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Abstract

Advances in high-throughput sequencing technology have led to significant
progress in measuring gene expressions at the single-cell level. The amount
of publicly available single-cell RNA-seq (scRNA-seq) data is already surpass-
ing 50M records for humans with each record measuring 20,000 genes. This
highlights the need for unsupervised representation learning to fully ingest these
data, yet classical transformer architectures are prohibitive to train on such data
in terms of both computation and memory. To address this challenge, we pro-
pose a novel asymmetric encoder-decoder transformer for scRNA-seq data, called
xTrimoGeneα (or xTrimoGene for short)4, which leverages the sparse character-
istic of the data to scale up the pre-training. This scalable design of xTrimoGene
reduces FLOPs by one to two orders of magnitude compared to classical transform-
ers while maintaining high accuracy, enabling us to train the largest transformer
models over the largest scRNA-seq dataset today. Our experiments also show that
the performance of xTrimoGene improves as we scale up the model sizes, and
it also leads to SOTA performance over various downstream tasks, such as cell
type annotation, perturb-seq effect prediction, and drug combination prediction.
xTrimoGene model is now available for use as a service via the following link:
https://api.biomap.com/xTrimoGene/apply.

1 Introduction

Recently, Artificial Intelligence (AI) technology has demonstrated promising results for address-
ing scientific problems. This AI4Science paradigm witnessed diverse successful biological and
pharmaceutical applications, including protein analysis [17, 20, 38, 35, 1], RNA modeling [4], and
genomics modulation [27]. However, most existing AI models have predominantly focused on
protein sequences, neglecting the growing volume of high-throughput experimental sequencing data
in the form of gene expression values. Single-cell RNA sequencing (scRNA-seq) technology has
transformed the field of cell biology and enabled us to understand cell-cell, cell-gene and gene-gene
relations at the cellular level [16, 3]. This technique captures the expression levels of thousands of
genes in parallel, facilitating the study of cellular heterogeneity [5, 19]. This unveiled information is
crucial for understanding complex biological systems and disease progression [16, 3]. Integrating and
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modeling such large-scale scRNA-seq data can reveal rich cellular information and benefit various
biological task learning.

Representation learning from scRNA-seq data [9] has been an active area of research in past decades.
For example, scVAE [11] and scVI [21] apply a variational autoencoder framework to derive low-
dimensional cell embeddings, cscGAN [24] uses a Generative Adversarial Network (GAN) archi-
tecture to generate cell-type specific expression profiles, and SAVER-X [32] is capable of removing
batch effects across datasets. Despite the success of these customized algorithms, they tend to be
computationally inefficient and labor-intensive. This prompts us to explore a general-purpose model
that first learns underlying knowledge from scRNA-seq data and generalizes it to different tasks in
a unified manner. We draw inspiration from the pre-training and fine-tuning paradigm in Natural
Language Processing (NLP), which has shown great success in improving various downstream NLP
task performance [29, 12, 14]. In light of these findings, we aim to investigate the potential of
applying similar approaches to representation learning in scRNA-seq data.

The first published pre-trained model for single-cell data is scBERT, which uses a low-rank trans-
former [36] to analyze the scRNA data. It learns the cellular representation by randomly masking
a percent of non-zero gene expression values and tries to recover them. scBERT has achieved
state-of-the-art results for cell-type annotation tasks. The study shows the potential of a pre-training
strategy for single-cell biology research. However, scBERT has certain limitations in fully utilizing
scRNA-seq data properties. These limitations include:

(1) Scalability. The large number of genes (almost 20,000) and the sparsity of scRNA-seq data,
with nearly 90% of values being zero, lead to many redundant computations (e.g., self-attentions
between zero tokens). It required approximately 2.65 × 1019 FLOPs to train 5 million samples
over 5 epochs, which equals almost 20 days of training on an A100 GPU for only an 8.9 million
parameter scBERT model. (2) Limited resolution for expression values. scBERT rounds the gene
expression values into integer values, which limits the model’s ability to distinguish closeness and
similarity between gene expression values. For instance, two close values could be mapped to separate
embeddings (e.g., 1.99 and 2.01 are mapped to 1 and 2), and two distant values could be mapped to
identical embeddings (e.g., 1.99 and 1.01 are mapped to 1). The strategy leads to a loss of resolution
and introduces bias during model training, resulting in sub-optimal performance.

To address the challenges associated with scRNA-seq data modeling and consider the unique nature
of this data (as discussed in Section 2), we present a novel and efficient framework, xTrimoGene, for
pre-training large-scale scRNA-seq data. Our framework makes the following key contributions:

(1) We design an asymmetrical encoder-decoder architecture to guide the pre-training process, which
enables us to learn a high-capacity model for single-cell RNA-seq data. Our model achieves an
improvement in the speed of pre-training of over 3 times compared to previous encoder-only models.

(2) We illustrate that the efficiency and scalability of our model allow us to train the largest single-cell
pre-trained model to date, with approximately 100 million parameters for the xTrimoGene-100M
model, using a curated scRNA-seq dataset of approximately 50 billion effective gene tokens.

(3) The pre-trained model xTrimoGene achieved remarkable results in multiple downstream tasks,
including cell type annotation, perturbation prediction and synergistic drug combination prediction.

2 Characteristics of Single-Cell RNA-seq Data

scRNA-seq generates a large, sparse expression matrix, where each row represents a cell (sample)
and each column a gene (feature). This dataset presents several challenges and requires a specialized
architecture to effectively model the data.

First, approximately 20,000 genes (columns) are shared across cells. Unlike the corpus in NLP, the
genes can be arbitrarily reordered. The relation between genes depends on biological pathways rather
than local contexts, where the latter shapes spatial information in Computer Vision (CV) images.
Though one can roughly regard each cell (row) as a sentence or an image patch, the 20,000 genes is a
vast number compared to the typical sequence length, which is mostly a few hundred and no more
than a few thousand [29, 12]. Thus directly applying existing transformer architecture will not work.

Second, scRNA-seq matrices are highly sparse (90% zero in a typical dataset [15, 7]). The abundance
level of RNA for each gene is measured by counting the unique molecular identifier (UMI) reads in
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scRNA-seq experiments [16, 3]. However, many genes exhibit low UMI counts due to limited probing
efficiency. Therefore, treating scRNA-seq data as an image and utilizing a convolutional neural
network to extract features is not feasible, as it introduces a huge number of redundant computations
for sparse positions.

Third, the normalized gene expression values in scRNA-seq data are continuous scalars, which
typically indicate similar gene activity when they have similar values. To transform these scalars
into high-dimensional tokens in the data matrix, a representation that preserves the continuous
semantics is needed. Manually discretizing the gene expression values is challenging as non-optimal
discretization thresholds will bias category assignment. A learned discretization approach or learnable
representation, such as the one proposed in [10], is ideal for preserving the continuous semantics of
the gene expression values.

Taking into the above three major features, we design a new architecture as described in the next
section.
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Figure 1: The xTrimoGene Framework: (1) Random positions (including both zero and non-
zero values) are masked for prediction. (2) Masked and zero-valued positions are filtered out. (3)
Remaining unmasked positions are aligned with padding tokens (grey) to ensure maximum length
consistency within a batch. (4) Gene expression values and gene embeddings are separately projected
into embeddings. (5) These two embeddings are element-wise added. (6) The resulting input is fed
into the encoder. (7) The intermediate encoder embedding is combined with embeddings for masked
positions and zero embeddings. (8) This combined representation is then fed into the decoder. (9)
Decoder embedding is projected to model output with an MLP layer. The MSE loss is calculated
between the model output and ground truth values for the masked positions.

3 xTrimoGene Architecture

xTrimoGene is a highly efficient framework for pre-training large-scale single-cell RNA-seq data
(illustrated in Figure 1). The training process is based on a regression-masked task, aimed at accurately
recovering masked values in the expression matrix. Notably, a specific optimized asymmetrical
encoder-decoder framework is employed to accelerate the learning of sparse matrices. This is
achieved by feeding only the unmasked non-zero positions (less than 10% of the full length) into
the encoder, while the largely masked and zero positions are input into a lightweight decoder with
a reduced number of layers and attention heads. In addition, a novel auto-discretization strategy is
introduced to project continuous expression values into a latent embedding space. Instead of rounding
to the nearest integer, values are directly mapped to the latent space allowing for the representation of
closely related values. The xTrimoGene framework consists of the following components:

Masking: A portion of the normalized gene expression matrix V is masked for prediction, including
both zero and non-zero positions. c denotes cell sample size, and n denotes gene number (19,264 in
our setting, see App. 1 for data collection and processing).
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Filtering: The masked and zero-valued embeddings are filtered out, yielding a variable-length
sequence of valuable information that is prepared for encoding.

Padding: The remaining unmasked positions are aligned with padding tokens, resulting in a much
smaller unmasked-only matrix Vunmasked. m denotes the maximum length of the unmasked sample.
We include a scheme to illustrate the processing flow (see App. 2).

Embedding: Expression value and gene embeddings are separately projected. d denotes the di-
mension of the embedding. The expression embedding is calculated through an auto-discretization
mapping. The gene embedding is retrieved from a randomly initialized lookup table.

Combining Expression and Gene Embeddings: The expression and gene embeddings (E and G)
are element-wise added to form the input embedding, which is then fed into the encoder of the model.

Encoding: The sum of the embeddings is input into the encoder, which implements self-attention
mechanisms using a Transformer-like architecture.

Extending masked and zero embeddings: The intermediate encoder embedding Iencoder is com-
bined with embeddings for masked and zero-value positions.

Decoding: The combined embeddings are processed by the decoder, utilizing self-attention mecha-
nisms instead of the typical casual attention used in NLP decoders.

Loss Computation: Decoder embedding is projected to model output with an MLP layer. The mean
squared error (MSE) loss is computed between the predicted masked values from the model and their
corresponding ground truth values.

3.1 Encoder

The scRNA-seq data is characterized by its high sparsity, with cell information largely concentrated in
the non-zero expression values. Thus, the encoder is designed to focus only on the non-zero part of the
unmasked matrix, Vunmasked. The encoder is based on a traditional multi-head attention transformer
and takes the combination of value embedding, E, and gene embedding, G, as its input, I ∈ Rc×m×d.
The value and gene embeddings are similar to the word and positional embeddings in natural language
modeling, respectively. The value embedding, E, is generated using the auto-discretization strategy
discussed previously, while the gene embedding, G, is retrieved from a function fL that maps the
gene symbols into the embedded vocabulary.

E = Autobin(Vunmasked ⊙Mnonzero), G = fL(genes), I = E +G (1)

Then the encoder processes the input embeddings I and generates the high-level gene representations
Iencoder ∈ Rb×m×d via the multi-head attention mechanism.

Iencoder = Trm(fQ(I), fK(I), fV (I)) (2)

where fQ, fK , fV are the project functions. Trm denotes the Transformer block.

It is worth emphasizing that our encoder only operates on a subset of genes, reducing the length of
the processed sequence to 1/10 of the original. This allows the full-length transformer to be used
without any computational approximations.

3.2 Decoder

Unlike the encoder which focuses on the main information (non-zero expression values) in the cells,
the decoder in the system performs full-length feature abstraction and extraction. The input to the
decoder, Ifull, comprises three token types: the output from the encoder, Iencoder, the genes with
zero expression embs Izero, and the mask token embs Imasked. Out of these tokens, genes with zero
expression make up 90% of all tokens. The gene embeddings are concatenated with all of these
tokens to provide the decoder with gene-specific information for the corresponding mask tokens,
followed by a full connection layer.

Ifull = Wp(Iencoder ⊕ Izero ⊕ Imasked) + bp (3)
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where ⊕ represents the concatenation operation, and Wp and bp are learnable parameters that project
the decoder’s embedding size.

The decoder in the framework is optimized for long-sequence attention calculations and employs the
Performer architecture as its backbone. The decoder transforms the input Ifull into final gene-level
embeddings, Idecoder ∈ Rb×n×d, and predicts the masked values through a shared linear layer,
W ∈ Rd×1, applied across all genes. The operations are expressed as follows:

Idecoder = Trm((fQ(Ifull), fK(Ifull), fV (Ifull)), Ṽ = Idecoder ·W (4)

The decoder has a smaller model size compared to the encoder, with a smaller embedding size, fewer
attention layers, and fewer attention heads. For instance, in the largest model configuration, the layer
depth ratio between the encoder and decoder is 2:1 and the head number ratio is 1.5:1 (see App.
Table 2). Similarly, the principle of asymmetric encoder-decoder design has been proven powerful
in masked autoencoders (MAE) [13], which is tailored for CV data pre-training. Unlike MAE,
xTrimoGene utilizes the biased masking strategy to avoid the learning process being dominated
by zero tokens. Though the scRNA-seq data is distinct from images, our results show that the
performance gains of xTrimoGene are comparable to those of MAE, with more efficient training and
better downstream task performance.

3.3 Auto-discretization strategy

Our aim is to transform an expression value v into a hidden embedding, denoted as e. The transforma-
tion is achieved using an auto-discretization block. This auto-discretization process involves a random
look-up table T defined in Rd×b. In this representation, d refers to the embedding dimension, while b
is the number of bins with a default value of 100. The transformation starts by applying a linear layer
to the expression value, given by v1 = v · w1, where w1 represents the weight vector. The resulting
v1 is then subjected to a leaky ReLU activation, resulting in v2 = Leaky_ReLU(v1). Subsequently, a
cross-layer projection is applied, represented by v3 = w2 · v2 + α · v2. Here, w2 denotes the weight
vector, and α is a scaling mixture factor. Next, the bin weights of v3 are normalized using the softmax
function, resulting in v4 = softmax(v3). Finally, the transformed value is represented as a weighted
combination of individual embeddings from the look-up table, given by e = T · v4. It’s important to
note that the weights in this combination serve as learnable parameters.

To validate the effectiveness of the expression value projection, we conducted an analysis of viewing
the weight distribution pattern for continuous values. Our results showed that the normalized weight
distribution of the close values exhibited smooth transitions and that of the distant values being clearly
distinguishable (App. section 3 Figure 1). This supports the conclusion that the auto-discretization
strategy effectively represents continuous values with high resolution while preserving relatively rich
meaning.

We also compared the performance of the proposed auto-discretization strategy with three other
discretization methods: (1) Round bin with zero, in which values are rounded to the nearest integer,
and zeros are kept as it is, (2) Up bin without zero. Values greater than zero are converted to the
nearest ceiling integer, while zero is represented as individual 0. (3) Equal bin. All the values fall into
a fixed percentage interval, which is calculated by value distribution and frequency. We evaluated
the different strategies on a standard cell clustering task (see App. 4) and found that the proposed
auto-discretization strategy outperformed the others (as shown in Figure2 A), demonstrating the
importance of high-resolution projections in handling expression values.

4 Training Strategy

We now explain the strategy used to train the asymmetric encoder-decoder transformer. Pre-trained
task and masking strategy are outlined, see App. 5 for acceleration strategy.

4.1 Regression masked task

The traditional masked language task is a multi-class classification problem, where the predicting
target is a single token with limited, naturally distinct categories. In contrast, the normalized gene
expression value is a continuous scalar. To fit the data property, we modify the pre-trained learning
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(A) (B)

Figure 2: Pre-training strategy ablation study. (A) Performance comparison between auto discretiza-
tion strategy and other binning methods for expression value projection. The cell clustering task is
evaluated and five metrics are displayed. ARI for Adjusted Rand index, NMI for Normalized Mutual
Information, HOMO for Homogeneity, CP for Completeness and SIL for Silhouette Coefficient. (B)
Performance of pre-trained models with different task modes, including regression and classification
settings. The cell clustering task is evaluated. See the main text for details.

objective to a regression task, aimed at recovering the absolute value of the masked positions. The
loss function employed is the MSE between the ground truth and the predicted values:

Loss =
1

(n−m) ∗ c
∑

(Vi,j − Ṽi,j)
2 (5)

where n represents the number of all genes, m represents the maximum length of the unmasked posi-
tions in a sample, and c represents the number of cells. To evaluate the efficacy of this modification,
we compared the regression setting with the classification setting on the cell clustering task. The
results indicate that the regression model outperforms the classification model (Figure 2B), providing
evidence of the benefits of learning a more fitted representation.

4.2 Masking strategy

We mask both non-zeros and zeros positions though the scRNA-seq expression matrix is highly sparse
(where zero percentage is usually over 90%). As the zero positions percentage is much higher than
non-zero positions, the masked ratio can’t be the same for the two types. Otherwise, the model tends
to predict all zeros and still obtains a low error level. We propose to mask an almost equal number
of positions for zero and non-zeros positions (see App. section 6 Table 1). The setting enforces the
model to learn embeddings for all values and not to be dominated by zero representation. We found
zero values supervision is necessary to boost the performance (App. Figure 2), which demonstrates
that some zeros represent the true extremely low expression level. This type of zeros is informative to
illustrate how the gene abundant behaves inside the cell.

The recovery of masked tokens in NLP is challenging due to the fact that word comprehension relies
heavily on long-range interactions rather than local context. Accurate inference of the missing tokens
can be achieved at low masking ratios (15%) where the information in the entire sentence is still
relatively redundant and encoded by the unmasked tokens. We investigated the density of information
needed for the scRNA-seq regression task by training models with different masking ratios (for
non-zero values, the ratio was set 10 times higher than for zero values) ranging from 15% to 90%
with a 15% interval. The models were then evaluated on the cell clustering task, with the results
showing that performance improved first and then degraded as the masking ratio increased. When the
masking ratio was close to 30%, the majority of metrics reached a peak (App. Figure 3). We also
found current biased masking is optimal (App. Figure 4) and the percentage of [MASK] tokens agrees
well with NLP tasks (App. Figure 5). These results suggest that the scRNA-seq expression vector
contains more redundant information than a sentence and highlight the role of hidden regulations
between genes in constraining the inference of expression values.
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5 Experiments

Next we will explain our experimental settings and results. The dataset description can be referred to
App. 1.

5.1 Computational efficiency

We quantitatively compared the training cost of xTrimoGene with other two encoder-only models,
including full-length attention Transformer and kernel-based approximation Performer (scBERT). For
an apple-to-apple comparison, three models are set to approximately 10 million trainable parameters
and trained on 5 million samples over 5 epochs. We calculated the corresponding FLOPs, where
matrix multiplication operations are considered only. We observed that total FLOPs for Performer
(scBERT) decreased to 10% of native Transformer (see Table 1). Notably, xTrimoGenes runs 3-times
faster than Performer. The results validate the efficiency of xTrimoGene, which is readily adapted for
large-scale data pre-training.

Table 1: Computational efficiency comparison between different algorithms. The resource column is
normalized by the Transformer row.

Model name Parameter Forward + backward Total train Resource
(M) (FLOPs/sample) (FLOPs)

Transformer 11.3 9.86E+12 2.46E+20 100%
Performer 8.9 1.06E+12 2.65E+19 10.8%
xTrimoGene 9.8 3.35E+11 8.38E+18 3.4%

5.2 Scalability

The Deep Learning community has shown significant interest in the scalability of proposed models
[18, 2]. Vanilla Transformer models are challenging to scale due to their computational time
and resource requirements, which increase quadratically with model size. Varieties of attention
mechanisms have been proposed to accelerate training speed, a critical factor for model scaling.

To test the scale-up ability of xTrimoGene, we pre-trained three models across multiple compute
regions and scales (e.g., from 3M to 100M parameters). The detailed hyperparameter setting is
displayed in the App. Table 2. The training curve clearly shows all models are steadily down to a
lower loss when training steps increase (App. Figure 6). More importantly, the xTrimoGene-100M
model obtains a significant improvement over the xTrimoGene-10M model, which is also superior
to the xTrimoGene-3M model. The tendency is consistent across different data sizes. The results
suggest xTrimoGene framework is robust to scale-up, making it possible and convenient to pre-train
larger models with more data.

5.3 Robustness on high sparse data

scRNA-seq data often exhibit varying levels of sparsity, thus it’s necessary to assess whether xTrimo-
Gene is robust in handling different sparse data. To verify the robustness, we divided the test samples
into subgroups based on cell type and calculated the sparsity level (i.e., percentage of zero values in
the expression matrix) and Pearson correlation coefficient between the predicted and actual values.
Our results reveal that the correlation gradually decreases as the sparsity level increases, as expected
(Figure 3A). However, the correlation remains above 0.8 even when the sparsity level reaches 96%
(Figure 3A), indicating the robustness of xTrimoGene. We also compared xTrimoGene’s performance
with Performer and found that xTrimoGene consistently achieves a higher correlation across most
subgroups (Figure 3B). These findings demonstrate that xTrimoGene is robust in handling highly
sparse data and outperforms encoder-only architectures.

The performance of the encoder-decoder and encoder-only architectures have been comparatively
analyzed in the NLP domain, with the former demonstrating effectiveness in language comprehension
and the latter in context generation. Apart from comparison on masked value recovery, we further
evaluated xTrimoGene against encoder-only Performer on the cell clustering task. The results

7



(A) (B) (C)

Figure 3: Comparison of performance for different sparse level data. (A) xTrimoGene performance for
recovering masked values at different sparse levels. Each dot represents a subset defined by cell type.
Sparse level is calculated as the ratio between zero value percentages. Pearson correlation coefficient
metric is calculated on masked positions. (B) Performance comparison of xTrimoGene and Performer
while recovering masked values at different sparse levels. Dot has the same meaning as (A) but the
dot size is proportional to the sparse level. Both the x and y axis denotes the Pearson correlation
coefficient metric for a particular algorithm. (C) Comparison of performance for xTrimoGene
framework and encoder-only framework. Cell clustering task is evaluated.

demonstrate that xTrimoGene achieves superior performance, reaffirming its proficiency in latent
embedding extraction (Figure 3C).

5.4 Evaluation on downstream tasks

Currently, multiple tasks have been established to evaluate different models, including well-defined
cell type annotation and recently developed perturbation response prediction tasks. We first assessed
the performance of xTrimoGene on these single-cell tasks. Additionally, we explored the potential
application on bulk RNA-sequencing data, with a focus on synergistic drug combination prediction.

5.4.1 Cell type annotation

First, we evaluated xTrimoGene’s performance on cell type annotation task with Zheng68K [39]
and Segerstolpe [31] dataset, which has been widely benchmarked. We compared the xTrimoGene
against other several methods, including scBERT [36], ACTINN [23], Scanpy [34], CellTypist [6],
scVI [21] and singleCellNet [37]. For the xTrimoGene model, we added a max-pooling layer and a
linear layer to predict cell type labels with fine-tuning mode (see App. 8.1). For other methods, we
followed their instruction with the default parameter setting. We observed that xTrimoGene achieves
a high Precision and F1 score, surpassing all the other methods (Table 2). The results indicated that
xTrimoGene learns a well-represented cellular embedding (visualized in App. Figure 7) by simply
aggregating contextual gene embedding.

Table 2: The cell annotation performance on the Zheng68K and Segerstolpe dataset. xTrimoGene is
evaluated with 100M parameter model.

Method Name Zheng68K Segerstolpe
Precision F1 score Precision F1 score

xTrimoGene 0.7335± 0.0226 0.7354 ± 0.0189 0.8112 ± 0.0009 0.8140 ± 0.0008
scBERT 0.7029± 0.0115 0.6695± 0.0077 0.6818± 0.0736 0.6703± 0.0653
ACTINN 0.6720± 0.0021 0.6486± 0.0041 0.7545± 0.0018 0.7219± 0.0073
Scanpy 0.6111± 0.0017 0.5474± 0.0085 0.6274± 0.0000 0.5398± 0.0000
CellTypist 0.7454 ± 0.0009 0.7151± 0.0038 0.7923± 0.0003 0.8117± 0.0001
scVI 0.4883± 0.0005 0.4843± 0.0008 0.5101± 0.0022 0.5208± 0.0016
singleCellNet 0.6452± 0.0013 0.5982± 0.0027 0.7551± 0.0096 0.8055± 0.0076
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5.4.2 Perturbation response prediction

Recently, perturb-seq technology was established to screen gene expression response given pooled
perturbations at single-cell level [8]. Several algorithms have also been developed to predict per-
turbation effects [30, 22] at the single cell level, i.e., what is the expression value of genes after
perturbation? We compared the native GEARS[30] model with and without incorporating embeddings
from xTrimoGene.

The normal state (before perturbation) gene expression profile is fed into xTrimoGene and we obtained
the context embedding, which replaces raw expression value input in the GEARS model (App. 8.2).
All the other settings remain unchanged. The evaluated dataset (Norman et al. [26]) contains both
single and double gene perturbation and we thus assess the performance across different perturbation
levels. As shown in Figure 4A, GEARS with xTrimoGene embedding scores a lower MSE (decreased
14.8%) for top20 differential expressed genes across all perturbation scenarios. Notably, the tendency
is consistent across different perturbation levels, regardless the perturbed target is seen or not. We also
compared against the scBERT embedding and observed a similar trend, where xTrimoGene achieves
better results (App. Table 3). The results demonstrated that the pre-training strategy empowers
xTrimoGene to capture constraints under various circumstances, including post-perturbations. The
application further proved the efficacy and potential of xTrimoGene to boost scRNA-seq based tasks.

(B)(A)

Figure 4: (A) The MSE of the top 20 deferentially expressed (DE) genes given by different models
on perturbation response prediction. The top 20 DE genes are calculated between the before and
post-perturbation expression profiles. "Total" denotes evaluating all test perturbation sets. "1-gene"
denotes evaluation on the single gene perturbation subset, where the perturbed target is not seen in
the training set. "2-gene" represents the sub-test set for perturbing two genes simultaneously. "seen0",
"seen1" and "seen2" denotes zero, one or two perturbed targets are not seen in the training set,
respectively. The black line denotes a 95% confidence interval. (B) ROC curve of different models on
drug combination synergy prediction task. xTrimoGene denotes replacing the raw expression profile
with context embeddings in the DeepDDS framework and others remain unchanged. Refer to App.
8.3 for more details.

5.4.3 Synergistic drug combinations prediction

The drug synergistic task evaluates how patients or cells respond to a drug combination interven-
tion [25]. However, the generated wet-lab experimental data only covers a tiny search space of
possible drug combinations. Multiple models have been proposed to accelerate predicting the syner-
gistic landscape of drugs [28, 33]. For instance, DeepDDS integrates genomic expression profiles
and drug chemical information, greatly improving the prediction performance. We further explored
whether xTrimoGene is able to generate good latent embedding for this bulk expression data.

Similar to the perturbation prediction test, we adapted xTrimoGene to DeepDDS with the intermediate
context embedding (see App. 8.3). We also included DeepSynergy and Random Forest for comparison.
As illustrated in Figure 4B, utilizing embedding from the xTrimoGene model outperforms all the
other models. The result proved that xTrimoGene can accurately capture cell-level representation,
even for bulk sequencing data. This also opens the avenue for xTrimoGene to be applied across other
biological modeling tasks, especially where bulk-level transcriptome data is available.
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6 Conclusion

xTrimoGene is a new, efficient framework for learning scRNA-seq data. It proposes an asymmetric
encoder-decoder framework that takes advantage of the sparse gene expression matrix and estab-
lishes the projection strategy of continuous values with a higher resolution. The results show that
xTrimoGene is scalable and performs well on tasks like cell type annotation, perturbation response
prediction, and synergistic drug combination prediction. The experiments demonstrate the efficacy of
pre-training in single-cell biology. xTrimoGene is potentially adapted to other types of cell modeling
analysis, including rare cell detection (App. 8.4), batch effect removal and regulatory network
construction.

Certain limitations exist for xTrimoGene and further work is desired to advance the design. At
present, xTrimoGene major utilizes gene expression values during the pre-training stage, overlooking
varieties of other related meta-information like sample condition (health/disease), cell type, tissue
type, sequencing platform, etc. These rich annotations are biologically meaningful and highly
correlated with the expression pattern within a cell. The memory consumption for inference with the
xTrimoGene-100M model is approximately 50GB, whose hardware requirement (Nvidia A100 80G
GPU) is beyond some academic labs, thus computational or memory-efficient engineering techniques
tend to advance the model pre-training and application.

xTrimoGene has been integrated into BioMap’s single-cell analysis platform, functioning as a
fundamental and essential model (as depicted in the App. Figure 9). The pre-trained model services
have been publicly available. In the future, with the increase of data, larger pre-trained models are
expected to drive more advancements in various downstream task learning.

Author Contributions and Acknowledgments

Le Song led the project by designing its scope, conceptualizing ideas, integrating resources, and
making decisions on techniques. Xingyi Cheng played a key role in the development of the xTrimo-
Gene framework, auto-discretization and unsupervised objectives, contributing concrete ideas and
pseudocode, along with code review. Jing Gong and Mingsheng Hao (Research Intern at BioMap)
were primarily responsible for conducting pre-training and downstream experiments, serving as the
first authors of the paper. Their work covered areas such as model scaling, cell type annotation,
perturbation response prediction, and synergistic drug combinations prediction. Xin Zeng made
significant contributions to the code of the xTrimoGene framework, worked with an early performer
version, and conducted initial downstream experiments. Chiming Liu oversaw the engineering aspects
of the project, including the implementation of the data pipeline and FLOPs computation. Jianzhu
Ma, Xuegong Zhang, Taifeng Wang, and Le Song conceived the project and provided invaluable
guidance for the project and contributed their expertise in computational biology knowledge. Taifeng
Wang also played a pivotal role in pushing for the model’s service implementation. Finally, Jing
Gong, Mingsheng Hao, Xingyi Cheng, and Le Song collectively contributed to writing this paper.

In addition, we would like to express our gratitude to the individuals at BioMap who have made
contributions to our project. Chenrui Xu and Yucheng Guo played roles in data preprocessing and
integration. Zhaoren He’s expertise in data analysis and application greatly enhanced our work, and
we deeply appreciate his contributions.

This work was supported by the Ministry of Science and Technology of the People’s Republic
of China (2022YFF1203004), the Beijing Municipal Science & Technology Commission and the
Administrative Commission of Zhongguancun Science Park(Z221100003522022). And this work
was also funded by BioMap.

References
[1] Nadav Brandes, Dan Ofer, Yam Peleg, Nadav Rappoport, and Michal Linial. ProteinBERT: a

universal deep-learning model of protein sequence and function. Bioinformatics, 38(8):2102–
2110, 02 2022.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

10



[3] Geng Chen, Baitang Ning, and Tieliu Shi. Single-cell rna-seq technologies and related compu-
tational data analysis. Frontiers in genetics, page 317, 2019.

[4] Jiayang Chen, Zhihang Hu, Siqi Sun, Qingxiong Tan, Yixuan Wang, Qinze Yu, Licheng Zong,
Liang Hong, Jin Xiao, Tao Shen, et al. Interpretable rna foundation model from unannotated
data for highly accurate rna structure and function predictions. bioRxiv, pages 2022–08, 2022.

[5] Sijie Chen, Yanting Luo, Haoxiang Gao, Fanhong Li, Yixin Chen, Jiaqi Li, Renke You, Min-
sheng Hao, Haiyang Bian, Xi Xi, et al. heca: The cell-centric assembly of a cell atlas. Iscience,
25(5):104318, 2022.

[6] C. Domínguez Conde, C. Xu, L. B. Jarvis, D. B. Rainbow, S. B. Wells, T. Gomes, S. K. Howlett,
O. Suchanek, K. Polanski, H. W. King, L. Mamanova, N. Huang, P. A. Szabo, L. Richardson,
L. Bolt, E. S. Fasouli, K. T. Mahbubani, M. Prete, L. Tuck, N. Richoz, Z. K. Tuong, L. Campos,
H. S. Mousa, E. J. Needham, S. Pritchard, T. Li, R. Elmentaite, J. Park, E. Rahmani, D. Chen,
D. K. Menon, O. A. Bayraktar, L. K. James, K. B. Meyer, N. Yosef, M. R. Clatworthy, P. A.
Sims, D. L. Farber, K. Saeb-Parsy, J. L. Jones, and S. A. Teichmann. Cross-tissue immune cell
analysis reveals tissue-specific features in humans. Science, 376(6594):eabl5197, 2022.

[7] Jiarui Ding, Xian Adiconis, Sean K. Simmons, Monika S. Kowalczyk, Cynthia C. Hession,
Nemanja D. Marjanovic, Travis K. Hughes, Marc H. Wadsworth, Tyler Burks, Lan T. Nguyen,
John Y. H. Kwon, Boaz Barak, William Ge, Amanda J. Kedaigle, Shaina Carroll, Shuqiang Li,
Nir Hacohen, Orit Rozenblatt-Rosen, Alex K. Shalek, Alexandra-Chloé Villani, Aviv Regev,
and Joshua Z. Levin. Systematic comparison of single-cell and single-nucleus rna-sequencing
methods. Nature Biotechnology, 38(6):737–746, Jun 2020.

[8] Atray Dixit, Oren Parnas, Biyu Li, Jenny Chen, Charles P Fulco, Livnat Jerby-Arnon, Ne-
manja D Marjanovic, Danielle Dionne, Tyler Burks, Raktima Raychowdhury, et al. Perturb-seq:
dissecting molecular circuits with scalable single-cell rna profiling of pooled genetic screens.
cell, 167(7):1853–1866, 2016.

[9] Mario Flores, Zhentao Liu, Tinghe Zhang, Md Musaddaqui Hasib, Yu-Chiao Chiu, Zhenqing Ye,
Karla Paniagua, Sumin Jo, Jianqiu Zhang, Shou-Jiang Gao, et al. Deep learning tackles single-
cell analysis—a survey of deep learning for scrna-seq analysis. Briefings in bioinformatics,
23(1):bbab531, 2022.

[10] Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On embeddings for numerical features in
tabular deep learning. Advances in Neural Information Processing Systems, 35:24991–25004,
2022.

[11] Christopher Heje Grønbech, Maximillian Fornitz Vording, Pascal N Timshel, Casper Kaae
Sønderby, Tune H Pers, and Ole Winther. scVAE: variational auto-encoders for single-cell gene
expression data. Bioinformatics, 36(16):4415–4422, 05 2020.

[12] Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong Qiu, Yuan Yao,
Ao Zhang, Liang Zhang, Wentao Han, Minlie Huang, Qin Jin, Yanyan Lan, Yang Liu, Zhiyuan
Liu, Zhiwu Lu, Xipeng Qiu, Ruihua Song, Jie Tang, Ji-Rong Wen, Jinhui Yuan, Wayne Xin
Zhao, and Jun Zhu. Pre-trained models: Past, present and future. AI Open, 2:225–250, 2021.

[13] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 16000–16009, 2022.

[14] Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model robust-
ness and uncertainty. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 2712–2721. PMLR, 09–15 Jun 2019.

[15] Ruochen Jiang, Tianyi Sun, Dongyuan Song, and Jingyi Jessica Li. Statistics or biology: the
zero-inflation controversy about scrna-seq data. Genome Biology, 23(1):31, Jan 2022.

[16] Dragomirka Jovic, Xue Liang, Hua Zeng, Lin Lin, Fengping Xu, and Yonglun Luo. Single-cell
rna sequencing technologies and applications: A brief overview. Clinical and Translational
Medicine, 12(3):e694, 2022.

11



[17] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

[18] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[19] Mengwei Li, Xiaomeng Zhang, Kok Siong Ang, Jingjing Ling, Raman Sethi, Nicole Yee Shin
Lee, Florent Ginhoux, and Jinmiao Chen. Disco: a database of deeply integrated human
single-cell omics data. Nucleic acids research, 50(D1):D596–D602, 2022.

[20] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, 2023.

[21] Romain Lopez, Jeffrey Regier, Michael B Cole, Michael I Jordan, and Nir Yosef. Deep
generative modeling for single-cell transcriptomics. Nature methods, 15(12):1053–1058, 2018.

[22] Mohammad Lotfollahi, Anna Klimovskaia Susmelj, Carlo De Donno, Yuge Ji, Ignacio L Ibarra,
F Alexander Wolf, Nafissa Yakubova, Fabian J Theis, and David Lopez-Paz. Compositional
perturbation autoencoder for single-cell response modeling. BioRxiv, 2021.

[23] Feiyang Ma and Matteo Pellegrini. Actinn: automated identification of cell types in single cell
rna sequencing. Bioinformatics, 36(2):533–538, 2020.

[24] Mohamed Marouf, Pierre Machart, Vikas Bansal, Christoph Kilian, Daniel S. Magruder, and
Stefan Bonn Christian F. Krebs. Realistic in silico generation and augmentation of single-cell
rna-seq data using generative adversarial networks. Nature Communications, 11(1)(166):786–
793, 2020.

[25] Reza Bayat Mokhtari, Tina S Homayouni, Narges Baluch, Evgeniya Morgatskaya, Sushil
Kumar, Bikul Das, and Herman Yeger. Combination therapy in combating cancer. Oncotarget,
8(23):38022, 2017.

[26] Thomas M. Norman, Max A. Horlbeck, Joseph M. Replogle, Alex Y. Ge, Albert Xu, Marco
Jost, Luke A. Gilbert, and Jonathan S. Weissman. Exploring genetic interaction manifolds
constructed from rich single-cell phenotypes. Science, 365(6455):786–793, 2019.

[27] Ahmad Pesaranghader, Stan Matwin, Marina Sokolova, Jean-Christophe Grenier, Robert G
Beiko, and Julie Hussin. deepSimDEF: deep neural embeddings of gene products and gene
ontology terms for functional analysis of genes. Bioinformatics, 38(11):3051–3061, 05 2022.

[28] Kristina Preuer, Richard P I Lewis, Sepp Hochreiter, Andreas Bender, Krishna C Bulusu, and
Günter Klambauer. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning.
Bioinformatics, 34(9):1538–1546, 12 2017.

[29] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. Pre-trained
models for natural language processing: A survey. Science China Technological Sciences,
63(10):1872–1897, 2020.

[30] Yusuf Roohani, Kexin Huang, and Jure Leskovec. Gears: Predicting transcriptional outcomes
of novel multi-gene perturbations. BioRxiv, pages 2022–07, 2022.

[31] Åsa Segerstolpe, Athanasia Palasantza, Pernilla Eliasson, Eva-Marie Andersson, Anne-Christine
Andréasson, Xiaoyan Sun, Simone Picelli, Alan Sabirsh, Maryam Clausen, Magnus K Bjursell,
David M Smith, Maria Kasper, Carina Ämmälä, and Rickard Sandberg. Single-cell tran-
scriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab.,
24(4):593–607, October 2016.

[32] Jingshu Wang, Divyansh Agarwal, Mo Huang, Gang Hu, Zilu Zhou, Chengzhong Ye, and
Nancy R Zhang. Data denoising with transfer learning in single-cell transcriptomics. Nature
methods, 16(9):875–878, 2019.

12



[33] Jinxian Wang, Xuejun Liu, Siyuan Shen, Lei Deng, and Hui Liu. Deepdds: deep graph neural
network with attention mechanism to predict synergistic drug combinations. Briefings in
Bioinformatics, 23(1):bbab390, 2022.

[34] F Alexander Wolf, Philipp Angerer, and Fabian J Theis. Scanpy: large-scale single-cell gene
expression data analysis. Genome biology, 19:1–5, 2018.

[35] Yijia Xiao, Jiezhong Qiu, Ziang Li, Chang-Yu Hsieh, and Jie Tang. Modeling protein using
large-scale pretrain language model. arXiv preprint arXiv:2108.07435, 2021.

[36] Fan Yang, Wenchuan Wang, Fang Wang, Yuan Fang, Duyu Tang, Junzhou Huang, Hui Lu, and
Jianhua Yao. scbert as a large-scale pretrained deep language model for cell type annotation of
single-cell rna-seq data. Nature Machine Intelligence, 4(10):852–866, 2022.

[37] Patrick Cahan Yuqi Tan. Singlecellnet: A computational tool to classify single cell rna-seq data
across platforms and across species. Cell Systems, 19(2):207–213, 2019.

[38] Ningyu Zhang, Zhen Bi, Xiaozhuan Liang, Siyuan Cheng, Haosen Hong, Shumin Deng,
Jiazhang Lian, Qiang Zhang, and Huajun Chen. Ontoprotein: Protein pretraining with gene
ontology embedding. arXiv preprint arXiv:2201.11147, 2022.

[39] Grace XY Zheng, Jessica M Terry, Phillip Belgrader, Paul Ryvkin, Zachary W Bent, Ryan
Wilson, Solongo B Ziraldo, Tobias D Wheeler, Geoff P McDermott, Junjie Zhu, et al. Massively
parallel digital transcriptional profiling of single cells. Nature communications, 8(1):14049,
2017.

13


	Introduction
	Characteristics of Single-Cell RNA-seq Data
	xTrimoGene Architecture
	Encoder
	Decoder
	Auto-discretization strategy

	Training Strategy
	Regression masked task
	Masking strategy

	Experiments
	Computational efficiency
	Scalability
	Robustness on high sparse data
	Evaluation on downstream tasks
	Cell type annotation
	Perturbation response prediction
	Synergistic drug combinations prediction


	Conclusion

