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Abstract

Knowledge distillation (KD) has emerged as an effective technique for compressing
models that can enhance the lightweight model. Conventional KD methods propose
various designs to allow student model to imitate the teacher better. However, these
handcrafted KD designs heavily rely on expert knowledge and may be sub-optimal
for various teacher-student pairs. In this paper, we present a novel framework,
KD-Zero, which utilizes evolutionary search to automatically discover promising
distiller from scratch for any teacher-student architectures. Specifically, we first
decompose the generalized distiller into knowledge transformations, distance func-
tions, and loss weights. Then, we construct our distiller search space by selecting
advanced operations for these three components. With sharpness and represent gap
as fitting objectives, we evolve candidate populations and generate better distillers
by crossover and mutation. To ensure efficient searching, we employ the loss-
rejection protocol, search space shrinkage, and proxy settings during the search
process. In this manner, the discovered distiller can address the capacity gap and
cross-architecture challenges for any teacher-student pairs in the final distillation
stage. Comprehensive experiments reveal that KD-Zero consistently outperforms
other state-of-the-art methods across diverse architectures on classification, detec-
tion, and segmentation tasks. Noticeably, we provide some practical insights in
designing the distiller by analyzing the distiller discovered. Codes are available in
supplementary materials.

1 Introduction
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Figure 1: Illustration of search
space in KD-Zero.

Deep Neural Networks (DNNs) have achieved great success in
tackling a variety of visual recognition tasks [31, 17, 66]. Despite
the appealing performance, the prevailing DNN models usually
have large numbers of parameters, leading to heavy costs of mem-
ory and computation. Conventional techniques such as Neural
Architecture Search [16, 6, 26, 15] and quantizing networks to
use low-bit parameters [11, 53, 49] have proven to be effective
for mitigating this computational burden. Recently, Knowledge
Distillation (KD) has been widely used for training compact and
efficient neural networks by transferring the knowledge lied in the
logits [23] or features [57] from a large, pre-trained teacher to a
smaller student.

Recently, although KD has made significant progress in the hand-
crafted designs, there are still some limitations to its practical
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Figure 2: Top-1 gain (%). of WRN-16-2 (left)
& ResNet-20 (right) distilled via various
capacities teacher models on CIFAR-100.

Figure 3: Top-1 gain (%). of various student with
KD-Zero (left). Various KD methods combined
with KD-Zero (right) for ResNet-20 on C-100.

application for different scenarios from three aspects: (1) Capac-
ity gap problem: Traditional KD methods do not always distill better from stronger teachers because
of the large teacher-student gap [27, 46]. Larger and more accurate teacher models tend to be overcon-
fident and fail to improve students [79]. To alleviate this, architecture-level methods use the assistant
model [46] or architecture search [45], introducing additional training budgets. Other KD techniques
use optimized designs or manually modified distillers to reduce the disparity. However, these tech-
niques rely on expert knowledge and require careful tuning, which suffer from poor generality and
efficiency. (2) Cross-architecture issue. Teacher-student networks with different architectural styles
suffer from mismatches in position dependence, receptive fields, and feature dimensions. As shown
in Figure 2, while handcrafted methods (e.g., KD [23], DIST [27, 46] and WSLD [79]) provide
slight gains in some cases, they still are weak in most cross-architecture pairs 2. (3) Manual tuning
difficulties. Different choices of knowledge sources, distillation functions, and hyperparameters can
largely affect the performance of KD. However, designing and training a proper distillation setting
requires trial and error, substantial effort, and experiments. Thus, two questions are raised: (1) How
to efficiently discover the optimal distillation strategies without expert knowledge? (2) How to
reduce the teacher-student gap with different capabilities and architectures?

“We may hope that machines will eventually compete with men in all purely intellectual fields."
— Alan Turing

As this well-said quote goes, recently, machine learning approaches have successfully replaced human
experts in algorithm design, architecture search, and drug discovery. For the first problem, inspired by
Auto-Zero [55], we decide to automate the process of designing the distillation functions for the first
time in the field of knowledge distillation. For the second question, we systematically review previous
studies of KD design for distillation gaps. Our observations reveal that: (1) Most of the distillers can
be divided into three components with various key elements: knowledge transformation, distance
function, and loss weights. (2) Some essential operations, like normalize ops [3] and mask ops [71],
play important roles in reducing the teacher-student gap. (3) Optimal distillation functions can be
effectively integrated with additional strategies (e.g., feature aggregation [50], projector ensemble [9],
N-to-One match [67], and cross-layer mapping [28, 13] in Figure 3).

Based on the above analysis, we present KD-zero, an automated search framework that utilizes
evolutionary algorithms from scratch to efficiently discover the best distiller without manual design.
Specifically, our framework is organized into three parts: search space, search algorithm, and
acceleration strategy. Firstly, we establish the search space with basic transform operations, distance
functions, and loss weights (see Figure 1). For example, we select operators normalized in different
dimensions (e.g., batchnorm, normHW,C,N ), various types of activation functions (e.g., exp, relu,
tanh, sigmoid, pow2), multi-scale process and spatial-wise/channel-wise mask transforms and other
advanced operations in the knowledge transformation. Our distance function options include smooth
ℓ1, ℓ1, ℓ2, ℓKL, ℓhard, ℓCosine, ℓPearson and ℓCorrelation distance. Options in the loss weight part
include various values for loss factors, temperature factors, and weight calibration strategies. In this
way, our search space includes over 10,000 candidates covering the existing SOTA KD methods
and designs. Then, we construct a calculation graph for these candidates and use selected features,
representations, and logits from the teacher-student network as input. Based graph structure, we

2In our paper, W40-2, R32×4, R8×4, MV2, SV1, and SV2 stand for WRN-40-2, ResNet32×4, ResNet8×4,
MobileNetV2, ShuffleNetV1, and ShuffleNetV2. DeiT-Ti [61] T2T-ViT-7 [72], PVT-Ti [64].
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initialize the candidate total groups from the search space, crossover, and mutate them according
to the evaluation results. We employ loss-rejection protocol and search space shrinkage for search
efficiency to filter out weak candidates. With early-stop proxy settings, we achieve at least 40×
acceleration during the distiller search. For distillation gap reduction, we take the representation gap
and sharpness gap between teacher-student as the fitting objectives besides the accuracy metric of
the validation set. Finally, we distill student architectures with discovered distiller, and our KD-Zero
surpasses existing KD approaches by a large margin without prior knowledge (see Figure 3).

In principle, our KD-Zero differs from previous hand-designed KD methods, opening new doors to
automated distillation designs. Its merits can be highlighted in three aspects: (1) Effective. KD-Zero
effectively reduces the teacher-student gap by presenting a general distiller search space and adaptive
evolutionary search for different teacher-student pairs. KD-Zero extends the KD formulation and
allows for additional gains with extra design besides distillers. In addition, it reduces human bias
and ensures that the resulting distillers are optimized for the target problem or dataset. (2) Efficient.
KD-Zero increases efficiency in practice by a series of flexible, systematic, and efficient search
procedures without additional laborious tuning. By contrast, other manual methods with fixed KD
forms involve complex parameter tuning with additional training time and resources. (3) Insightful.
KD-Zero undertakes an in-depth analysis of the existing advanced distillation designs, with the aim
of exploring their potential combination to produce numerous novel distillers. KD-Zero provides
guidelines for practical applications and develops a new research direction. We hope our efforts on
the automated design of distillers could facilitate future research for automated KD works to some
extent. In summary, our contributions are:

• To alleviate architecture & capability gaps of teacher-student, we present KD-Zero, the first
auto-search framework for evolving best distillers from scratch to our best knowledge.

• We present a comprehensive distiller search space, including advanced operations on transforma-
tions, distance functions, and loss weights. Then, we evolve the distiller search with performance
and sharpness & represent the gap as fitting objectives. In addition, We achieve significant
search acceleration via loss-rejection protocol & space shrinkage, and proxy settings.

• We conduct extensive experiments on classification, detection, and segmentation. KD-Zero
performs state-of-the-art in multiple datasets and architectures (e.g., CNN and vision trans-
former). Specifically, ResNet-18 and MobileNet with KD-Zero achieve 72.17% and 73.02%
Top-1 accuracy on ImageNet, outperforming KD by 1.51%, 2.34%, respectively.

2 Related Work

Knowledge Distillation. The idea of teacher-student learning is first proposed in pioneering ex-
plorations [1, 2], and the formal definition is defined by the original KD [23]. Subsequent efforts
explore on different knowledge (e.g., intermediate feature representations [38, 43, 37, 33, 36], sample
relationships [48, 60]) and applications [18, 14, 35]. Compared to KD for distillation gap. Previous
methods propose assistant teachers, architecture search, KD designs on transformations [27], distance
functions [59], and weight-tuning [42, 34] for this problem. However, such KD designs rely on
expert knowledge and tuning, and their performance can fluctuate significantly across different situa-
tions. In contrast to these methods, KD-Zero develops automated searches for distillers to address
these difficulties that do not require additional architecture modification and manual KD design.
Compared to Meta-KDs. These works [13, 42] only focus on hyperparameter tuning and involve
complex optimization challenges. In contrast, our approach searches for complementary distiller
design besides hyperparameters establishing a new paradigm for KD research and application.

Automated Machine Learning. AutoML [81, 80] aims to automate Network Architecture Search
(NAS) and HyperParameter Optimization (HPO), making them more accessible to non-experts. NAS
chooses architecture rather than KD designs. Compared to HPOs [54, 69], they generally focus on
the hyperparameters on training configurations. Recent methods search for loss formulation [39, 32].
In contrast to these methods, we present a new complex search space for distiller design in transforms,
distances, loss weights, and new search objectives and accelerations according to the KD task.
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Figure 4: Overview of KD-Zero. In the search phase, we first randomly sample candidate distillers
to initialize the population and evaluate their validation performance and sharpness & represent
the gap between teacher-student. Then, we perform loss-rejection protocol & space shrinkage to
remove weak individuals and crossover & mutation to generate new populations within promising
ones. Finally, we pick up the best-performing distiller for distillation.

Table 1: Specific operations in KD-Zero. More details of their formulas are available in the Appendix.

Transform

norm-based: batchnorm,min−max, normHW,C,N , softmaxHW,C,N , logsoftmaxHW,C,N

activation-based: exp,mish, leaky, relu, tanh, sigmoid, pow2, pow4, log, sqrt
scale-based: scale,multi− scale, scaler1,r2, localr1,r2,r4, batch, channel
attention&mask-based: drop, satt, natt, catt,mask, other: no, bmm,mm

Distance no-norm loss: smooth ℓ1, ℓ1, ℓ2, ℓKL„ ℓhard; norm loss: ℓCosine, ℓPearson, ℓCorrelation

Weight calibration: entropy, focal, sim, conf, no; weight values: 0.01,..., 100; τ values:1,4, 8

3 Methodology

In this section, we first illustrate the design of our distiller search space, the search process, the
acceleration, and the fitting objectives. Then we analyze the search results and give some guidelines.
Finally, we analyze the student distilled via KD-Zero and expansion for different distillation scenarios.
The pipeline of our approach is shown in Figure 4.

3.1 Search Space for Distillers Discovery

Search space structure. In KD, the student student S is distilled with the fixed teacher T by
minimizing:

LKD = τ2 ×Wf ×WCal ×D
(
T (fS/τ), T (fT /τ)

)
, (1)

where Wf and WCal is the loss weights factor and calibration [79], τ is the temperature factor, T
is transformations, D(·, ·) is distance function measuring the knowledge difference. fT and fS are
outputs (e.g., features, embeddings, and logits) of the teacher-student. Following this general KD
formulation, our search space consists of different types of operations (see Table 1) in transformations,
distance functions, and loss weights parts. Then, we use a computation graph to represent each
candidate, in which the input nodes are different types of knowledge and the intermediate nodes
are primitive operations. In addition, we assign three transform options as transform-1→transform-
2→transform-3 for the transformation part to ensure effective processing of the input knowledge.

Insight of space design. Our space design enjoys multiple merits. (1) Comprehensive & flexible:
KD-Zero contains key elements of most existing KD methods, including the normalize, mask,
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attention, and focal-calibration KDs [3, 79, 27] for distillation gaps. In addition, we introduce basic
operations in loss design to improve the flexibility and diversity of the search. (2) Extended &
Innovative: We extend advanced KD design for omni-dimensional and various knowledge. For
example, we expand the normalized operation for batch, channel, and spatial dimensions, which can
be used for logits, embeddings, and feature knowledge. Thus, such a unified and flexible search space
would provide some inspiration for KD design.

3.2 Evolution Procedure, Acceleration and Objective

Evolution process. Our EA starts with an initial population of candidate distillers evaluated for their
fitness based on our distillation gap-related multi-objectives. The algorithm then iteratively evolves
the population over generations using genetic operators, such as selection, crossover, and mutation,
to generate better solutions. Specifically, distillers are first randomly generated to form the initial
population. Each candidate solution in the population is evaluated using multiple fitness functions that
measure teacher-student gaps. Based on these evaluations, we select the best-performing individuals
from the population to create a new population for the next generation. Then, we apply crossover to
the selected individuals to create new offspring and use mutation to the new offspring to introduce
diversity into the population, which helps to explore new distillers.

Search acceleration As the search space is sparse with many unpromising distillers, we employ
several strategies to accelerate: (1) Loss-rejection protocol. We filter out candidates with excessive
loss values or collapsed optimization during the search. (2) Search space shrinkage. We reduce
sampling probabilities for the operations frequently in loss rejection and tail candidates with search
iterations. (3) Proxy settings. With diverse and informative knowledge learned from a teacher,
student models offer advantages in terms of faster training speeds. Based on these properties, we
employ early stop the training process once the student model performs well enough to determine
the quality of the candidate distillation. Nevertheless, proxy settings can also introduce evaluation
uncertainties, and we alleviate this issue by introducing multiple distillation gap metrics in the
following sections.

Fitting objectives. To accurately evaluate each distiller and reduce the distillation gap, we include
cross-entropy loss, sharpness-gap [20] on prediction, and CKA-gap [52] on representation between
teacher-student as the multi-objectives. Specifically, we conduct a training-free evolutionary search
algorithm to efficiently discover the optimal distiller α∗ from search space A, as:

α∗ = argmin
α∈A

(LCE(fS , Y )+

Sharpness−gap︷ ︸︸ ︷
(log(exp(fS))− log(exp(fT )))−

CKA−gap︷ ︸︸ ︷
HSIC(fS , fT )√

HSIC(fS , fS)HSIC(fT , fT )
),

(2)
where LCE is the regular cross-entropy objective with labels Y , the sharpness metric is the logarithm
of the exponential sum of logits, and Centered Kernel Alignment (CKA) metric is normalized from
Hilbert-Schmidt Independence Criterion (HSIC) [19] on high-level feature.

Figure 5: Probability of operations within each search part, which counted from the Top-3 searched
distillers for all teacher-student pairs in the CIFAR-100 experiment.

3.3 Results Analysis and Practical Guidance

Figure 5 present searched distillers for different models. Based on these results, some practical
guidance for KD designs can be summarized as follows:

• For knowledge input, feature knowledge enjoys superiority while logits and embedded knowl-
edge share identical status. Searched distillers with feature knowledge take more proportion,
and ablation studies on vanilla feature knowledge also surpass logits and embedding knowledge.
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This observation also aligns with the existing conclusion that feature-based KD outperforms
other KD on detection tasks [27, 63].

• For transformations, the normalized-based operations play a key role in most optimal distillers,
and its vanilla performance outperforms other types of transformations in ablation studies. These
observations illustrate that normalization benefits distillation, consistent with the current KD
methods. Scale-based and activation-based operations are also crucial for the KD because they
are often present in optimal distillers and enjoy good vanilla performance in ablation studies.

• For distance functions, normalized-based distances such as ℓPearson and ℓcorrelation enjoy better
results in ablation studies and are often adopted by teacher-student pairs across architectures.
This suggests that these normalized-based distances can reduce distillation gaps in complex
scenarios. In addition, some simple distance functions (e.g., ℓ1, ℓ2 and ℓKL) also appear in the
optimal distiller. These may be attributed to these distillers employing advanced transformation
operations for input knowledge.

• For loss weights, adjusting the temperature values is helpful for different scenarios, and the
optimal weight values are generally between 1 and 10 based on search results and ablation
studies. In addition, the focal weight calibration outperforms the no-weight calibration in
ablation studies, and it is often used for some optimal distillers. In summary, we should employ
smaller weight values and actively explore different weight calibration and temperature values
to reduce distillation gaps under different teacher-student pairs.

3.4 Distilling Student via Discovered KD-Zero functions

After search, the discovered distiller LKD is used for distilling student fS combined with cross-
entropy LCE via label Y in single teacher fT or multiple teacher fTi

KD as:

Lsingle = LCE(fS , Y ) + LKD(fS , fT ), Lmultiple = LCE(fS , Y ) +

N∑
i=1

LKD(fS , fT ′
i
). (3)

Extended to various distillation designs & scenarios KD-Zero focuses on the distiller’s search
and employs simple 1×1-Conv for channel alignment. Recently, some KD methods have proposed
other designs in feature aggregation [50], projector ensemble [9], N-to-One match [67], and cross-
layer mapping [28, 13]. As shown in Table 2, KD-Zero can combine well with them by replacing
their default ℓ2/ℓKL losses. In addition, the distiller search of KD-Zero also benefits different
distillation scenarios. Specifically, Self-KDs, online KDs, and multi-teacher KDs with KD-Zero
achieve extra gains than the default settings. Also, KD-Zero can combine architecture-level methods
(e.g., Assistant [46]) to reduce distillation gaps further.

Table 2: Top-1 (%) accuracy of KD-Zero combined with different KD designs and scenarios for
ResNet-20 and WRN-16-2 on CIFAR-100.

Net Method
Different KD design Different KD scenarios

Review [50] PE [9] NORM [67] L2T-ww [28] ONE [76] BYOT [75] DML [77] AVE-MKD [58] AE-MKD [58] Assistant [46]

R20
ℓKL or ℓ2 71.89 71.36 71.55 70.89 70.77 70.37 70.92 71.24 71.36 71.06
KD-Zero 72.27 72.18 72.00 72.03 71.35 70.98 72.02 72.22 72.35 71.89

W-16-2
ℓKL or ℓ2 76.20 76.02 75.65 75.50 74.25 74.12 75.33 75.22 75.68 75.35
KD-Zero 76.62 76.47 76.26 76.36 75.65 75.21 76.45 76.72 76.78 76.05

Why can KD-Zero bridge the teacher-student gap? The answer is intuitive: In KD-Zero, the
search space contains many operators for distillation gap reduction, and search objectives are directly
designed to reduce the prediction and representation gap between teacher-student. For example, We
approximate the sharpness gap using a Taylor second expansion [20]:

Ggap = log(exp(fT ))− log(exp(fS)) ≈ log

(
1 + fT +

1

2
f2
T

)
− log

(
1 + fS +

1

2
f2
S

)
, (4)

Following Hindon’s assumption [23] that the logits of each training sample are approximately
zero-meaned, i.e., f̄T , f̄S = 0. So the gap can be rewritten as log

(
1 + 1

2V ar(fT )
)
−

log
(
1 + 1

2V ar(fS)
)

[20]. Our options like normalized transform [3, 27], and weight calibrations [79]
can effectively reduce the variance of teacher-studens’ outputs and minimize the distillation gap.
In addition, the student models distilled with KD-zero enjoy the merits: (1) Fast convergence and
superior performance. As shown in Figure 6, KD-Zero has surpassed the best accuracies of KD
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Figure 6: Comparison of training curves (left)
of ResNet-20 on CIFAR-100 and ResNet-18
on ImageNet (right).

Figure 7: Penultimate-layer visualization (left),
logits-correlation map of teacher-student (ResNet-
110/20) via KD (middle) & KD-Zero (right).

Input         Student          KD          KD-Zero       Teacher Input         Student          KD          KD-Zero       Teacher

Figure 8: Comparison on the Grad-CAM++ [4] visualization results between the features of the
baseline student model, the student model trained with KD and our KD-Zero, and the teacher model.
Results are obtained on ImageNet with ResNet18 (left) and MobileNet (right).

and baseline at the beginning of the 3rd learning-rate decay stage. (2) Smaller teacher-student gap.
As shown in Figure 7, features and logits of students via KD-Zero have stronger similarities with
teachers than the original KD method.

4 Experiments

In this section, we assess the efficacy of our proposed KD-Zero approach on classification, detection,
and segmentation tasks. Additionally, we compare its performance with other KD methods, ensuring
fair comparisons by utilizing the same training settings. We report mean results based on more than 3
repeated trials. More detailed experiment settings and results are available in the Appendix.

Table 3: Comparison of results on CIFAR-100. Most results of other methods refer to the original
papers [8, 60]. Gain refers to the performance gain than baseline. We report Top-1 “mean (std)”
accuracies (%) for KD-Zero over 3 runs.

Model Same architectural style Different architectural style
Teacher W-40-2 R110 R110 R32×4 VGG13 VGG13 R32×4 W-40-2 R56 R56 R56
Student W-16-2 R20 R32 R8×4 VGG8 MNetV2 SNetV2 SNetV1 DeiT T2T PVT
Teacher 75.61 74.31 74.31 79.42 74.64 74.64 79.42 75.61 72.34 72.34 72.34
Student 73.26 69.06 71.14 72.50 70.36 64.60 71.82 70.50 65.08 69.37 69.22
FitNets [57] 73.58 68.99 71.06 73.50 71.02 64.14 73.54 73.73 70.82 71.96 73.42
AT [73] 74.08 70.22 72.31 73.44 71.43 59.40 72.73 73.32 73.51 74.01 73.60
SP [62] 73.83 70.04 72.69 72.94 72.68 66.30 74.56 74.52 67.36 72.26 70.48
RKD [48] 73.35 69.25 71.82 71.90 71.48 64.52 73.21 72.21 70.39 71.88 73.63
CRD [60] 75.48 71.46 73.48 75.51 73.94 69.73 75.65 76.05 NA NA NA
SRRL [29] 75.46 71.51 73.80 75.92 73.23 69.34 75.66 76.61 NA NA NA
KD [23] 74.92 70.67 73.08 73.33 72.98 67.37 74.45 74.83 73.25 74.15 73.68
DIST [27] 75.35 71.68 73.86 75.79 73.86 69.17 76.08 75.85 72.56 73.86 73.52
WSLD [79] 75.30 71.53 73.36 74.79 74.36 68.79 75.93 75.09 74.56 75.28 74.39
IPWD [47] NA 71.32 73.91 76.03 NA NA NA 76.03 NA NA NA
KD-Zero 76.42 72.05 74.19 77.85 75.26 70.42 77.45 77.52 78.25 78.32 77.22

Gain±STD 3.16±0.16 2.99±0.21 3.05±0.12 5.35±0.22 4.90±0.11 5.82±0.18 5.63±0.25 7.02 ±0.14 13.17±0.36 8.95±0.29 8.00±0.32

4.1 Experiments on CIFAR-100

Implementation. We utilize the CIFAR-100 dataset [30] in knowledge distillation. During the
distiller search phase, we apply 5% early-stopping training epochs with full training data for accel-
eration settings. Our evolutionary algorithm with 20 population sizes performs 100 iterations for
each teacher-student pair. During the distillation phase, all teacher-student networks are trained using
typical training settings, with a training epoch of 240. The multi-step learning rate commences at 0.1,
which decays by 0.1 at 100 and 150 epochs. Recently, knowledge distillation enabled training Vision
Transformers (ViT) from scratch with CNNs as teachers. To evaluate the effectiveness of KD-Zero,
we conduct the evolutionary search for ViT-based distillation strategies with the same settings as the
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Table 4: Comparison of results on ImageNet. The results of other methods quote the original papers
report [8, 60, 71]. We report Top-1 “mean (std)” accuracies (%) for KD-Zero.

Teacher Student Acc. Teacher Student KD [23] AT [73] OFD [22] SRRL [29] CRD [60] Review [50] MGD [71] KD-Zero

ResNet-34 ResNet-18
Top-1 73.40 69.75 70.66 70.69 70.81 71.73 71.17 71.61 71.58 72.17±0.15

Top-5 91.42 89.07 89.88 90.01 89.98 90.60 90.13 90.51 90.35 90.46±0.25

ResNet-50 MobileNet
Top-1 76.16 70.13 70.68 70.72 71.25 72.49 71.37 72.56 72.35 73.02±0.22

Top-5 92.86 89.49 90.30 90.03 90.34 90.92 90.41 91.00 90.71 91.05±0.26

CNN experiment. Subsequently, we train the ViT with the optimal distiller obtained and ResNet-56
as CNN teacher. The training is conducted on 224× 224 resolution images for 300 epochs, with an
initial learning rate of 5e-4 and a weight decay 0.05 using the AdamW optimizer.

Comparison results on CNN models. Table 3 presents a comparative analysis of our KD-Zero
with other state-of-the-art (SOTA) KD methods. We conduct multiple trials with randomly selected
distillers in the same search space, called Rand-KD, to evaluate the efficacy of our EA search. For
teacher-student pairs with the same architectural style, KD-Zero outperforms the baselines by margins
ranging from 3.16% ∼ 4.90%. Compared with Rand-KD and other KDs, KD-Zero obtains consistent
performance gains (1.0% ∼ 3.2%). Besides strengths in the same architecture pairs, KD-Zero
exhibits even stronger performance when dealing with different architectural styles, while other
KD methods suffer from noticeable accuracy reductions. Specifically, KD-Zero outperforms the
baseline by margins of 5.6% ∼ 7.3% and the random search results by margins of 1.9% ∼ 2.3%,
demonstrating the effectiveness of our design for different structures. Compared with other SOTA
KD methods, our KD-Zero achieves 1.2% ∼ 1.5% gains. These results show that KD-Zero can
improve each student model with simple settings under different teacher-student pairs.

Comparison results on vision transformer. Table 3 presents the results of the vanilla and distillation
models employing different distillation methods. The results indicate that KD-Zero can significantly
improve the performance of vision transformers with 8.0% ∼ 13.1% margins and consistently yields
superior performance than other methods. In addition, our proposed method applies to various ViT
architectures, thereby validating its effectiveness. Note that most ViT students possess larger model
sizes (e.g., DeiT-Ti with 5 million parameters) and greater capabilities than the CNN teacher (e.g.,
ResNet-56 with only 0.86 million parameters). Some ViT students outperform the CNN model in
the strong regularization setting on large-scale datasets. However, when it comes to ViT distillation
on small datasets, employing CNN teachers helps address the issue of ViT models struggling to
train effectively from scratch. In this context, using CNN teachers in distillation is akin to auxiliary
training or providing additional regularization supervision. As a result, these ViTs demonstrate their
original strong representation capability after distillation and consequently outperform the CNN
teacher.

4.2 Experiments on ImageNet

Implementation. We additionally conduct experiments on the ImageNet[12]. Following CIFAR-100
trials, we employ similar EA settings on a subset of ImageNet for search acceleration. Then, we utilize
the discovered distiller for the training of student models (e.g., ResNet-18 [21] and MobileNet [25]).
The training settings are the same as the other KD methods and involve training for 100 epochs using
a multi-step learning rate, which commences at 0.1 and decays by 0.1 at 30, 60, and 90 epochs.

Comparison results. As shown in Table 4, our proposed KD-Zero significantly improves the accuracy
of baseline models, yielding gains of 2.5% ∼ 2.9% in Top-1 accuracy for ResNet-18 and MobileNet,
respectively. In addition, KD-Zero surpasses other SOTA methods with clear gains, demonstrating
its superiority in large-scale datasets. These findings substantiate the effectiveness of KD-Zero in
distillation optimization with considerable benefits, establishing the versatility and potency of our
framework. In summary, KD-Zero facilitates substantially improved predictive accuracy of student
models on ImageNet, more complex domains while preserving superior performance.

Visualizations. The comparison between the Grad-CAM++ maps generated by the student model
trained with KD-Zero and other methods is presented in Figure 8. The results indicate that the
Grad-CAM++ map generated by the student model trained with KD-Zero is more similar to that of
the teacher model compared to the student model trained independently. In contrast, independent
training of the student model leads to incorrect focus areas. These findings suggest that the KD-Zero
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Table 5: The results on the COCO val dataset for teacher
(T) and student (S) models.

Method AP AP50 AP75 APS APM APL

Two-stage detectors
T: Cascade Mask RCNN-X101 45.6 64.1 49.7 26.2 49.6 60.0
S: Faster RCNN-R50 38.4 59.0 42.0 21.5 42.1 50.3
KD [24] 39.7 61.2 43.0 23.2 43.3 51.7
FKD [74] 41.5 62.2 45.1 23.5 45.0 55.3
CWD [59] 41.7 62.0 45.5 23.3 45.5 55.5
DIST [27] 40.4 61.7 43.8 23.9 44.6 52.6
KD-Zero 41.9 62.7 45.5 23.6 45.6 55.6

One-stage detectors
T: RetinaNet-X101 41.0 60.9 44.0 23.9 45.2 54.0
S: RetinaNet-R50 37.4 56.7 39.6 20.0 40.7 49.7
KD [24]∗ 37.2 56.5 39.3 20.4 40.4 49.5
FKD [74] 39.6 58.8 42.1 22.7 43.3 52.5
FGD [70] 40.4 59.9 43.3 23.4 44.7 54.1
DIST [27] 39.8 59.5 42.5 22.0 43.7 53.0
KD-Zero 40.9 60.4 43.5 23.2 45.2 54.8

Table 6: Results on Cityscapes val
dataset with ImageNet Pretrain.

Method mIoU (%)

T: DeepLabV3-R101 78.07
S: DeepLabV3-R18 74.21
SKD [44] 75.42
IFVD [65] 75.59
CWD [59] 75.55
CIRKD [68] 76.38
DIST [27] 77.10
KD-Zero 77.38
S: PSPNet-R18 72.55
SKD [44] 73.29
IFVD [65] 73.71
CWD [59] 74.36
CIRKD [68] 74.73
KD-Zero 76.25

Figure 9: Ablation study of search space (left)
and organization (right) of ResNet-20 on C-100.

Figure 10: Comparison of search algorithms (left
and correlation visualization (right) of ResNet-20.

approach is more effective than traditional knowledge distillation methods in guiding the student
model to learn from the teacher model, resulting in improved model interpretability and performance.

4.3 Experiments on Object Detection & Semantic Segmentation

Object detection. We conduct experiments on the MS-COCO dataset[41]. We use the optimal
distiller on ImageNet to distill knowledge from teacher detectors to students. Based on the strong
baseline [5], we apply KD-Zero to two-stage detector (e.g., Faster R-CNN [56]) and the one-stage
detector (e.g., RetinaNet [40]), which are widely used object detection frameworks. Following
common practice [40], all models are trained with a 2× learning schedule (24 epochs). We train all
the models with SGD optimizer, where the momentum is 0.9, and the weight decay is 0.0001. As
shown in Table 5, our KD-Zero improves the AP by 3.5 on RetinaNet and 3.4 on Faster R-CNN,
respectively, outperforms previous state-of-the-art techniques, including [59, 70, 74], for both object
detectors. The results substantiate the potential of KD-Zero for scaling knowledge transfer to broader
datasets and more complex computer vision problems while preserving improved accuracy.

Semantic segmentation. We evaluate KD-Zero on Cityscapes dataset[10]. Following the previous
work, we adopt PSPNet-ResNet101 [78, 51] as the teacher and PSPNet and DeepLabV3[7] models
with the ResNet18 backbone as the student. During distillation, the batch size is 8, and the models are
trained for 40K iterations with the SGD optimizer, where the momentum is 0.9 and the weight decay
is 0.0005. The results are reported with mean Intersection-over-Union (mIoU) under the single-scale
evaluation setting. As shown in Table 6, the student PSPNet and DeepLabV3 get 3.17 and 3.7 mIoU
improvement by adding our KD-Zero loss. These results indicate that our method surpasses the
state-of-the-art distillation method for semantic segmentation, demonstrating that searched distillers
facilitate student learning.
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Table 7: Top-1 (%) accuracy of ResNet20 (baseline : 69.06%) with different teachers models on
CIFAR-100. Note that the distiller is searched with ResNet110 as the teacher.

Teacher
R110 VGG13 W-28-2 W-40-2 W-16-4 W-28-4 R50 R32×4
74.31 74.64 75.45 75.61 77.51 78.60 79.34 79.42

KD 70.89±0.13 70.07±0.23 70.83±0.21 70.35±0.14 70.22±0.13 70.59±0.11 70.12±0.08 70.37±0.11

DIST 69.82±0.16 70.10±0.21 70.42±0.13 70.05±0.21 70.35±0.21 69.88±0.21 70.51±0.21 69.79±0.21

WSLD 70.89±0.17 70.12±0.18 71.19±0.23 70.85±0.26 70.86±0.22 70.39±0.16 70.62±0.22 69.48±0.24

KD-Zero 72.05±0.21 71.21±0.12 72.46±0.08 71.76±0.16 72.37±0.11 71.55±0.11 71.74±0.17 70.98±0.14

Table 8: Top-1 (%) accuracy of WRN-16-2 (baseline : 73.26%) with different teachers models on
CIFAR-100. Note that the distiller is searched with WRN-40-2 as the teacher.

Teacher
R110 VGG13 W-28-2 W-40-2 W-16-4 W-28-4 R50 R32×4
74.31 74.64 75.45 75.61 77.51 78.60 79.34 79.42

KD 74.09±0.23 74.21±0.24 74.20±0.26 74.49±0.18 74.61±0.14 74.03±0.12 74.67±0.18 74.57±0.12

DIST 74.35±0.11 74.86±0.13 75.34±0.22 74.92±0.15 75.79±0.17 75.04±0.18 75.36±0.22 74.39±0.25

WSLD 74.93±0.28 74.88±0.19 75.44±0.13 75.30±0.16 76.29±0.26 75.58±0.18 75.42±0.21 74.86±0.26

KD-Zero 75.50±0.24 75.45±0.15 76.05±0.21 76.42±0.16 76.50±0.19 76.40±0.18 76.02±0.16 75.86±0.15

4.4 Ablation Studies

Search space organization. We individually explore various operation types and organized settings
in Figure 9. Results indicate: (1) some operations like the normalized-based transforms, normalized-
based losses, focal correction, and small-weighted values bring superior gains than others. (2)
our design is optimal across different settings, and the removal of transform, weight factor, and
temperature factor search leads to worse results, proving our organization’s strength.

Search algorithm. We use the EA for distiller search, which is gradient-free and flexible for non-
convex optimization. As shown in Figure 10, the EA obtains faster convergence and better final
search results than random search. In addition, for fitting objectives in EA, Shapeness and CKA
metrics demonstrate good correlations with the final distillation accuracy and combine well with
cross-entropy loss to improve evaluation quality.

Generalization of searched distillers for different Teachers. In Table 8 & 7, we present detailed
results of the same searched distiller with various capacities teacher models on CIFAR-100. The
results indicate that our KD-Zero can significantly improve the student model in different teacher
models and surpass the KD and improved KD methods (e.g., DIST [27], WSLD [79]).

In addition, we provide combined trials in Table 2 and Figure 5, student training and teacher-student
gap analysis in Figure 6 & 7. These ablation studies demonstrate that our KD-Zero can well alleviate
distillation gaps and combine with other KD designs.

5 Conclusion

In this paper, we introduce the KD-Zero framework, an innovative framework for automatically
designing distillers. We construct a flexible and unified distiller search space with advanced operators
on knowledge transformation, distance function, and loss weight parts. Then, we employ evolutionary
search with distillation-gap reduction as objectives and search acceleration strategies, enabling KD-
Zero to efficiently find distillers and improve student model performance in distillation training. We
employ the loss-rejection protocol, search space shrinkage, and proxy settings during the search
process to enhance search efficiency. Furthermore, we present some practical guidelines based on
the results analysis and propose various extensions of KD-Zero to cater to different KD designs
and scenarios. Comprehensive experiments on three benchmarks demonstrate the effectiveness
and universality of the KD-Zero framework for various CNNs, Vision Transformer models, object
detection, and semantic segmentation. In future work, we will extend KD-Zero to more tasks and
explore large language models as code encoders or searcher for KD-Zero. We hope this work will
inspire future research on knowledge distillation designs.
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