51]. Lastly, Assumption (A3)
posits that Z is sufficiently informative that P [Y = 1 | Z = z] does not change too rapidly in any
interval I where PZ(I) is small. This assumption is mild but not trivial; see Appendix B.2.

Now we describe how to construct a recalibration function ĥ using UMB.

Algorithm.

1. Given {(zi, yi) : i ∈ [n]}, and B ∈ N, let B = {I1, I2, . . . , IB} be the UMB scheme of size
B induced by {zi : i ∈ [n]}.

2. Let ĥ = ĥB : Z → Z be a function such that

ĥ(z) =
∑
I∈B

µ̂I · 1I(z) where µ̂I :=

∑n
i=1 yi · 1I(zi)∑n

i=1 1I(zi)
, ∀I ∈ B. (9)

4.2 Theoretical guarantees

Here we establish a high-probability upper bound on the recalibration risk R(ĥ) for the UMB
estimator, ĥ defined in (9), which converges to 0 as the sample size n increases to ∞.
Theorem 1. Let P be a probability measure and f : X → Z be a measurable function. Suppose that
(A1) & (A2) hold. Let B be the UMB scheme induced by an IID sample of f(X), and let ĥ = ĥB be
the recalibration function based on B, cf. (9). Then there exists a universal constant c > 0 such that
for any δ ∈ (0, 1), if n ≥ c · |B| log

( 2|B|
δ

)
, then with probability at least 1− δ,

Rcal(ĥ) ≤

(√
log (4|B|/δ)

2(⌊n/|B|⌋ − 1)
+

1

⌊n/|B|⌋

)2

, and Rsha(ĥ) ≤

{
2
|B| ,
8K2

|B|2 if (A3) holds.
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Remark 1. We note that the upper bound onRcal(ĥ) in Theorem 1 coincides with the result presented
in [20] up to a constant factor in the failure probability. However, Theorem 1 provides an additional
upper bound on Rsha(ĥ), thereby effectively managing the overall recalibration risk R(ĥ).

Optimal choice of the number of bins |B|. Based on Theorem 1, for any fixed sample size n, as
the number of bins B = |B| increases, the calibration risk bound increases, while the sharpness risk
bound decreases. This trade-off suggests we may get an optimal number of bins B by minimizing the
upper bound for the overall risk, R(ĥ) = Rcal(ĥ) +Rsha(ĥ).

For the simplicity of our analysis, we assume n is divisible byB, and Assumption (A3) holds. Firstly,
observe that n/B ≥ 2, and thus, n/B − 1 ≥ n/(2B). Also, since B ≥ 1 and δ < 1, log( 4Bδ ) ≥ 1,

it follows that 1
n/B ≤

√
1

2(n/B−1) log
(
4B
δ

)
≤
√

1
n/B log

(
4B
δ

)
. Thus, we obtain a simplified risk

bound R(ĥ) ≤ ζ(B;n, δ) where ζ(B;n, δ) := 4B
n log

(
4B
δ

)
+ 8K2

B2 . With logB terms ignored,
minimizing ζ(B;n, δ) over B yields optimal B∗ and resulting risk bounds, respectively:

B∗ ≍ n1/3 · log−1/3(1/δ), (10)

R(ĥ) ≍ Rcal(ĥ) ≍ Rsha(ĥ) = O
(
B∗−2) = O

(
n−2/3 · log2/3(1/δ)

)
. (11)

Furthermore, the asymptotic risk bound in (11) implies that R(ĥ), Rcal(ĥ), and Rsha(ĥ) are all
bounded by ε with high probability if the sample size

n = Ω(ε−3/2). (12)

Comparison with the hybrid method [29]. Kumar et al. [29] proposed a hybrid recalibration
approach that involves fitting a recalibration function in a parametric family H, which is then
discretized using UMB. Note that the hypothesis class H may or may not include the optimal
recalibration function h∗f,P . If h∗f,P ∈ H, using a similar analysis as above, we derive their high
probability risk bound as O

(
1
n log B

δ + 1
B2

)
under Assumption (A3), which achieves Õ(n−1) when

B∗ ≍
√
n, exhibiting a faster decay than our R(ĥ) = O(n−2/3). While the faster rate is anticipated

from employing parametric methods, we note that when h∗f,P /∈ H, their method exhibits inherent bias
(approximation error) induced by parametric function fitting, whereas our method is asymptotically
unbiased. This distinction is corroborated by numerical simulations in Appendix E.2.

Proof sketch of Theorem 1. First, we demonstrate that the uniform-mass binning scheme B =
{Ib}Bb=1 satisfies two regularity conditions with high probability, when the sample size n is not too
small. Specifically, we show that (i) B is 2-well-balanced [29] with respect to f(X), resulting in
B bins having comparable probabilities (Lemma 3); and that (ii) the empirical mean in each bin
of B uniformly concentrates to the population conditional mean of Y conditioned on f(X) being
contained within the bin (Lemma 4). Thereafter, we prove that if B satisfies these two properties,
then the calibration risk Rcal and the sharpness risk Rsha can be upper bounded as stated in Theorem
1; see Lemmas 5 and 6 (or Lemma 7 when (A3) holds). The detailed proof is in Appendix B.

5 Recalibration under label shift

This section extends the results from Section 4 to address label shift. In Section 5.1, we introduce the
label shift assumption (Definition 7) and reframe the recalibration problem accordingly. We show that
the optimal recalibration function in this context can be expressed as a composition of the optimal
recalibration function (cf. Section 3) and a shift correction function. Building on this observation,
we propose a two-stage estimator in Section 5.2, where each stage estimates one of the component
functions. The composite estimator’s overall performance is supported by theoretical guarantees.

5.1 Revisiting the problem formulation

Let P and Q denote the probability measures of the source and the target domains, respectively. We
assume P and Q satisfy the label shift assumption defined below.
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Definition 7 (Label shift). Probability measures P andQ are said to satisfy the label shift assumption
if the following two conditions are satisfied:

(B1) P [X ∈ B | Y = k] = Q[X ∈ B | Y = k] for all k ∈ {0, 1} and all B ∈ B(X ).

(B2) P [Y = 1] ∈ (0, 1) and Q[Y = 1] ∈ (0, 1).

According to Condition (B1), the class conditional distributions remain the same, while the marginal
distribution of the classes may change. Condition (B2) requires all classes to be present in the source
population, which is a standard regularity assumption in the discussion of label shift [31, 14]; it also
posits the presence of every class in the target population.

Optimal recalibration under label shift. Under the label shift assumption between P and Q, we
define the label shift correction function g∗ : Z → Z such that

g∗(z) =
w∗

1z

w∗
1z + w∗

0(1− z)
where w∗

k =
Q[Y = k]

P [Y = k]
, ∀k ∈ {0, 1}. (13)

The conditional probabilities under P and Q can be related [45] as follows:

Q[Y = 1 | X ∈ B] = g∗
(
P [Y = 1 | X ∈ B]

)
, ∀B ∈ B(X ). (14)

Recall that the optimal recalibration function for a predictor f : X → Z under probability measure
P is defined as h∗f,P (z) = P [Y = 1 | f(X) = z]; see (7). In the presence of a label shift between P
and Q, we may write the optimal recalibration function for f under Q as

h∗f,Q = g∗ ◦ h∗f,P (15)

because h∗f,Q(z)
(a)
= Q[Y = 1 | f(X) = z]

(b)
= g∗ (P [Y = 1 | f(X) = z])

(c)
=
(
g∗ ◦ h∗f,P

)
(z),

where (a) and (c) follows from the definition of h∗f,P and (b) is due to (14).

Recalling the definition of the risk RP (h; f) from (5), we observe that RQ(h
∗
f,Q; f) = 0, which

is consistent with the risk characterization of the optimal recalibration. Our goal is to estimate the
optimal recalibration function h∗f,Q = g∗ ◦ h∗f,P from data.
Problem 2 (Recalibration under label shift). Suppose that we have a measurable function f : X → Z
and two IID datasets DP = (xi, yi)

nP
i=1 ∼ P and DQ = (x′i, y

′
i)

nQ

i=1 ∼ Q. The goal of recalibration
under label shift is to estimate ĥ ≈ h∗f,Q using f , DP and DQ.
Remark 2. The source (training) dataset DP may not be accessible due to privacy protections,
proprietary data, or practical constraints, as is often the case when recalibrating a pre-trained black
box classifier to new data. In these cases, it suffices to have estimates of the recalibration function
h∗f,P and the marginal probabilities P [Y = k], k ∈ {0, 1} under P , for our method and analysis.

5.2 Two-stage recalibration under label shift

Method. We propose a composite estimator of h∗f,Q = g∗ ◦ h∗f,P , which comprises two estimators
ĝ ≈ g∗ and ĥP ≈ h∗f,P . Here we describe a procedure to produce this composite estimator.

1. Use DP to construct ĥP : Z → Z , the estimated recalibration function (9) (for f under P ).
2. Use DP and DQ to construct ĝ : Z → Z such that

ĝ(z) =
ŵ1z

ŵ1z + ŵ0(1− z)
where ŵk =

Q̂[Y = k]

P̂ [Y = k]
, ∀k ∈ {0, 1}, (16)

where P̂ [Y = k] := 1
|DP |

∑|DP |
i=1 1[yi = k] and Q̂[Y = k] := 1

|DQ|
∑|DQ|

i=1 1[y′i = k] are the
empirical estimates of the class marginal probabilities.

3. Let
ĥQ = ĝ ◦ ĥP . (17)

Note that the recalibration estimator ĥP (Step 1) remains the same with that in Section 4.1. Fur-
thermore, the shift correction estimator ĝ (Step 2) is a plug-in estimator of the label shift correction
function g∗ in (14) based on the estimated weights, ŵ1 and ŵ0.
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Theory. We present a recalibration risk upper bound for the proposed two-stage estimator. We let
pk := P [Y = k], qk := Q[Y = k], and w∗

k = qk
pk

for k ∈ {0, 1}. Moreover, we let pmin := mink pk,
qmin := mink pk, w∗

min := mink w
∗
k and w∗

max := maxk w
∗
k.

Theorem 2 (Convergence of ĥQ). Let P,Q be probability measures and let f : X → Z be a
measurable function. Let DP ∼ P be an IID sample of size nP and DQ ∼ Q be an IID sample of
size nQ. Suppose that Assumptions (B1) & (B2) hold. Let B be the UMB scheme induced by DP .
Let ĥP = ĥP,B be the recalibration function (9) based on B, and let ĝ denote the shift correction
function as defined in (16). Then

RQ

(
ĝ ◦ ĥP

)
≤ 2

{(
ρ0 − ρ1
ρ0 + ρ1

)2

+
w∗

max
3

w∗
min

2 ·RP

(
ĥP ; f

)}
where ρk :=

ŵk

w∗
k

, k ∈ {0, 1}.

(18)
Furthermore, suppose that (A1), (A2) & (A3) hold. Then there exists a universal constant c > 0
such that for any δ ∈ (0, 1), if

nP ≥ max

{
c,

27

pmin

}
· |B| log

(
4|B|
δ

)
and nQ ≥ 27

qmin
log

(
16

δ

)
,

then with probability at least 1− δ,

RQ

(
ĝ ◦ ĥP

)
≤ 2

w∗
max

3

w∗
min

2 ·


(√

1

2(⌊nP /|B|⌋ − 1)
log

(
8|B|
δ

)
+

1

⌊nP /|B|⌋

)2

+
8K2

|B|2


+ 54max

{
1

pmin · nP
,

1

qmin · nQ

}
· log

(
16

δ

)
.

(19)

Remark 3. Note that ρk → 1 as nP , nQ → ∞, and thus, the upper bound (18) reduces to

2
w∗

max
3

w∗
min

2 · RP

(
ĥP ; f

)
. Moreover, when P = Q, we have w∗

min = w∗
max = 1, and this further

simplifies to the recalibration risk without label shift, up to multiplicative constant 2.
Remark 4 (Target sample complexity). Assume that nP ≥ nQ and the number of bins satisfies
|B| ≍ n

1/3
P . Then (19) implies RQ

(
ĝ ◦ ĥP ; f

)
= O

(
n
−2/3
P + n−1

Q

)
. This result indicates that

the proposed recalibration method using (17) requires a significantly smaller target sample size
nQ = Ω(ε−1) to control the risk, as compared to nQ = Ω(ε−3/2) in (12).
Remark 5 (Comparison with label shift using unlabeled target data). When the source sample size
nP is sufficiently large, we achieve a risk of RQ(ĝ ◦ ĥP ) = O(n−1

Q ) with high probability. It is
important to note that in this scenario, we only utilize the labels from the target sample to address
label shift. Remarkably, the same rate applies when employing the algorithms proposed in [31, 3, 14],
which solely rely on features from the target sample. For a proof sketch, please refer to Appendix D.

6 Numerical experiments

In this section, we present the results of our numerical simulations conducted to validate and reinforce
the theoretical findings discussed earlier. The simulations are based on a family of recalibration
functions called beta calibration [28]: Hbeta = {hbeta(z; a, b, c) : a ≥ 0, b ≥ 0, c ∈ R}, where
hbeta(·; a, b, c) : [0, 1] → [0, 1] is defined as

hbeta(z; a, b, c) =
1

1 + 1/
(
ec za

(1−z)b

) . (20)

In addition, consider the joint distributions D(π) of X and Y , where Y ∼ Bernoulli(π), X | Y =
0 ∼ N(−2, 1), and X | Y = 1 ∼ N(2, 1), and a pre-trained probabilistic classifier f(x) = σ(x) :=
1/(1 + e−x). To accommodate the limitations of space, we summarize the results in Figure 1, 2, 3,
and Table 1, 2, providing a concise overview. Detailed information about the simulation settings,
implementation details, and further experimental results and discussions can be found in Appendix
E. Our simulation code is available at https://github.com/ZeyuSun/calibration_label_
shift.
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Figure 1: Medians (solid lines) and 10-90 percentile ranges (shaded areas) of quadrature estimates of
population risks over 10 realizations and theoretical risk upper bounds (δ = 0.1) (dashed lines) for
various n and B. (a)-(c) The empirical rates, Rcal = O(n−0.99B0.98) and Rsha = O(B−1.83), align
with theoretically predicted rates, Õ(B/n) and O(B−2), in Thm. 1. (d) The empirically observed R
and our upper bound exhibit similar trends as a function of B.
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Figure 2: The optimal number of bins B for different sample sizes n plotted in linear scale (left) and
log scale (middle), and the population risk for various combinations of n and B, with the optimal B
marked by black dots (right). Note that the risk surface is relatively smooth around its minimum,
suggesting the robustness of the optimal B.

Table 1: 90%-quantiles of the risks of Platt scaling [40], the hybrid method [29], uniform-width
binning (UWB) [18], and uniform-mass binning (UMB) over 100 random calibration datasets
drawn from Z ∼ Uniform[0, 1], and (a) Y | Z ∼ Bernoulli(hbeta(z; 4, 4, 0)), or (b) Y | Z ∼
Bernoulli(hbeta(z; 0.1, 4, 0)). While Platt scaling and the hybrid method achieve lower R under the
correct parametric assumption, UWB and UMB may outperform when the parametric assumption
fails.

(a) Correct parametric assumption

Metric
(×10−3)

Rcal Rsha R MSE

Platt 0.122 0.000 0.122 10.338
Hybrid 0.119 0.212 0.315 10.532
UWB 0.661 0.194 0.855 11.071
UMB 0.647 0.212 0.839 11.055

(b) Misspecified parametric assumption

Metric
(×10−3)

Rcal Rsha R MSE

Platt 3.682 0.000 3.682 21.994
Hybrid 3.117 0.251 3.360 21.672
UWB 0.572 0.238 0.810 19.122
UMB 0.560 0.251 0.797 19.109

Table 2: Risks under label shift from D(0.5) to D(0.1), with nP = 103 and nQ = 102. Standard
deviations are computed from 10 random realizations. LABEL-SHIFT, only applying an injective ĝ,
achieves Rsha = 0 but incurs high Rcal. SOURCE, recalibrated with B = n

1/3
P on DP , incurs high

Rcal. TARGET, recalibrated with B = n
1/3
Q on DQ, incurs low Rcal. Our proposed COMPOSITE

achieves the lowest nonzero Rsha and lowest Rcal.

Method Estimator Rcal Rsha R MSE

SOURCE ĥP 0.016±0.005 0.0032±0.0014 0.019±0.006 0.029±0.006
TARGET ĥtarget

Q 0.0020±0.0025 0.049±0.006 0.051±0.006 0.060±0.006
LABEL-SHIFT ĝ 0.026±0.006 0 0.026±0.006 0.035±0.006
COMPOSITE ĥQ 0.00019±0.00017 0.0032±0.0014 0.0034±0.0013 0.0127±0.0013
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(b) Misspecified parametric assumption

Figure 3: Optimal recalibration function h∗ and recalibration function estimates by Platt Scaling
[40], the hybrid method [29], UWB, and UMB when the parametric assumption is (a) correct and
(b) misspecified. UMB traces the h∗ in both cases, whereas the hybrid method traces Platt scaling,
exhibiting an intrinsic bias from h∗ in (b).

7 Discussion

This paper presents a comprehensive theory for recalibration, considering both calibration and
sharpness within the mean-squared-error (MSE) decomposition framework. We use this framework
to quantify the optimal calibration-sharpness balance and establish a rigorous upper bound on the
finite-sample risk for uniform-mass binning (UMB). Additionally, we address the challenge of
recalibration under label shift with limited access to labeled target data. Our proposed two-stage
approach effectively estimates the recalibration function using ample data from the source domain and
adjusts for the label shift using target domain data. Importantly, our findings suggest that transferring
a calibrated classifier requires a significantly smaller target sample than recalibrating from scratch on
the new domain. Numerical simulations confirm the tightness of the finite sample bounds, validate
the optimal number of bins, and demonstrate the effectiveness of the label shift adaptation.

In concluding this paper, we identify several promising directions for future research.

Relaxation of the assumptions It would be worthwhile to explore whether or not the assumptions
made in our analysis could be relaxed. For instance, the widely adopted monotonicity assumption
(A2) and its variants [51, 52, 43, 44] may not hold in real-world settings. Thus, exploring potential
relaxations of this assumption is valuable. In addition, a mild but non-trivial smoothness assumption
(A3) (c.f. Remark 7 and 8) is introduced to obtain a tight sharpness risk upper bound (c.f. Remark
9); investigating its practical implications and exploring potential relaxations could be interesting
future work.
Calibration-sharpness framework analysis Applying our framework to analyze recalibration
methods beyond UMB, such as isotonic regression [51] and kernel density estimation [52], can offer
further insights into their performance and properties, providing guidance to practitioners in selecting
suitable algorithms based on specific conditions and requirements.
Multiclass probability recalibration The concept of calibration considered in this work extends to
multi-class classification settings, known as canonical calibration [48]. Weaker, but more tractable
notions of multi-class calibration have also been explored in the literature [48, 21]. While partition-
based methods, as multi-class extensions of binning methods, are known to have consistency [48] and
vanishing calibration error [41], establishing upper bounds for their sharpness risk remains difficult.
Additionally, designing a partition scheme in a multidimensional space is a challenging task [21];
the interplay between calibration and sharpness could potentially guide the development of partition
strategies that balance both aspects in multi-class classification.
Applications to real-world data Investigating the calibration-sharpness tradeoff in real-world
applications, which often involve multiple classes, presents an interesting challenge. It is crucial to
develop effective estimators for both calibration risk and sharpness risk in such scenarios. While
estimators for calibration risk exist (e.g., binning-based and KDE-based) [6, 29, 52, 42] and a lower
bound for sharpness risk has been established [39], a direct estimator of sharpness risk is still lacking.
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A Proof of Proposition 1

Proof of Proposition 1. First of all, we recall the definition of the two risks from (3) and (4):

Rcal(h; f) = E
[(
f(X)− E [Y | f(X)]

)2]
Rsha(h; f) = E

[(
E [Y | h ◦ f(X)]− E [Y | f(X)]

)2]
.

To keep our notation concise, we use Z = f(X) as a shorthand notation, and also let YZ := E[Y | Z]
and Yh(Z) = E[Y | h(Z)] throughout this proof. We can decompose the recalibration risk from
Definition 5:

R(h) = E[(h(Z)− YZ)
2]

= E[(h(Z)− Yh(Z) + Yh(Z) − YZ)
2]

= E[(h(Z)− Yh(Z))
2] + E[(Yh(Z) − YZ)

2] + 2E[(h(Z)− Yh(Z))(Yh(Z) − YZ)]

= E[(h(Z)− Yh(Z))
2] + E[(Yh(Z) − YZ)

2] + 2E[E[(h(Z)− Yh(Z))(Yh(Z) − YZ) | h(Z)]]
= E[(h(Z)− Yh(Z))

2] + E[(Yh(Z) − YZ)
2] + 2E[(h(Z)− Yh(Z))(Yh(Z) − E[YZ | h(Z)])]

= E[(h(Z)− Yh(Z))
2] + E[(Yh(Z) − YZ)

2] + 2E[(h(Z)− Yh(Z))(Yh(Z) − Yh(Z))]

= E[(h(Z)− Yh(Z))
2]︸ ︷︷ ︸

Rcal(h)

+E[(Yh(Z) − YZ)
2]︸ ︷︷ ︸

Rsha(h)

.

B Proof of Theorem 1

In this section, we present a proof of Theorem 1. Let (Y,Z) ∈ Y × Z be random variables
that admits a joint distribution PY,Z , which we assume to be fixed throughout this section. Let
S = {(yi, zi) ∈ Y ×Z : i ∈ [n]} and let B = {I1, I2, . . . , IB} be the uniform-mass binning scheme
(cf. Definition 6) of size B induced by (zi’s in) S. Note that if S is a random sample from PY,Z , then
the binning scheme B induced by S is also a random variable following a derived distribution. To
facilitate our analysis, we introduce the notion of well-balanced binning.
Definition 8 (Well-balanced binning; [29]). Let B ∈ N, let Z be a random variable that takes value
in [0, 1], and let α ∈ R such that α ≥ 1. A binning scheme B of size B is α-well-balanced with
respect to Z if

1

αB
≤ P [Z ∈ Ib] ≤

α

B
, ∀b ∈ [B].

In addition, we define two (parameterized families of) Boolean-valued functions Φbalance and Φapprox

as follows: for any binning scheme B,

∀α ∈ R, Φbalance(B;α) := 1

{
1

α|B|
≤ P [Z ∈ I] ≤ α

|B|
, ∀I ∈ B

}
, (21)

∀ε ∈ R, Φapprox(B; ε) := 1

{
max
I∈B

|µ̂I − µI | ≤ ε

}
, (22)

where 1(A) = 1 if and only if the predicate A is true, and for each interval I ∈ B,

µ̂I =

∑n
i=1 yi · 1I(zi)∑n
i=1 ·1I(zi)

and µI = E(Y,Z)∼PY,Z
[Y · 1I(Z)] . (23)

Note that if Φbalance(B;α) = 1 for α ≥ 1, then B is α-well-balanced with respect to Z (cf. Definition
8). Also, if Φapprox(B; ε) = 1 for ε ≥ 0, then the conditional empirical mean of Y in each bin I ∈ B
approximates the conditional expectation with error at most ε, uniformly for all bins.

The rest of this section is organized as follows. In Section B.1, we ensure that for an appropriate
choice of α, ε ∈ R, it holds with high probability (with respect to the randomness in B) that
Φbalance(B;α) = Φapprox(B; ε) = 1. In Section B.2, we establish upper bounds on the reliability
risk Rcal and the sharpness risk Rsha under the premise that Φbalance(B;α) = Φapprox(B; ε) = 1.
Finally, in Section B.3, we conclude the proof of Theorem 1 by combining these results together.
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B.1 High-probability certification of the conditions

Well-balanced binning scheme. First of all, we observe that the uniform-bass binning scheme B
induced by an IID random sample from PY,Z is 2-well-balanced with high probability, if the sample
size is sufficiently large. Here we paraphrase a result from [29] in our language.
Lemma 3 ([29, Lemma 4.3]). Let S = {Zi : i ∈ [n]} be an IID sample drawn from PZ and let B be
the uniform-mass binning scheme of size B induced by S. There exists a universal constant c′ > 0
such that for any δ ∈ (0, 1), if n ≥ c′ ·B log(B/δ), then Φbalance(B, 2) = 1 with probability at least
1− δ.

Lemma 3 states that

n ≥ c′ ·B log

(
B

δ

)
=⇒ P [B is 2-well-balanced with respect to PZ ] ≥ 1− δ.

While the value of the universal constant c was not specified in the original reference [29], we remark
that one may set, for example, c′ = 2420, which can be verified by following their proof with c′ kept
explicit.

The proof of Lemma 3 in [29] relies on a discretization argument that considers a fine-grained cover
of Z = [0, 1] consisting of disjoint intervals—namely,

{
I ′j : j ∈ [10B]

}
such that P [Z ∈ I ′j ] =

1
10B

for all j ∈ [10B]—and then approximates each Ib by a subset of the cover. As the authors of [29]
remarked, this argument provides a tighter sample complexity upper bound than naïvely applying
Chernoff bounds or a standard VC dimension argument, which would yield an upper bound of order
O
(
B2 log

(
B
δ

))
. We omit the proof of Lemma 3 and refer interested readers to the referenced paper

[29] for more details.

Uniform concentration of bin-wise means. Next, we argue that for the uniform-mass binning
scheme B induced by an IID sample, the conditional empirical means of each bin concentrates to the
population conditional expectation, uniformly for all bins in B. Here we restate a result from [20].
Lemma 4 ([20, Corollary 1]). Let PZ be an absolutely continuous probability measure on Z = [0, 1],
and S = {Zi : i ∈ [n]} be an IID sample drawn from PZ . Let B ∈ N such that B ≤ n

2 and B be the
uniform-mass binning scheme of size B induced by S. Then for any δ ∈ (0, 1),

P [Φapprox(B; εδ) = 1] ≥ 1−δ where εδ =

√
1

2(⌊n/B⌋ − 1)
log

(
2B

δ

)
+

1

⌊n/B⌋
. (24)

Lemma 4 states that under the mild regularity condition of PZ being absolutely continuous, the
uniform-mass binning accurately approximates all bin-wise conditional means as long as there are at
least two samples per bin in the sense that

n ≥ 2B =⇒ P

[
sup
b∈[B]

|µ̂b − µb| ≤

√
1

2(⌊n/B⌋ − 1)
log

(
2B

δ

)
+

1

⌊n/B⌋

]
≥ 1− δ.

B.2 Conditional upper bounds on reliability risk and sharpness risk

In this section, we establish upper bounds on the reliability risk Rcal and the sharpness risk Rsha

for ĥ under the premise that Φbalance(B;α) = 1 and Φapprox(B; ε) = 1 for appropriate parameters
α, ε ∈ R.

Preparation. To avoid clutter in the lemma statements to follow, here we recall our prob-
lem setting and set several notation that will be used throughout this section. Recall that
P = PX,Y is a joint distribution on X × Y and let f : X → Z is a measurable function.
In addition, we let S̃ = {(xi, yi) ∈ X × Y : i ∈ [n]} be an IID sample drawn from P , and let
S =

{
(z, y) ∈ Z × Y : (x, y) ∈ S̃ and z = f(x)

}
. Let B be the uniform-mass binning scheme

induced by (z’s in) S, and let ĥ = B̂ : Z → Z be the recalibration function derived from B as we
described in Section 4.1; see (9). The dependence among P, f, S̃, S,B, and ĥ are summarized by a
diagram in Figure 4.

Furthermore, we define the index function for a binning scheme to facilitate our analysis.
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P S̃

f

S B ĥ

Figure 4: Stochastic dependence among P, f, S̃, S,B, and ĥ.

Definition 9. Let B be a binning scheme. The index function for B is the function β : Z → [|B|]
such that

β(z) =
∑
I∈B

1(0,sup I](z). (25)

Remark 6. Note that β is a measurable function and defines an index function that identifies which
bin of B the argument z ∈ [0, 1] belongs to. Specifically, suppose that B = {I1, . . . , IB} for some
B ∈ N and there exists u0, u1, . . . , uB ∈ [0, 1] such that (i) 0 = u0 < u1 < · · · < uB = 1 and (ii)
Ib = (ub−1, ub] for all b ∈ [B] \ {1} and I1 = [u0, u1]. Then β(z) = b if and only if z ∈ Ib.

B.2.1 Calibration risk upper bound

We observe that if a binning scheme B produces empirical means µ̂I that approximate the true means
µI with error at most ε, then the calibration risk is upper bounded by ε2.
Lemma 5 (Calibration risk bound). For any ε ≥ 0, if Φapprox(B; ε) = 1, then

Rcal(ĥ; f, P ) ≤ ε2.

Proof of Lemma 5. To begin with, we recall the definition of the calibration risk (Definition 3), and
let Z = f(X). Then we may write

Rcal
(
ĥ; f, P

)
= E

[(
ĥ(Z)− E[Y | ĥ(Z)]

)2]
= E

[
E
[(
ĥ(Z)− E[Y | ĥ(Z)]

)2 ∣∣∣β(Z)]] ∵ the law of total expectation

= E
[(
µ̂Iβ(Z)

− µIβ(Z)

)2]
cf. (23)

≤ max
I∈B

(
µ̂I − µI

)2
.

Note that if Φapprox(B; ε) = 1, then maxI∈B
(
µ̂I − µI

)2 ≤ ε2.

We remark that the proof of Lemma 5 is a simple application of applying Hölder’s inequality. Also,
we note that a similar argument was considered in [20, Proposition 1] to establish the inequalities
between the Lp-counterparts of the calibration risk, which they call the ℓp-expected calibration error
(ECE). In this work, we focus on the case p = 2.

B.2.2 Sharpness risk upper bound

Next, we present an upper bound for the sharpness risk that diminishes as the binning scheme B
becomes more balanced.
Lemma 6 (Sharpness risk bound). Suppose that the optimal post-hoc recalibration function h∗f,P , cf.
(7), is monotonically non-decreasing. Let α ∈ R such that α ≥ 1. If Φbalance(B, α) = 1, then

Rsha(ĥ; f, P ) ≤ α

|B|
.

Proof of Lemma 6. Letting Z = f(X), we can write the sharpness risk of ĥ over f with repsect to
P as

Rsha(ĥ; f, P ) := E
[(
E
[
Y | ĥ(Z)

]
− E [Y | Z]

)2]
.
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We recall the definition of the index function β for B (Definition 9) and observe that

E
[(
E
[
Y | ĥ(Z)

]
− E [Y | Z]

)2]
≤ E

[∣∣E [Y | ĥ(Z)
]
− E [Y | Z]

∣∣] ∵
∣∣E [Y | ĥ(Z)

]
− E [Y | Z]

∣∣ ≤ 1

=
∑
I∈B

E
[∣∣E[Y | ĥ(Z)]− E [Y | Z]

∣∣ · 1I(Z)
]

=
∑
I∈B

E
[
E
[∣∣E[Y | ĥ(Z)]− E [Y | Z]

∣∣ · 1I(Z)
∣∣∣β(Z)]] ∵ the law of total expectation

=
∑
I∈B

P [Z ∈ I] · E
[
E
[∣∣E[Y | ĥ(Z)]− E [Y | Z]

∣∣ ∣∣∣Z ∈ I
]]

∵ Remark 6

≤
∑
I∈B

P [Z ∈ I] ·
(
sup
z∈I

h∗f,P (z)− inf
z∈I

h∗f,P (z)

)
∵ by definition of h∗f,P ; cf. (7)

≤
∑
I∈B

α

|B|
·
(
sup
z∈I

h∗f,P (z)− inf
z∈I

h∗f,P (z)

)
∵ Φbalance(B, α) = 1

≤ α

|B|
.

The inequality in the last line follows from the facts that (i) I ∈ B are mutually exclusive and (ii)
h∗f,P (z) ∈ [0, 1] and h∗f,P is monotone non-decreasing.

Our proof of Lemma 6 relies on similar techniques that are used in [29, Lemmas D.5 and D.6].
However, we note that we obtain an improved constant — 1 as opposed to 2 in [29, Lemma D.6] —
with a more refined analysis.

An improved rate with additional assumptions. It is possible to improve the rate of the sharpness
risk upper bound from O(|B|−1) to O(|B|−2) with an additional regularity assumption on h∗f,P .

Recall that we assumed in (A3) that there exists K > 0 such that if z1 ≤ z2, then h∗f,P (z2) −
h∗f,P (z1) ≤ K ·

(
FZ(z2)− FZ(z1)

)
, that is, h∗f,P is K-smooth with respect to FZ . This posits that

the conditional probability P [Y = 1|Z = z] of the target variable Y given a forecast variable Z
cannot vary too much in regions where the density of Z is low, or where the forecast is rarely issued.
This is a reasonable assumption because if P [Y = 1|Z] changes too rapidly with respect to Z, then
it suggests that we need additional information about Y beyond what Z can provide in order to
improve the quality of forecasts. We remark that (A3) is indeed a fairly mild assumption to impose
on, however, is not a trivial one.
Remark 7 (Mildness of (A3)). Suppose that Z = f(X) has a density pZ that is uniformly lower
bounded by ϵ on the support of Z. If h∗f,P is L-Lipschitz, then h∗f,P is (L/ϵ)-smooth with respect to
FZ . This also provides a sufficient condition to verify (A3) in practice.
Remark 8 (Non-triviality of (A3)). Notice that even if FZ is absolutely continuous and h∗f,P is con-
tinuous, the smoothness constant K could become large if the prediction Z is heavily miscalibrated.
For instance, in Figure 6, h∗f,P (z) is changing fast in the interval [0.5, 0.75] where pZ(z) is small,
which results in a larger value of K that can even diverge if pZ(z) → 0.

Here we define the notion of ψ-smoothness to formalize Assumption (A3), and then present an
improved upper bound for the sharpness risk.
Definition 10 (ψ-smoothness). Let K ∈ R+ and ψ : [0, 1] → [0, 1] be a monotone non-decreasing
function. A function ϕ : [0, 1] → [0, 1] is K-smooth with respect to ψ if for any z1, z2 ∈ [0, 1] such
that z1 ≤ z2, ∣∣ϕ(z2)− ϕ(z1)

∣∣ ≤ K ·
(
ψ(z2)− ψ(z1)

)
. (26)

Lemma 7 (Improved sharpness risk bound). Suppose that the function h∗f,P (z) defined in (7) is
monotonically non-decreasing and K-smooth with respect to FZ for some K ≥ 0, where FZ is the
cumulative distribution function of Z = f(X). If Φbalance(B, α) = 1, then

Rsha ≤ K2α3

B2
.
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Proof of Lemma 7. Let Z = f(X) and B = |B|. For each b ∈ [B], we let zb,max := sup Ib and
zb,min := inf Ib. Then we have

Rsha(ĥ; f, P )

= E
[(
E
[
Y | ĥ(Z)

]
− E [Y | Z]

)2]
= E

[
E
[(
E
[
Y | ĥ(Z)

]
− E [Y | Z]

)2 ∣∣∣β(Z)]]
=

B∑
b=1

P [Z ∈ Ib] · E
[(
E
[
Y | ĥ(Z)

]
− E [Y | Z]

)2 ∣∣∣β(Z) = b
]

≤
B∑

b=1

P [Z ∈ Ib] ·
(
h∗f,P (zb,max)− h∗f,P (zb,min)

)2
∵ h∗f,P is non-decreasing

≤
B∑

b=1

P [Z ∈ Ib] ·
(
K ·

(
FZ(zb,max)− FZ(zb,min)

))2
∵ h∗f,P is K-smooth w.r.t. FZ

=

B∑
b=1

K2 · P [Z ∈ Ib]
3

≤ K2
B∑

b=1

( α
B

)3
∵ Φbalance(B, α) = 1

=
K2α3

B2
.

Remark 9 (Tightness of the rate O(B−2)). The asymptotic rate Rsha = O(B−2) is tight and cannot
be further improved without additional assumptions. For instance, let’s consider a uniform-mass
binning of size B on Z ∼ Uniform[0, 1]. In the population limit, each bin has width 1/B and within-
bin variance 1/(12B2). Thus, the sharpness risk, obtained by taking expectation of the conditional
variance (per each bin), is 1/(12B2), attaining the rate B−2.

B.3 Completing the proof of Theorem 1

Proof of Theorem 1. For given δ ∈ (0, 1), let δ1 = δ2 = δ/2. Then we observe that

n ≥ c′ · |B| log
(
|B|
δ1

)
=⇒ P [Φbalance(B, 2) = 1] ≥ 1− δ1 by Lemma 3

n ≥ 2|B| =⇒ P [Φapprox(B, εδ2) = 1] ≥ 1− δ2 by Lemma 4

where c′ > 0 is the universal constant that appears in Lemma 3 and

εδ2 =

√
1

2(⌊n/|B|⌋ − 1)
log

(
2|B|
δ2

)
+

1

⌊n/|B|⌋
.

Observe that δ1 = δ
2 <

1
2 and |B| ≥ 1, and thus, log

(
|B|
δ1

)
≥ log 2. Letting c := max{c′, 2

log 2} and
applying the union bound, we have

n ≥ c · |B| log
(
2|B|
δ

)
=⇒ P

[
Φbalance(B, 2) = 1 and Φapprox(B, εδ/2) = 1

]
≥ 1−δ.

Next, we observe that if Φbalance(B, 2) = 1 and Φapprox(B, εδ2) = 1, then

Rcal(ĥ; f ;P ) ≤ (εδ2)
2 by Lemma 5,

Rsha(ĥ; f, P ) ≤ 2

|B|
, by Lemma 6.
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Additionally, if the Assumption (A3) also holds, then we obtain a stronger upper bound on
Rsha(ĥ; f, P ) by Lemma 7:

Rsha(ĥ; f, P ) ≤ 8K2

|B|2
.

C Proof of Theorem 2

This section contains a proof of Theorem 2. Prior to the proof, in Section C.1, we provide several
lemmas that will be useful in our proof. Thereafter, we present a proof of Theorem 2 in its entirety in
Section C.2.

C.1 Useful lemmas

C.1.1 Concentration of ŵk to w∗
k

First of all, we recall the binomial Chernoff bound, which is a classical result about the concentration
of measures that can be found in standard textbooks on probability theory.

Lemma 8 (Binomial Chernoff bound). Let Xi be IID Bernoulli random variables with parameters
p ∈ (0, 1), and let Sn := 1

n

∑n
i=1Xi. Then for any δ ∈ R such that 0 < ε < 1,

P [Sn ≥ (1 + ε)p] ≤ exp

(
−ε

2p

3
n

)
,

P [Sn ≤ (1− ε)p] ≤ exp

(
−ε

2p

2
n

)
.

It follows from Lemma 8 that for any ε, δ ∈ (0, 1),

n ≥ 3

ε2p
log

(
2

δ

)
=⇒ P

(
|Sn − p|

p
> ε

)
≤ δ. (27)

Let P,Q be two distributions on Y = {0, 1}, and let DP ∼ P , DQ ∼ Q denote IID samples of size
nP , nQ, respectively. Recall from (13) and (16) that for each k ∈ {0, 1}, we define

w∗
k =

PQ[Y = k]

PP [Y = k]
, and ŵk =

PDQ
[Y = k]

PDP
[Y = k]

.

Then, we let

ρ0 :=
ŵ0

w∗
0

and ρ1 :=
ŵ1

w∗
1

. (28)

Now we define another parameterized family of Boolean-valued functions Φratio(DP ,DQ;β) as
follows. Given DP ∼ P , DQ ∼ Q, and β ∈ R such that 1 < β ≤ 2,

Φratio(DP ,DQ;β) := 1

{
1

β
≤ ρk ≤ β, ∀k ∈ {0, 1}

}
. (29)

Corollary 9. Let P,Q be two distributions on Y = {0, 1}, and let DP ∼ P , DQ ∼ Q denote IID
samples of size nP , nQ, respectively. For each k ∈ {0, 1}, let pk := PP [Y = k] and qk := PQ[Y =
k]. Likewise, we let p̂k = 1

nP

∑
yi∈DP

1{yi = k} and q̂k = 1
nQ

∑
yi∈DQ

1{yi = k}. For any
δ ∈ (0, 1) and any β ∈ (1, 2], if

nP ≥ 27

(β − 1)2 min{p0, p1}
log

(
8

δ

)
and nQ ≥ 27

(β − 1)2 min{q0, q1}
log

(
8

δ

)
,

then
P (Φratio(DP ,DQ;β) = 1) ≥ 1− δ.
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Proof of Corollary 9. Let ε = β−1
3 . Since 1+x

1−x ≤ 1 + 3x for all x ∈ [0, 1/3], we have 1
β ≤ 1−ε

1+ε <
1+ε
1−ε ≤ β. Then it follows from (27) that for each k ∈ {0, 1},

nP ≥ 3

ε2pk
log

(
8

δ

)
=⇒ P

(
|p̂k − pk|

pk
> ε

)
≤ δ

4
,

nQ ≥ 3

ε2qk
log

(
8

δ

)
=⇒ P

(
|q̂k − qk|

qk
> ε

)
≤ δ

4
.

Applying the union bound, we obtain the following implication:

nP ≥ 3

ε2 min{p0, p1}
log

(
8

δ

)
and nQ ≥ 3

ε2 min{q0, q1}
log

(
8

δ

)
=⇒ P

(
max

k∈{0,1}

|p̂k − pk|
pk

> ε or max
k∈{0,1}

|q̂k − qk|
qk

> ε

)
≤ δ

=⇒ P

(
max

k∈{0,1}
ρk >

1 + ε

1− ε
or min

k∈{0,1}
ρk <

1− ε

1 + ε

)
≤ δ

=⇒ P

(
max

k∈{0,1}
ρk > β or min

k∈{0,1}
ρk <

1

β

)
≤ δ.

C.1.2 Regularity of the Shift Correction Function

Lemma 10. Let w = (w0, w1) ∈ R2 such that w0, w1 > 0 and w0 + w1 = 1. The function

gw : [0, 1] → [0, 1] such that gw(z) = w1z
w1z+w0(1−z) is L-Lipschitz where L = max

{
w1

w0
, w0

w1

}
.

Proof of Lemma 10. First of all, consider the first-order derivative of gw:
d

dz
gw(z) =

w1 ·
[
w1z + w0(1− z)

]
− w1z · (w1 − w0)[

w1z + w0(1− z)
]2 =

w1w0[
w1z + w0(1− z)

]2 .
We observe that gw is monotone increasing as d

dz gw(z) > 0 for all z ∈ [0, 1]. Next, we consider the
second-order derivative of gw:

d2

dz2
gw(z) =

2w0w1 · (w0 − w1)[
w1z + w0(1− z)

]3

> 0, ∀z ∈ [0, 1] if w0 > w1,

= 0, ∀z ∈ [0, 1] if w0 = w1,

< 0, ∀z ∈ [0, 1] if w0 < w1.

Therefore,

sup
z∈[0,1]

d

dz
gw(z) =


d
dz gw(z)

∣∣∣
z=1

= w0

w1
if w0 > w1,

d
dz gw(z)

∣∣∣
z=0

= w1

w0
if w0 ≤ w1.

Lemma 11. Let P,Q be joint distributions of (X,Y ) ∈ X × {0, 1}, and let wk = P [Y=k]
Q[Y=k] for

k ∈ {0, 1}. If P,Q satisfy the label shift assumption (Definition 7), i.e., if Assumptions (B1) and
(B2) hold, then for any measurable function f : X → R, the following two-sided inequality holds:

min
k∈{0,1}

wk ≤ EQ[f(X)]

EP [f(X)]
≤ max

k∈{0,1}
wk. (30)

Proof of Lemma 11. First of all, we observe that
EQ [f(X)] = EQ

[
EQ

[
f(X) | Y

]]
by the law of total expectation

=

1∑
k=0

PQ[Y = k] · EQ

[
f(X) | Y

]
=

1∑
k=0

(
wk · PP [Y = k]

)
· EP

[
f(X) | Y

]
. by definition of wk & the label shift assumption

Thus, it follows that mink wk · EP [f(X)] ≤ EQ[f(X)] ≤ maxk wk · EP [f(X)].
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C.2 Completing the proof of Theorem 2

Proof of Theorem 2. This proof is presented in four steps. In Step 1, we establish a simple upper
bound for the risk RQ(ĥQ; f) that consists of two error terms: the first term quantifies the error
introduced by the estimated label shift correction, ĝ, while the second term quantifies the error due to
the estimated recalibration function, ĥP . In Steps 2 and 3, we derive separate upper bounds for these
two error terms. Finally, in Step 4, we combine the results from Steps 1-3 to obtain a comprehensive
upper bound for RQ, which concludes the proof.

Step 1. Decomposition of RQ. Recalling the definition of the risk RQ, cf. (5), we obtain the
following inequality:

RQ(ĥQ; f) = EQ

[(
ĥQ ◦ f(X)− EQ[Y |f(X)]

)2]
= EQ

[(
ĝ ◦ ĥP ◦ f(X)− g∗ ◦ ĥP ◦ f(X) + g∗ ◦ ĥP ◦ f(X)− EQ[Y |f(X)]

)2]
(a)

≤ 2 ·

{
EQ

[(
ĝ ◦ ĥP ◦ f(X)− g∗ ◦ ĥP ◦ f(X)

)2 ]
︸ ︷︷ ︸

=:T1

(31)

+ EQ

[(
g∗ ◦ ĥP ◦ f(X)− EQ[Y |f(X)]

)2 ]
︸ ︷︷ ︸

=:T2

}
, (32)

where (a) follows from the simple inequality (a+ b)2 ≤ 2(a2 + b2) for all a, b ∈ R.

In Step 2 and Step 3 of this proof, we establish separate upper bounds for the two terms, T1, T2.

Step 2. An upper bound for T1. Recall from (13) and (16) that

g∗(z) =
w∗

1z

w∗
1z + w∗

0(1− z)
where w∗

k =
Q[Y = k]

P [Y = k]
, ∀k ∈ {0, 1},

ĝ(z) =
ŵ1z

ŵ1z + ŵ0(1− z)
where ŵk =

Q̂[Y = k]

P̂ [Y = k]
, ∀k ∈ {0, 1}.

Let
ρ0 :=

ŵ0

w∗
0

and ρ1 :=
ŵ1

w∗
1

. (33)

Then we observe that for any z ∈ (0, 1),

|ĝ(z)− g∗(z)| =
∣∣∣∣ ŵ1z

ŵ1z + ŵ0(1− z)
− w∗

1z

w∗
1z + w∗

0(1− z)

∣∣∣∣
=

∣∣∣∣∣
(
ŵ1w

∗
0 − w∗

1ŵ0

)
· z(1− z)[

ŵ1z + ŵ0(1− z)
]
·
[
w∗

1z + w∗
0(1− z)

] ∣∣∣∣∣
≤

∣∣∣∣∣
(
ŵ1w

∗
0 − w∗

1ŵ0

)
· z(1− z)(

ŵ1w∗
0 + w∗

1ŵ0

)
· z(1− z)

∣∣∣∣∣
=

∣∣∣∣ ŵ1w
∗
0 − w∗

1ŵ0

ŵ1w∗
0 + w∗

1ŵ0

∣∣∣∣
=

∣∣ρ0 − ρ1
∣∣

ρ0 + ρ1
.

Moreover, ĝ(0) = g∗(0) = 0 and ĝ(1) = g∗(1) = 1. Letting Zĥ := ĥP ◦ f(X), we obtain

T1 = EQ

[(
ĝ(Zĥ)− g∗(Zĥ)

)2]
≤
(
ρ0 − ρ1
ρ0 + ρ1

)2

. (34)

It remains to establish probabilistic tail bounds for ρ0, ρ1, which we will accomplish in Step 4 of this
proof.
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Step 3. An upper bound for T2. We observe that

T2 = EQ

[(
g∗ ◦ ĥP ◦ f(X)− EQ[Y | f(X)]

)2 ]
= EQ

[(
g∗ ◦ ĥP ◦ f(X)− g∗

(
EP [Y | f(X)]

))2 ]
∵ Label shift assumption, cf. (14)

≤
(
w∗

max

w∗
min

)2

· EQ

[(
ĥP ◦ f(X)− EP [Y | f(X)]

)2 ]
∵ g∗ is

w∗
max

w∗
min

-Lipschitz, cf. Lemma 10

≤
(
w∗

max

w∗
min

)2

· w∗
max · EP

[(
ĥP ◦ f(X)− EP [Y | f(X)]

)2 ]
∵ by Lemma 11

=
w∗

max
3

w∗
min

2 ·RP

(
ĥP ; f

)
.

Step 4. Concluding the proof. For given δ ∈ (0, 1), let2 δ1 = δ2 = δ/4 and δ3 = δ/2. We observe
that

nP ≥ c′ · |B| log
(
|B|
δ1

)
=⇒ P [Φbalance(B, 2) = 1] ≥ 1− δ1 by Lemma 3

nP ≥ 2|B| =⇒ P [Φapprox(B, εδ2) = 1] ≥ 1− δ2 by Lemma 4

where c′ > 0 is the universal constant that appears in Lemma 3 and

εδ2 =

√
1

2(⌊n/|B|⌋ − 1)
log

(
2|B|
δ2

)
+

1

⌊n/|B|⌋
.

Furthermore, assuming

nP ≥ 27

min{p0, p1}
log

(
8

δ3

)
and nQ ≥ 27

min{q0, q1}
log

(
8

δ3

)
,

we may define βδ3 as a function of nP , nQ and δ3 such that

βδ3 = βδ3(nP , nQ) := 1 +

√
max

{
1

nP ·min{p0, p1}
,

1

nQ ·min{q0, q1}

}
· 27 log

(
8

δ3

)
. (35)

Then it follows from Corollary 9 that

P (Φratio(DP ,DQ;β0) = 1) ≥ 1− δ3.

Observe that δ1 = δ
4 <

1
4 and |B| ≥ 4, and thus, log

(
|B|
δ1

)
≥ log 16 ≥ 2. Let c = c′. Since c′ ≥ 1

and log
(

|B|
δ1

)
≥ log

(
16
δ

)
= log

(
8
δ3

)
, we notice that

nP ≥ max

{
c,

27

min{p0, p1}

}
· |B| log

(
4|B|
δ

)
=⇒ nP ≥ max

{
c′ · |B| log

(
|B|
δ1

)
, 2|B|, 27

min{p0, p1}
log

(
8

δ3

)}
.

In summary, we obtain that for any given δ ∈ (0, 1),

nP ≥ max

{
c,

27

min{p0, p1}

}
· |B| log

(
4|B|
δ

)
and nQ ≥ 27

min{q0, q1}
log

(
16

δ

)
=⇒ P

[
Φbalance(B, 2) = 1 & Φapprox(B, εδ/4) = 1 & Φratio(DP ,DQ;βδ/2) = 1

]
≥ 1− δ.
(36)

2We remark that our decomposition of δ into δ1, δ2, δ3 is arbitrary, and is intended to simplify the subsequent
analysis.
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Conditioned on the event Φbalance(B, 2) = 1 & Φapprox(B, εδ/4) = 1 & Φratio(DP ,DQ;βδ/2) = 1,

T1 ≤

(∣∣ρ0 − ρ1
∣∣

ρ0 + ρ1

)2

≤

(
βδ/2 − 1

βδ/2

βδ/2 +
1

βδ/2

)2

≤
(
βδ/2 − 1

)2
, ∵ (34); also, see (29)

T2 ≤ w∗
max

3

w∗
min

2 ·RP

(
ĥP ; f

)
≤ w∗

max
3

w∗
min

2 ·
(
ε2δ/4 +

2

|B|

)
. ∵ proof of Theorem 1; Lemmas 5 & 6

Note that if Assumption (A3) holds, then we additionally have

T2 ≤ w∗
max

3

w∗
min

2 ·
(
ε2δ/4 +

8K2

|B|2

)
.

Inserting these upper bounds for T1 and T2 into (31), (32) and recalling the expression for β in (35),
we complete the proof.

D Proof sketch of the argument in Remark 5

Recall our composite recalibration function,

ĥQ = ĝ ◦ ĥP , (37)

does not use the features in DQ. Specifically, ĝ is parameterized by ŵ = (ŵ0, ŵ1), which can be
estimated using only labels in DP and DQ, cf. (16). According to Theorem 2, RQ(ĥQ) = O(n−1

Q )
with high probability for sufficiently large nP .

Now suppose we are given an unlabeled target sample with unknown label shift. We can estimate
w using the target features via a maximum likelihood label shift estimation approach [14], yielding
ŵML = (ŵML

0 , ŵML
1 ). and the calibrated classifier ĥ ◦ f . This results in a different composite

recalibration function than Equation (37),

ĥML
Q = ĝML ◦ ĥP , (38)

where ĝML : [0, 1] → [0, 1] is defined as ĝML(z) = ŵML
1 z/(ŵML

1 z + ŵML
0 (1 − z)). We claim in

Remark 5 that, for sufficiently large nP , the composite recalibration function in Equation (38)
achieves RQ(ĥ

ML
Q ) = O(n−1

Q ) with high probability, enjoying the same convergence rate as ĥQ
(Equation 37). Here we give a proof sketch.

Proof sketch. Suppose we use the maximum likelihood approach in [14] to estimate w. We want
to show RQ(ĥ

ML
Q ) = O(n−1

Q ) with high probability for sufficiently large nP . Recall RQ(ĥQ) ≤
2(T1 + T2) according to Equation (31) and (32), and label shift estimation error only affects T1, so it
is sufficient to show T1 = O(n−1

Q ) with high probability.

For sufficiently large nP , ĥP ◦ f is sufficient calibrated, so ∥ŵ − w∥22 = O(n−1
Q ) by Theorem 3 in

[14]. Since

∥ŵ − w∥22 =
∑

k∈{0,1}

(ρk − 1)2w2
k ≥ w∗

min
2
∑

k∈{0,1}

(ρk − 1)2 ≥ w∗
min

2 max
k∈{0,1}

(ρk − 1)2, (39)

we have ρk ∈ [1−α, 1+α] for k ∈ {0, 1}, where α = ∥ŵ−w∥2

w∗
min

> 0. For sufficiently small ∥ŵ−w∥22,
we can control α < 0.5, which bounds T1 in (34):

T1 ≤
(
ρ0 − ρ1
ρ0 + ρ1

)2

≤ 2α

2− 2α
≤ 2α = 2

∥ŵ − w∥2
w∗

min

= O(n−1
Q ). (40)

The rest of the proof are the same with Appendix C.2.
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E Details on the experiments

In Section E.1 and E.3, we consider a family of joint distributions D(π) of X and Y , where
Y ∼ Bernoulli(π), X | Y = 0 ∼ N(−2, 1), and X | Y = 1 ∼ N(2, 1). Suppose we are given
f(x) = σ(x) := 1/(1 + e−x), for x ∈ R, as a probabilistic classifier. The optimal recalibration
function can be derived as

h∗f,P (z) = P [Y = 1 | f(X) = z] = σ(4σ−1(z)). (41)

In Section E.2, we consider a parametric family of recalibration functions called beta calibration [28]:
Hbeta = {hbeta(·; a, b, c) : a ≥ 0, b ≥ 0, c ∈ R}, where hbeta(·; a, b, c) : [0, 1] → [0, 1] is defined as

hbeta(z; a, b, c) =
1

1 + 1/
(
ec za

(1−z)b

) . (42)

In addition, consider a subfamily Hlogit-normal ⊂ Hbeta defined as Hlogit-normal = {hlogit-normal(·; a, c) :=
hbeta(·; a, a, c) = σ(aσ−1(·) + c) : a ≥ 0, c ∈ R}3. Apparently, the optimal recalibration function in
Equation (41), h∗f,P ∈ Hlogit-normal.

E.1 Verifying results for UMB

First, we recalibrate f on data distributed as D(0.5) using UMB.

Verifying the risk convergence in Theorem 1 We vary n ∈ [102, 107] and B ∈ [6, 103] in the
log scale. For each combination of (n,B), we use UMB to recalibrate f on data generated from
D(0.5), and compute quadrature estimates of population Rcal(ĥ), Rsha(ĥ), and R(ĥ), as well as
their high probability bounds based on Theorem 1. The constant K in Assumption (A3) is selected
by numerical maximization as

K = max
0≤z1<z2≤1

h∗(z2)− h∗(z1)

P [Z ∈ [z1, z2]]
.

Figure 1 shows the bounds follow the same trends as their associated population quantities, providing
valid upper bounds in all cases.

Verifying the optimal choice of the number of bins. We find empirically optimal B∗experiment that
achieves the minimal risk for each choice of n. We compute the theoretically optimal choice of the
number of bins, B∗theory, by minimizing the finite-sample upper bounds. Figure 2 shows B∗experiment

follows the same trend with B∗theory, both scales in O(n1/3).

E.2 Comparing recalibration methods

To highlight the benefits and drawbacks of UMB’s nonparametric nature, we compare UMB with
(semi-)parametric recalibration methods in scenarios where the parametric assumption is correct and
where it is misspecified. We compare the method under study, uniform-mass binning (UMB), with 3
other recalibration methods: uniform-width binning (UWB) [18], Platt scaling [40]4, and a hybrid
parametric-binning method [29]. Note that Platt scaling and the hybrid method adopt the parametric
assumption h∗ ∈ Hlogit-normal.

For the first setting, we construct optimal recalibration function h∗ ∈ Hlogit-normal so that the parametric
assumption of Platt scaling and the hybrid method holds. In particular, we consider the distribution
Z ∈ Uniform[0, 1] and Y | Z ∼ Bernoulli(hlogit-normal(Z; a, c)) with a = 4 and c = 0. For the
second setting, we construct h∗ ∈ Hbeta but h∗ /∈ Hlogit-normal so that the parametric assumption fails.
In particular, we consider the distribution Z ∼ Uniform[0, 1] and Y | Z ∼ Bernoulli(hbeta(z; a, b, c))
with a = 0.1, b = 4, and c = 0. For each setting, we fix calibration sample size to be n = 5000.

3We say Z ∼ Logit-Normal(µ, τ2) if σ−1(Z) ∼ N(µ, τ2) [1]. Similar to beta calibration [28], we
adopt the name “logit-normal calibration" after a simple example: if Y = Bernoulli(0.5), Z | Y = i ∼
Logit-Normal(µi, τ

2
i ) for i ∈ {0, 1}, then the optimal recalibration function E[Y | Z = z] = hlogit-normal(z; a, c)

for some a, c depending on µi’s and τi’s.
4The original Platt scaling operates on outputs of real-valued SVM outputs [40]. For probabilistic classifiers,

we follow [38, 29, 22] and implement Platt scaling by first transforming probabilities onto the real line via the
logit transform σ−1.
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Figure 5: Risks vs. number of bins B.

Risks as functions of the number of bins B We traverse the number of bins B ∈ [10, 2000] in the
log scale and compare how each method behaves as B changes. When the parametric assumption is
correct, the hybrid method achives significantly lower Rcal and overall R than UMB and UWB for
sufficiently large number of bins (Figure 5a), an advantage highlighted in [29]. In contrast, when the
parametric assumption fails, the binning methods UMB and UWB has better performance with the
optimal number of bins (Figure 5b). This is because Platt scaling and hybrid methods are intrinsicly
biased when h∗ /∈ Hlogit-normal, as noted in Section 4.2.

Quantitative results of risks under optimal B For each setting, we fix B that achieves low
recalibration risk for UWB and UMB in Figure 5. Specifically, we choose B = 2

⌊
n1/3

⌋
= 34 for

the correct parametric assumption setting, and B =
⌊
n1/3

⌋
= 17 for the misspecified parametric

assumption setting. Then, for each setting, we compare the 90% quantiles of risks of each recalibration
method fitted on 100 random replicates of calibration datasets of size n = 5000.

Table 1 quantititively verifies that Platt and the Hybrid method achieves lower Rcal and overall R if
the parametric assumption is correct, and UWB and UMB achieves lower Rcal and overall R when
the parametric assumption fails.

Visualization of calibration curves We fix the calibration dataset and visualize the calibration
curves for all methods under the two settings. Figure 3 shows that the binning methods (UWB and
UMB) closely track the optimal recalibration function h∗ in both settings. In contrast, the hybrid
approach follows the Platt scaling estimates, leading to an inherent bias from h∗ when the parametric
assumption is invalid (Figure 3b).

E.3 Comparing recalibration schemes under label shift

We consider the label shift with source distribution D(0.5) and target distribution D(πQ), where
πQ varies in {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. The results where πQ > 0.5 can be inferred by
symmetry and hence not experimented. We vary nP in {10, 103, 105, 107} and nQ in {10, 103, 105}.
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Figure 6: Left: calibration curves of for COMPOSITE ĥQ, SOURCE ĥP , TARGET ĥtarget
Q , and LABEL-

SHIFT ĝ. Right: the marginal density of Z = f(X) under Q.

Aside from our proposed recalibration function ĥQ = ĝ ◦ ĥP (17), referred to as COMPOSITE, we
consider three other calibration approaches as baselines: (1) SOURCE, denoted as ĥP , which is only
calibrated on the source data, (2) LABEL-SHIFT, denoted as ĝ, which performs label shift correction
without calibration, and (3) TARGET, denoted as ĝtarget

Q , which is only calibrated on the target data.

The number of bins B are chosen to be n1/3P for COMPOSITE and SOURCE, and n1/3Q for TARGET.

Table 2 shows the risks for different approaches with πQ = 0.1, nP = 103, and nQ = 102. In
terms of Rcal, COMPOSITE performs the best, as it is calibrated to the target distribution by taking
advantage of the abundant source data. In terms of Rsha, LABEL-SHIFT achieves Rsha = 0 due to
the strictly increasing ĝ, but it suffers from high Rcal. COMPOSITE and SOURCE achieve smaller
Rsha than TARGET, as a result of using more bins on a larger sample. Considering the combined
impact of calibration and sharpness, our approach COMPOSITE attains the lowest overall recalibration
risk R as well as MSE.

Figure 6 shows the optimal recalibration function h∗ and the recalibration functions for the four
approaches. It can be seen that COMPOSITE best estimates h∗ with the highest resolution.
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