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Abstract

In this work, we revisit the generalization error of stochastic mirror descent for1

quadratically bounded losses studied in Telgarsky (2022). Quadratically bounded2

losses is a broad class of loss functions, capturing both Lipschitz and smooth3

functions, for both regression and classification problems. We study the high4

probability generalization for this class of losses on linear predictors in both5

realizable and non-realizable cases when the data are sampled IID or from a6

Markov chain. The prior work relies on an intricate coupling argument between7

the iterates of the original problem and those projected onto a bounded domain.8

This approach enables blackbox application of concentration inequalities, but9

also leads to suboptimal guarantees due in part to the use of a union bound10

across all iterations. In this work, we depart significantly from the prior work of11

Telgarsky (2022), and introduce a novel approach for establishing high probability12

generalization guarantees. In contrast to the prior work, our work directly analyzes13

the moment generating function of a novel supermartingale sequence and leverages14

the structure of stochastic mirror descent. As a result, we obtain improved bounds15

in all aforementioned settings. Specifically, in the realizable case and non-realizable16

case with light-tailed sub-Gaussian data, we improve the bounds by a log T factor,17

matching the correct rates of 1/T and 1/
√
T , respectively. In the more challenging18

case of heavy-tailed polynomial data, we improve the existing bound by a poly T19

factor.20

1 Introduction21

Along with convergence analysis of optimization methods, understanding the generalization of models22

trained by these methods on unseen data is an important question in machine learning. However,23

despite the number of works attempting to answer it, the problem has not been fully understood, even24

in the simplest setting of linear predictors constructed with the standard stochastic gradient/mirror25

descent. A great part of prior works [28, 10, 25, 26, 27] focus only on the generalization on linearly26

separable data and/or of models trained with specific losses with exponentially decaying tails such as27

logistic loss. The question of what we can guarantee beyond these settings remains open.28

Recently, [30] proposes a new approach to analyze the generalization error with high probability of29

stochastic mirror descent for a broad class of quadratically bounded losses, beyond the realizable30

setting. This class of losses encapsulates both Lipschitz and smooth functions, for both regression31

and classification problems. The obtained bounds complement existing in-expectation bounds [7]32

and nearly match the counterpart of convergence rates in optimization. While this result pushes33

forward the state of the art, the obtained guarantees do not completely resolve the problem. The34
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central piece of the proposed approach is a “coupling” technique between the iterates of the original35

problem and those projected onto a bounded domain. In this technique, one first constrains the36

problem in a bounded domain with a well chosen diameter. The bounded domain diameter allows to37

apply concentration inequalities as a blackbox and obtain bounds in high probability. Then using38

an inductive argument and a union bound across all iterations, one can show that the iterates in39

the original problem coincide with the ones in the constrained problem. Due to the union bound,40

the success probability decreases from 1− δ to 1− Tδ, where T is the number of iterations in the41

algorithm. This loss translates to a milder log T factor loss in the guarantee in the case of realizable42

data , and a more significant poly T factor loss in the non-realizable setting when the data has43

polynomial tails. Thus a natural question arises of whether we can obtain a stronger analysis that44

closes these remaining gaps.45

In this paper, we revisit these generalization bounds for quadratically bounded losses by [30]. We46

introduce a novel approach to analyze the generalization errors of stochastic mirror descent in both47

realizable and non-realizable cases when the data are sampled IID or from a Markov chain. In all48

these cases, we remove the need to use the union bound argument, thus preventing the loss in the49

success probability. This translates to the following improvements:50

− In the realizable, and the non-realizable cases with sub-gaussian tailed data and Markovian data,51

we improve the bounds by a log T factor. This improvement comes from analyzing the moment52

generating function of a martingale difference sequence with well-chosen coefficients. In these cases,53

we also remove the necessity of using the coupling-based argument used in the same work by [30].54

Instead, by solely making use of the problem structure, we arrive at the same conclusion that with55

high probability, the iterates of stochastic mirror descent for quadratically bounded losses behave as56

if the problem domain is bounded.57

− In the non-realizable case with polynomial tailed data, we improve the existing bound by a poly T58

factor. Due to the polynomial dependency on 1
δ , being able to maintain the same success probability59

through all iterations is crucial in this case. Unlike the previous work, we rely on a truncation60

technique. Using a more refined analysis of the truncated random variables, in combination with61

suitable concentration inequalities and the coupling technique, we improve the existing bounds62

significantly.63

1.1 Related Work64

Broadly speaking, there is a rich body of works in optimization and generalization that provide65

convergence guarantees and generalization bounds for stochastic methods. Earlier works often focus66

on in-expectation bounds [3, 19, 21, 13, 7], and bounds in high probability [11, 23, 9, 8] for problems67

with bounded domains or under various additional assumptions such as strong convexity, noise with68

light tails. Recent developments for optimization [20, 5, 15, 18, 6, 12, 4, 14, 24, 17, 16] are able to69

handle unconstrained problems and relax these assumptions, but also require changes to the algorithm70

such as gradient clipping. In generalization error analysis, specifically, a number of prior works,71

including [28, 10, 25, 26, 27], focus only on linearly separable data. Among these, [28, 10, 27] only72

deal with exponentially tailed losses while [25, 26] show generalization bounds for general smooth73

convex losses. Our work, similarly to [30], goes beyond the realizable setting and specific losses. We74

show high probability generalization bounds in both realizable and non-realizable settings for the75

broad class of quadratically bounded losses, for both regression and classification problems.76

The main point of reference for this paper is the work by [30]. This work develops a “coupling”77

technique to bound the generalization error of stochastic mirror descent for quadratically bounded78

losses. This technique has been employed in prior works [5, 6, 4, 24, 22, 17] to obtain high probability79

convergence bounds of stochastic methods in optimization. Our work improves their results by using80

a different approach that takes a closer look at the mechanism of the concentration inequalities and81

leverages the problem structure. When the data are bounded or have sub-gaussian tails, analyzing82

the moment generating function of a novel martingale difference sequence allows us to maintain the83

same success probability, without using either the coupling technique or the union bound. This new84

analysis, however, does not change the observation by [30] that the iterates of the unconstrained and85

the constrained problems coincide with high probability. When the data have a polynomial tail, we86

rely on a truncation technique. In this case, the coupling technique is necessary but not the union87

bound, and we are still able to significantly improve the success rate.88
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In terms of techniques, the work by [16] for optimization is the closest to ours. In this work, the89

authors develop the whitebox approach to analyzing stochastic methods for optimization with light-90

tailed noise. In this work, we study generalization errors. Moreover, in all settings, our choice of91

martingale difference sequences and coefficients are a significant departure from the prior work. In92

particular, in [16] the choice of coefficients only depends on the problem parameters whereas in the93

realizable case, our coefficients depend also on the historical data. Our approach also allows for a94

flexible use of an induction argument without decreasing the success probability, while in [16] the95

bounds are simpler and can be easily achieved in a single step.96

2 Preliminaries97

In this section, we provide the general set up and necessary notations before analyzing stochastic98

mirror descent in the subsequent sections. Overall, we closely follow notations used in [30].99

Domain and norms. In this work, we consider X—the domain of the problem—to be a closed100

convex set or Rd. We will use ∥·∥ to denote an arbitrary norm on X and let ∥·∥∗ be its dual norm. We101

define the Bregman divergence as Dψ(w; v) = ψ(w)− ψ(v)− ⟨∇ψ(v), w − v⟩ where ψ : Rd → R102

is a differentiable function that is 1-strongly convex with respect to the norm ∥·∥.103

Loss functions. Each loss function ℓ : R × R → R≥0 in our consideration can be written using104

a convex scalar function ℓ̃ in one of the two following forms: 1) ℓ(y, ŷ) = ℓ̃(sign(y)ŷ) where105

sign(y) = 1 if y ≥ 0 and = −1 otherwise; and 2) ℓ(y, ŷ) = ℓ̃(y − ŷ). The first form captures106

classification losses and the second regression losses. We will assume that subgradients ∂ℓ of ℓ in107

the second argument always exist, and let ℓ′ denote a subgradient in ∂ℓ. For a function f , we also108

use ∥∂f(w)∥ := sup {∥g∥ : g ∈ ∂f(w)}. We further make the following assumptions, introduced in109

[30] as quadratic boundedness and self-boundedness.110

Assumption 1. We assume that ℓ is (C1, C2)-quadratically-bounded, for some constants C1, C2 ≥ 0,111

i.e., for all y, ŷ112

|ℓ′(y, ŷ)| ≤ C1 + C2 (|y|+ |ŷ|) .
This condition captures both classes of Lipschitz and smooth functions. Indeed, Lemma 1.2 from113

[30] shows that α-Lipschitz functions are (α, 0)-quadratically-bounded while β-smooth functions114

are (
∣∣∣∂ℓ̃(0)∣∣∣ , β)-quadratically-bounded.115

Assumption 2. In the realizable setting, we assume that ℓ is ρ-self-bounding, i.e., ℓ̃ satisfies116

ℓ̃′(z)2 ≤ 2ρℓ̃(z) for all z ∈ R.117

The second assumption is a generalization of smoothness. This assumption is satisfied by smooth118

losses but also certain non-smooth losses such as the exponential loss. This condition is necessary in119

the current analysis to prove 1/T rates in the realizable setting. The readers can refer to [29, 30] for120

more detailed discussion on this assumption.121

Assumptions 1 and 2 are satisfied by commonly used loss functions in machine learning. These122

include the logistic loss ℓ(y, ŷ) = ln(1 + exp(−yŷ)) and the squared loss ℓ(y, ŷ) = 1
2 (y − ŷ)2 (see123

Lemma 1.4 in [30]).124

For the loss function ℓ and the configuration w, and sample (x, y) where x denotes the attribute and125

y the label, we will write ℓx,y = ℓ(y, wTx). We state the following crucial lemma which is the same126

as Lemma A.1 in [30], whose proof will be omitted.127

Lemma 1 (Lemma A.1 in ([30])). Suppose ℓ is (C1, C2)-quadratically-bounded and Bx ≥ 0 is128

given. Given (x, y) such that max {∥x∥∗ , |y|} ≤ Bx and any u, v,129

∥∂ℓx,y(u)∥∗ ≤ Bx (C1 + C2Bx (1 + ∥u∥))
|ℓx,y(u)− ℓx,y(v)| ≤ Bx ∥u− v∥ (C1 + C2Bx (1 + ∥u∥)) .

Risk, IID and Markovian data. When sample (xi, yi) arrives in iteration i of an algorithm,130

we will use the notation ℓi(w) = ℓ(yi, w
Txi). For an algorithm of T iterations, we use Ft =131

σ ((x1, y1), . . . , (xt, yt)) to denote the natural filtration up to and including time t. When the data132

are IID and generated from a distribution π, we define the risk133

R(w) = E(x,y)∼π
[
ℓ(y, wTx)

]
;
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Algorithm 1 Stochastic Mirror Descent
Input w0, step size η
For t in 1 . . . T
gt ∈ ∂ℓt(wt−1)
wt = argminw∈X {⟨ηgt, w⟩+Dψ (w;wt−1)}

In contrast to IID data, Markovian data come from a stochastic process. This setting has also been134

considered in [1]. We let P ts be the distribution of (xt, yt) at iteration t conditioned on Fs. We make135

the following assumption regarding the uniform mixing time of the stochastic process. Note that136

similar assumptions have also appeared in [30, 1].137

Assumption 3. We assume that for some ϵ, τ ≥ 0 of our choice, there is a distribution π such that138

sup
t∈Z≥0

sup
Ft

TV
(
P t+τt , π

)
≤ ϵ.

We refer to the triple (π, τ, ϵ) as an approximate stationarity witness. We then define the risk according139

to the approximate stationary distribution π: R(w) = E(x,y)∼π
[
ℓ(y, wTx)

]
.140

Algorithm. Stochastic Mirror Descent is given in Algorithm 1. In this algorithm, for the simplicity of141

the analysis, we consider a fixed step size η. In each iteration, we pick a subgradient gt ∈ ∂ℓt(wt−1)142

and perform the update step.143

We finally introduce a standard lemma used in the analysis of Stochastic Mirror Descent.144

Lemma 2. For t ≥ 0 and wref ∈ X , we have145

Dψ (wref ;wt+1)−Dψ (wref ;wt) ≤ η (ℓt+1 (wref)− ℓt+1 (wt)) +
η2

2
∥gt+1∥2∗ .

Other notations. We will use wref to refer to a comparator of interest. For the simplicity of the146

exposition, we let D0 = Dψ(wref ;w0), and R∗ = infv∈X R(v). For a loss function ℓ that is147

(C1, C2)-quadratically-bounded, we let C4 = C1 + C2(1 + ∥wref∥).148

3 Generalization bounds of SMD for IID data149

In this section, we distinguish between two cases: the realizable case and the non-realizable case. In150

the realizable case, there exists an optimal solution w∗ ∈ X such that R(w∗) = 0. We will show that151

under mild assumptions, the risks of the solutions output by Algorithm 1 are bounded by O(1/T ). In152

the non-realizable case, we will show, on the other hand, a weaker statement that the excess risks of153

the solutions are bounded by O(1/
√
T ).154

3.1 Realizable case155

In the realizable case, the comparator wref is not necessarily the global minimizer. To show the 1/T156

rate, we will assume wref satisfies R(wref) ≤ ρDψ(wref ;w0)/T and that the loss at wref is bounded.157

The guarantee for the iterates of Algorithm 1 is provided in Theorem 3.158

Theorem 3. Suppose ℓ is convex, (C1, C2)-quadratically-bounded, and ρ-self-bounding. Given T ,159

((xt, yt))t≤T are IID samples with max {∥xt∥∗ , |yt|} ≤ 1 almost surely, wref satisfies R(wref) ≤160

ρDψ(wref ;w0)/T , and maxt<T ℓt+1(wref) ≤ C3 almost surely. Then for η ≤ 1
2ρ , with probability161

at least 1− 2δ, for every 0 ≤ k ≤ T − 1162

1

k + 1

k∑
t=0

R(wt) +
16Dψ (wref ;wk+1)

5(k + 1)η
≤ C

k + 1
+ 3R(wref).

where C = 16C4

5 log 1
δ

√
15
4 D0 + 4ηγC3 +

(
6
ηD0 +

32
5 γC3

)
with γ = max

{
1, log 1

δ

}
.163

The analysis of Theorem 3 relies on the use of concentration inequalities. In contrast to existing164

works that utilize concentration inequalities as a blackbox, we will make use of the mechanism for165
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proving concentration inequalities in order to obtain stronger guarantees. The type of concentration166

inequalities we consider are shown by analyzing the moment generating function of suitably chosen167

martingale sequences. We will use Lemma 14 (Appendix) which gives a basic inequality that bounds168

the moment generating function of a bounded random variable. To start the analysis, we use Lemma169

2 and Assumption 2 to obtain170

Lemma 4. For all t ≥ 0, we have171

Dψ (wref ;wt+1)−Dψ (wref ;wt) ≤ ηℓt+1 (wref)−
η

2
ℓt+1(wt),

and hence, Dψ (wref ;wt) ≤ Dψ (wref ;w0)+η

t∑
i=1

ℓi (wref) = D0 + η

t∑
i=1

ℓi (wref) .

First, let us pay attention to the term
∑t
i=1 ℓi (wref). Recall that the terms ℓi (wref) are non-negative172

and bounded by a constant C3 almost surely. We can analyze the term
∑T
i=1 ℓi (wref) which upper173

bounds all sums
∑t
i=1 ℓi (wref) by studying its moment generating function (or via a concentration174

inequality). We state this bound in the next lemma and defer the proof to the appendix.175

Lemma 5. With probability at least 1− δ,
∑T
i=1 ℓi (wref) ≤ 7

4TR(wref) + C3 log
1
δ .176

Lemma 4 and lemma 5 and the assumption that R(wref) = O (1/T ) imply that with probability at177

least 1− δ, Dψ (wref ;wt) is bounded. In other words, with probability at least 1− δ, the iterates wt178

all lie in a bounded region. One could therefore proceed to assume that the problem domain is simply179

this bounded ball around wref . This is the basic idea behind the “coupling” technique demonstrated180

in [30]. However, the important question is how to obtain a bound for the risk of all iterates even181

when we are working with a problem with unbounded domain. Here, not paying close attention to182

the structure of the problem and the blackbox use of concentration inequalities lead to suboptimal183

bounds. On the other hand, as discussed above, a crucial novelty in our analysis is the choice of a184

supermartingale difference sequence, defined in the proof below. By working from first principles185

using moment generating function of this sequence, we derive two conclusions: 1) an improved risk186

bound can be obtained, and 2) the coupling technique is not necessary.187

Proof Sketch. Towards bounding the risk
∑k
t=0 R(wt), we define random variables188

Zt =
1

2
ztη (R(wt)−R(wref)− ℓt+1 (wref)) + zt (Dψ (wref ;wt+1)−Dψ (wref ;wt))

− 3

16
ztη (R(wref) +R(wt)) , ∀0 ≤ t ≤ T − 1

where zt =
1

ηC4

√
2ηγC3 + 2D0 + 2η

∑t
i=1 ℓi (wref)

; γ = max

{
1, log

1

δ

}
and we let St =

∑t
i=0 Zi; ∀0 ≤ t ≤ T − 1. Using Lemma 4, we can relate Zt and189

ztη (R(wt)−R(wref) + ℓt+1(wref)− ℓt+1(wt)), which is a random variable with expectation 0.190

By Lemma 4, we can show E [exp (Zt) | Ft] ≤ 1 and hence (exp (St))t≥0 is a supermartingale. By191

Ville’s inequality, we have with probability at least 1− δ, for all 0 ≤ k ≤ T − 1192

k∑
t=0

Zt ≤ log
1

δ

Expanding this inequality, in combination with Lemma 5, we obtain the conclusion.193

Remark 6. The new analysis does not change the conclusion observed in [30]—that is, with high194

probability, the iterate sequence (wt)t≥0 behaves as if the domain of the problem is bounded. We195

improve the probability that this event happens.196

3.2 Non-realizable case197

In the non-realizable case, we do not aim for 1/T but only 1/
√
T rates. Hence we do not assume that198

the comparator wref satisfies R(wref) ≤ ρDψ(wref ;w0)/T but rather the following assumption on199

the excess risk:200
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Assumption 4. Let R∗ = infv∈X R(v), assume that R(wref)−R∗ ≤ Dψ(wref ;w0)√
T

.201

We also relax the assumption on the data samples. In the previous case, the data are bounded, i.e202

{∥x∥∗ , |y|} ≤ 1 a.s. We will consider in this section two settings, one when the data come from a203

sub-Gaussian distribution and one when the data distribution has a polynomial tail.204

3.2.1 IID data with sub-Gaussian tails205

We will show the following guarantee:206

Theorem 7. Suppose ℓ is convex, (C1, C2)-quadratically-bounded. Given T , ((xt, yt))t≤T are IID207

samples with Qt = max
{
1, ∥xt∥2∗ , |yt|

2
}

and there exists σ ≥ 0 such that for all λ208

max
{
E
[
exp

(
λ
(
Q2
t − E

[
Q2
t

]))]
,E [exp (λ (Qt − E [Qt]))]

}
≤ exp

(
λ2σ2

)
Let µ1 = E [Qt] and µ2 = E

[
Q2
t

]
. Suppose that wref satisfies Assumption 4. Then for η ≤209

1

4C2

√
Tµ2+2σ

√
T log 1

δ

, with probability at least 1− 2δ, for every 0 ≤ k ≤ T − 1210

1

k + 1

k∑
t=0

(R(wt)−R∗) +
Dψ (wref ;wk+1)

η (k + 1)
≤ R2

η (k + 1)

whereR2 = 16C2
4

(
σ2 + 4µ2

1

)
log 1

δ η
2T+4D0(1+η

√
T )+4η2C2

4

(
Tµ2 + 2σ

√
T log 1

δ

)
= O(1).211

Remark 8. For zero-mean sub-Gaussian variable X , the definition E [exp (λX)] ≤ exp
(
λ2σ2

)
for212

all λ is equivalent to E
[
exp

(
λ2X2

)]
≤ exp

(
λ2σ2

)
for all 0 ≤ λ ≤ 1

σ (see [32]). The lemma213

below shows a property of sub-Gaussian variables under scaling and translating. First let us consider214 ∑T
t=1Q

2
t . Similar to Lemma 5, by bounding the moment generating function of this term, we have215

the following (see also Section B4 in [30]).216

Lemma 9. With probability at least 1− δ,
∑T
t=1Q

2
t ≤ Tµ2 + 2σ

√
T log 1

δ .217

Proof of Theorem 7. The proof of this Theorem uses the technique developed in [16]. We will also218

analyze the moment generating function of a suitable martingale sequence. However, the choice219

of the coefficients will differ significantly from the previous proof. In this case the structure of the220

problem is deeply integrated into the analysis of the martingale. We define221

Zt = ztη (R(wt)−R(wref)) + zt (Dψ (wref ;wt+1)−Dψ (wref ;wt))

− 1

2
ztη

2 ∥gt+1∥2∗ − 4z2t η
2C2

4

(
σ2 + 4µ2

1

)
Dψ (wref ;wt) ∀0 ≤ t ≤ T − 1

where zt =
1

4η2C2
4 (σ

2 + 4µ2
1) (T + t+ 1)

∀ − 1 ≤ t ≤ T − 1

and let St =
∑t
i=0 Zi; ∀0 ≤ t ≤ T − 1. By Lemma 2, we have222

Zt + 4z2t η
2C2

4

(
σ2 + 4µ2

1

)
Dψ (wref ;wt) ≤ ztη (R(wt)−R(wref) + ℓt+1 (wref)− ℓt+1 (wt))

where we have E [(R(wt)−R(wref) + ℓt+1 (wref)− ℓt+1 (wt))] = 0, and using the same notation223

C4 = C1 + C2(1 + ∥wref∥), by Lemma 1,224

|(R(wt)−R(wref) + ℓt+1 (wref)− ℓt+1 (wt))|
≤ |ℓt+1 (wref)− ℓt+1 (wt)|+ |R(wt)−R(wref)|
≤ |ℓt+1 (wref)− ℓt+1 (wt)|+ E [|ℓx,y(wt)− ℓx,y(wref)|]
≤ (Qt + µ1) ∥wref − wt∥C4 = ((Qt − µ1) + 2µ1) ∥wref − wt∥C4

Hence applying Lemma 15,we have225

E [exp (Zt) | Ft] exp
(
4z2t η

2C2
4

(
σ2 + 4µ2

1

)
Dψ (wref ;wt)

)
6



=E [exp (ztηt (R(wt)−R(wref) + ℓt+1 (wref)− ℓt+1 (wt))) | Ft]

≤ exp
(
2z2t η

2C2
4 ∥wref − wt∥2

(
σ2 + 4µ2

1

))
≤ exp

(
4z2t η

2C2
4

(
σ2 + 4µ2

1

)
Dψ (wref ;wt)

)
Therefore E [exp (Zt) | Ft] ≤ 1 and hence (exp (St))t≥0 is a supermartingale. By Ville’s inequality,226

we have with probability at least 1− δ, for all 0 ≤ k ≤ T − 1227

k∑
t=0

Zt ≤ log
1

δ

Expanding this inequality we have228

k∑
t=0

ztηR(wt) + zkDψ (wref ;wk+1)

≤ log
1

δ
+ z−1D0 + ηR(wref)

k∑
t=0

zt +
1

2

k∑
t=0

ztη
2 ∥gt+1∥2∗

+

k∑
t=0

(
zt + 4z2t η

2C2
4

(
σ2 + 4µ2

1

)
− zt−1

)︸ ︷︷ ︸
≤0

Dψ (wref ;wt)

(a)

≤ log
1

δ
+ z−1D0 + ηR(wref)

k∑
t=0

zt +
1

2

k∑
t=0

ztη
2 ∥gt+1∥2∗

where for (a), by the choice of zt = 1

4η2C2
4(σ2+4µ2

1)(T+1+t)
we have zt−1 − zt ≥229

4z2t η
2C2

4

(
σ2 + 4µ2

1

)
. We highlight that this is where the structure of the problem comes into230

play. That is, by setting appropriate coefficients, we can leverage gain in the distance in the231

martingale difference sequence ((zt − zt−1)Dψ (wref ;wt)) to cancel out the loss from bounding the232

moment generating function (4z2t η
2C2

4

(
σ2 + 4µ2

1

)
Dψ (wref ;wt)). Another important property of233

the sequence (zt) is that it is a decreasing sequence and zt
zk

≤ 2 for all t, k. Hence we have234

η

k∑
t=0

(R(wt)−R∗) +Dψ (wref ;wk+1)

≤4C2
4

(
σ2 + 4µ2

1

)
log

1

δ
η2 (T + 1 + k) + 2D0 + 2 (R(wref)−R∗) η(k + 1) + η2

k∑
t=0

∥gt+1∥2∗ .

Combined with Lemma 9, with probability at least 1− 2δ, for all 0 ≤ k ≤ T − 1235

η

k∑
t=0

(R(wt)−R∗) +Dψ (wref ;wk+1)

≤4C2
4

(
σ2 + 4µ2

1

)
log

1

δ
η2 (T + 1 + k) + 2D0 + 2 (R(wref)−R∗) η(k + 1) + η2

k∑
t=0

∥gt+1∥2∗ ;

and
k+1∑
t=1

Q2
t ≤ Tµ2 + 2σ

√
T log

1

δ

Conditioned on this event, we will prove by induction that236

Dψ (wref ;wk) ≤ R2 := 16C2
4

(
σ2 + 4µ2

1

)
log

1

δ
η2T + 4D0 + 4D0η

√
T + 4η2C2

4

(
Tµ2 + 2σ

√
T log

1

δ

)
For the base case k = 0, it is trivial. Suppose for all t ≤ k we have Dψ (wref ;wt) ≤ R2, now we237

prove for t = k + 1. By Lemma 1,238

η2
k∑
t=0

∥gt+1∥2∗ ≤ η2
k∑
t=0

Q2
t+1 (C1 + C2 (1 + ∥wt∥))2 ≤ η2

k∑
t=0

Q2
t+1 (C4 + C2 ∥wt − wref∥)2

7



≤ 2η2C2
4

k+1∑
t=1

Q2
t + 2η2C2

2

k∑
t=0

Q2
t+1 ∥wt − wref∥2

≤ η2
(
2C2

4 + 4C2
2R

2
)(

Tµ2 + 2σ

√
T log

1

δ

)
Therefore239

Dψ (wref ;wk+1) ≤ 8C2
4

(
σ2 + 4µ2

1

)
log

1

δ
η2T + 2D0 + 2 (R(wref)−R∗) η(k + 1)

+ η2
(
2C2

4 + 4C2
2R

2
)(

Tµ2 + 2σ

√
T log

1

δ

)

≤ R2

2
+ 4η2C2

2

(
Tµ2 + 2σ

√
T log

1

δ

)
R2 ≤ R2.

Finally we obtain, η
∑k
t=0 (R(wt)−R∗) +Dψ (wref ;wk+1) ≤ R2, as needed.240

3.2.2 IID data with polynomial tails241

Theorem 10. Suppose ℓ is convex, (C1, C2)-quadratically bounded. Given T , ((xt, yt))t≤T are IID242

samples with Qt = max
{
1, ∥xt∥2∗ , |yt|

2
}

and for some p ≥ 2 there exists M ≥ p
e such that for all243

λ244

max

{
sup

2≤r≤2p
{E [|Qt − E [Qt]|r]} , sup

2≤r≤p

{
E
[∣∣Q2

t − E
[
Q2
t

]∣∣r]}} ≤M

Let µ1 = E [Qt] and µ2 = E
[
Q2
t

]
. Suppose that wref satisfies Assumption 4. Then for η ≤245

1

C2

√
6

(
Tµ2+2M

√
T( 2

δ )
1
p

) , with probability at least 1− 3δ, for every 0 ≤ k ≤ T − 1246

1

k + 1

k∑
t=0

(R(wt)−R∗) +
Dψ (wref ;wk+1)

η (k + 1)
≤ R2

2η (k + 1)

where R = max
{√

6
(
D0

(
1 + η

√
T
)
+ η2C2

4

(
Tµ2 + 2M

√
T
(
2
δ

) 1
p

))
, 6
(

2
3γ
(
7
(
MT
δ

)1/2p
+247

2µ1

)
+
√
log 2

δTµ2ηC4

)}
= O (1), γ = max

{
1, log 2

δ

}
.248

Remark 11. Since p ≥ 2, the rate is O
(

1
T 1/2 log

1
δ + 1

T 3/4

(
1
δ

) 1
2p
)

. This rate improves over249

the O
((

1
T 1/2 + 1

T 3/4

(
T
δ

) 1
2p
)
log T

δ

)
rate by [30] by a polynomial factor T

1
2p log T

δ in the high250

probability regime where δ = 1
poly(T ) .251

We will give a proof sketch for this theorem. The full proof is deferred to the appendix.252

Proof Sketch. The heavy tailed distribution of the data does not allow us to analyze the moment253

generating function. In this case, we rely on the coupling technique as in [30]. Since it is not254

possible to apply Azuma’s inequality due to the bounds on the variables being not measurable, and255

the variables are heavy tailed, we use truncation technique. We define,256

vt = arg min
∥w−wref∥≤R

{⟨ηtgt(vt−1), w⟩+Dψ (w; vt−1)}

where we use gt(vt−1) to denote the gradient at vt−1 using the same data point (xt, yt) when257

computing wt and we define258

Ut = (R(vt)−R(wref) + ℓt+1 (wref)− ℓt+1 (vt))

8



Pt =

{
Ut if |Ut| ≤ (A+ 2µ1)RC4

(A+ 2µ1)RC4sign (Ut) otherwise

where A =

(
MT

δ

)1/2p

and Bt = Ut − Pt.

We can write259

k∑
t=0

Ut =

k∑
t=0

(Pt − E [Pt | Ft]) +
k∑
t=0

E [Pt | Ft] +
k∑
t=0

Bt

We bound
∑k
t=0 (Pt − E [Pt | Ft]) by applying Freedman’s inequality. The terms

∑k
t=0 E [Pt | Ft]260

and
∑k
t=0Bt are both the bias terms can be bounded by analyzing the tail of the distribution and261

Markov’s inequality. We also use Lemma 12 to bound
∑k
t=0 ∥gt+1(vt)∥2∗. Finally, using the induction262

technique, we can prove that wt = vt with high probability and obtain the desired result.263

Lemma 12 (Lemma A.5 from [30]). With probability ≥ 1− δ,
∑T
t=1Q

2
t ≤ Tµ2 + 2M

√
T
(
2
δ

) 1
p .264

4 Generalization bounds of SMD for Markovian data265

The final result we present in this paper is the following theorem for the case when the data are266

sampled from a Markov chain.267

Theorem 13. Suppose ℓ is convex, (C1, C2)-quadratically bounded. Given T , ((xt, yt))t≤T are268

sampled from a Markov chain with max
{
∥xt∥2∗ , |yt|

2
}
≤ 1 and

(
π, τ, ϵ = 1√

T

)
is an approximate269

stationarity witness. Suppose that wref satisfies Assumption 4. Then for η ≤ 1

2C2

√
T (1+2τ)

, with270

probability at least 1− τδ, for every 0 ≤ k ≤ T − 1271

1

k + 1

k∑
t=0

(R(wt)−R∗) +
Dψ (wref ;wk+1)

η (k + 1)
≤ R2

2η (k + 1)
.

where R = max
{√

6
(
2D0 + 2ηD0

√
T + 16η2C2

4Tτ log
1
δ + 2Tη2C2

4 + 4η2τTC2
4

)
, 6(2ητC4+272

2ηC4ϵT + 4ητC4)
}
= O (1) and C4 = C1 + C2(1 + ∥wref∥).273

We will give a proof sketch for this theorem.274

Proof Sketch. The proof of this Theorem follow similarly to that of Theorem 7. The difference here275

is we need to bound τ different martingale difference sequences in the form of276

E
[
ℓτ(i+1)+j (wref) | Fτi+j

]
−E

[
ℓτ(i+1)+j (wτi+j) | Fτi+j

]
+ℓτ(i+1)+j (wref)−ℓτ(i+1)+j (wτi+j)

for 0 ≤ j ≤ τ − 1, 0 ≤ i ≤ T−1−j
τ . We also need the assumption on the approximate stationarity277

witness to see that278

|R(wt)−R(wref)− E [ℓt+τ (wref) | Ft] + E [ℓt+τ (wt) | Ft]| ≤C4Rϵ.

Now we only need the union bound over τ sequences, instead of all iterations. The success probability279

will decrease from 1− δ to 1− τδ.280

5 Conclusion281

In this paper, we show a new approach to analyze the generalization error of SMD for quadratically282

bounded losses. Our approach improves a logarithmic factor for the realizable setting and non-283

realizable setting with light tailed data and a poly T factor for the non-realizable setting with284

polynomial tailed data from the prior work by [30]. An inherent limitation of the current approach is285

the assumption that we can obtain a fresh sample in each iteration, whereas the setting with finite286

training data is still not well understood. In the realizable setting, we require that the data is bounded,287

as opposed to more relaxed assumptions in the non-realizable settings. We leave the question of288

resolving these issues for future works.289
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A Concentration Inequalities372

Lemma 14. Let X be a random variable such that E [X] = 0 and |X| ≤ R almost surely. Then for373

0 ≤ λ ≤ 1
R374

E [exp (λX)] ≤ exp

(
3

4
λ2E

[
X2
])

.

The following lemma is similar to Lemma 2.2 in [16].375

Lemma 15. Suppose that Q satisfies for all 0 ≤ λ ≤ 1
σ , E

[
exp

(
λ2Q2

)]
≤ exp

(
λ2σ2

)
. Then for376

variable X such that E [X] = 0 and |X| ≤ a (Q+ b) for some a ≥ 0 then for all λ ≥ 0377

E [exp (λX)] ≤ exp
(
2λ2a2

(
σ2 + b2

))
.

In particular, if b = 0 we can have a tighter constant: E [exp (λX)] ≤ exp
(
λ2a2σ2

)
.378

Proof. We consider E [exp (λX)]379

If 0 ≤ λ ≤ 1√
2aσ

then using exp (x) ≤ x+ exp
(
x2
)

380

E [exp (λX)] ≤ E
[
exp

(
λ2X2

)]
≤ E

[
exp

(
λ2a2 (Q+ b)

2
)]

≤ E
[
exp

(
2λ2a2Q2 + 2λ2a2b2

)]
≤ exp

(
2λ2a2b2

)
E
[
exp

(
2λ2a2Q2

)]
≤ exp

(
2λ2a2

(
σ2 + b2

))
Otherwise 1

σ ≤ λ
√
2a381

E [exp (λX)] ≤ E
[
exp

(
λ2a2σ2 +

X2

4a2σ2

)]
≤ exp

(
λ2a2σ2

)
E

[
exp

(
(Q+ b)

2

4σ2

)]

≤ exp
(
λ2a2σ2

)
E
[
exp

(
Q2 + b2

2σ2

)]
≤ exp

(
λ2a2σ2

)
exp

(
b2

2σ2

)
exp

(
1

2

)
≤ exp

(
λ2a2σ2

)
exp

(
λ2a2b2

)
exp

(
λ2a2σ2

)
≤ exp

(
2λ2a2

(
σ2 + b2

))
.

382

Theorem 16 (Freedman’s inequality [2, 31]). Let (Xt)t≥1 be a martingale difference sequence.383

Assume that there exists a constant c such that |Xt| ≤ c almost surely for all t ≥ 1 and define384

σ2
t = E

[
X2
t | Xt−1, . . . , X1

]
. Then for all b > 0, F > 0 and T ≥ 1385

Pr

[
∃T ≥ 1 :

∣∣∣∣∣
T∑
t=1

Xt

∣∣∣∣∣ > b and
T∑
t=1

σ2
t ≤ F

]
≤ 2 exp

(
− b2

2F + 2cb/3

)
.

B Missing Proofs386

Proof of Lemma 2. Using the optimality condition387

⟨ηgt+1 +∇ψ(wt+1)−∇ψ(wt), wref − wt+1⟩ ≥ 0

12



we have388

⟨ηgt+1, wt − wref⟩ = ⟨ηgt+1, wt+1 − wref⟩+ ⟨ηgt+1, wt − wt+1⟩
≤ ⟨∇ψ(wt+1)−∇ψ(wt), wref − wt+1⟩+ ⟨ηgt+1, wt − wt+1⟩
= Dψ (wref ;wt)−Dψ (wref ;wt+1)−Dψ (wt+1;wt) + ⟨ηgt+1, wt − wt+1⟩

≤ Dψ (wref ;wt)−Dψ (wref ;wt+1)−
1

2
∥wt − wt+1∥2 + ⟨ηgt+1, wt − wt+1⟩

≤ Dψ (wref ;wt)−Dψ (wref ;wt+1) +
η2

2
∥gt+1∥2∗

Hence389

Dψ (wref ;wt+1)−Dψ (wref ;wt) ≤ ⟨ηgt+1, wref − wt⟩+
η2

2
∥gt+1∥2∗

≤ η (ℓt+1 (wref)− ℓt+1 (wt)) +
η2

2
∥gt+1∥2∗

as needed.390

Proof of Lemma 4. We have391

Dψ (wref ;wt+1)−Dψ (wref ;wt) ≤ η (ℓt+1 (wref)− ℓt+1 (wt)) +
η2

2
∥gt+1∥2∗

≤ η (ℓt+1 (wref)− ℓt+1 (wt)) +
η2

2
ℓ′t+1(wt)

2

≤ η (ℓt+1 (wref)− ℓt+1 (wt)) + η2ρℓt+1(wt)

= ηℓt+1 (wref)−
η

2
ℓt+1(wt) ≤ ηℓt+1 (wref) .

Summing up, we have, for any 0 ≤ t ≤ T392

Dψ (wref ;wt) ≤ Dψ (wref ;w0) + η

t∑
i=1

ℓi (wref) = D0 + η

t∑
i=1

ℓi (wref) .

393

Proof of Lemma 5. We have |ℓi (wref)−R(wref)| ≤ max {ℓi (wref) ,R(wref)} ≤ C3 thus by394

lemma 14, for λ ≤ 1
C3

395

E [exp (λ (ℓi (wref)−R(wref)))]

≤ exp

(
3

4
λ2E

[
(ℓi (wref)−R(wref))

2
])

(a)

≤ exp

(
3

4
λ2E

[
ℓi (wref)

2
])

(b)

≤ exp

(
3

4
λ2C3R(wref)

)
≤ exp

(
3

4
λR(wref)

)
,

where for (a) we use E
[
(X − E [X])

2
]
≤ E

[
X2
]

and for (b) we use ℓi (wref) ≤ C3. Since ℓi (wref)396

are independent random variables, we have397

E

[
exp

(
λ

T∑
i=1

(ℓi (wref)−R(wref))

)]
= E

[
T∏
i=1

exp (λ (ℓi (wref)−R(wref)))

]

=

T∏
i=1

E [exp (λ (ℓi (wref)−R(wref)))] ≤
T∏
i=1

exp

(
3

4
λR(wref)

)
= exp

(
3

4
λTR(wref)

)
.
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Hence by Markov’s inequality398

Pr

[
λ

T∑
i=1

(ℓi (wref)−R(wref)) ≥
3

4
λTR(wref) + log

1

δ

]

=Pr

[
exp

(
λ

T∑
i=1

(ℓi (wref)−R(wref))

)
≥ 1

δ
exp

(
3

4
λTR(wref)

)]

≤
E
[
exp

(
λ
∑T
i=1 (ℓi (wref)−R(wref))

)]
1
δ exp

(
3
4λTR(wref)

) ≤ δ

Choose λ = 1
C3

we have with probability at least 1− δ399

T∑
i=1

(ℓi (wref)−R(wref)) ≤
3

4
TR(wref) + C3 log

1

δ
.

400

Proof of Theorem 3. Towards bounding the risk
∑k
t=0 R(wt), we define random variables401

Zt =
1

2
ztη (R(wt)−R(wref)− ℓt+1 (wref)) + zt (Dψ (wref ;wt+1)−Dψ (wref ;wt))

− 3

16
ztη (R(wref) +R(wt)) ; ∀0 ≤ t ≤ T − 1

where zt =
1

ηC4

√
2ηγC3 + 2D0 + 2η

∑t
i=1 ℓi (wref)

; γ = max

{
1, log

1

δ

}

and St =
t∑
i=0

Zi; ∀0 ≤ t ≤ T − 1

The reason to define these variables is because from Lemma 4, we can bound402

E [exp (Zt) | Ft]× exp

(
3

16
ztη (R(wref) +R(wt))

)
≤E

[
exp

(
1

2
ztη (R(wt)−R(wref)− ℓt+1 (wref)) + zt

(
ηℓt+1 (wref)−

η

2
ℓt+1(wt)

))
| Ft

]
=E

[
exp

(
1

2
ztη (R(wt)−R(wref) + ℓt+1(wref)− ℓt+1(wt))

)
| Ft

]
where now inside the expectation, we have the term R(wt) − R(wref) + ℓt+1(wref) − ℓt+1(wt)403

which has expectation 0. This reminds us of Lemma 14. To use this lemma, we notice that, by the404

assumption that the samples are IID with max {∥x∥∗ , |y|} ≤ 1 and Lemma 1,405

|ℓx,y(wref)− ℓx,y(wt)| ≤ ∥wref − wt∥ (C1 + C2(1 + ∥wref∥))︸ ︷︷ ︸
C4

We also have406

|R(wt)−R(wref)| = |E [ℓx,y(wref)− ℓx,y(wt)]| ≤ C4 ∥wref − wt∥

Therefore407 ∣∣∣η
2
(R(wt)−R(wref) + ℓt+1(wref)− ℓt+1(wt))

∣∣∣ ≤ ηC4 ∥wref − wt∥

By the choice of zt we have408

zt ≤
1

ηC4

√
2ηC3 + 2D0 + 2η

∑t
i=1 ℓi (wref)

≤ 1

ηC4

√
2Dψ (wref ;wt)

≤ 1

ηC4 ∥wref − wt∥
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Now we can apply Lemma 14 to bound409

E [exp (Zt) | Ft]× exp

(
3

16
ztη (R(wref) +R(wt))

)
≤ exp

(
3

4

1

4
z2t η

2E
[
(R(wt)−R(wref) + ℓt+1(wref)− ℓt+1(wt))

2 | Ft
])

≤ exp

(
3

16
z2t η

2E
[
(ℓt+1(wref)− ℓt+1(wt))

2 | Ft
])

≤ exp

(
3

16
z2t η

2C4 ∥wref − wt∥E [ℓt+1(wref) + ℓt+1(wt) | Ft]
)

≤ exp

(
3

16
ztη (R(wref) +R(wt))

)
Therefore E [exp (Zt) | Ft] ≤ 1 and hence (exp (St))t≥0 is a supermartingale. By Ville’s inequality,410

we have with probability at least 1− δ, for all 0 ≤ k ≤ T − 1411

k∑
t=0

Zt ≤ log
1

δ

Expanding this inequality, we obtain412

k∑
t=0

5

16
ztηR(wt) + zkDψ (wref ;wk+1)

≤ log
1

δ
+ z0Dψ (wref ;w0) +

11

16
ηR(wref)

k∑
t=0

zt +
1

2

k∑
t=0

ztηℓt+1(wref) +

k∑
t=1

(zt − zt−1)︸ ︷︷ ︸
≤0

Dψ (wref ;wt)

(a)

≤ log
1

δ
+ z0D0 +

11

16
ηR(wref)(k + 1)z0 +

1

2

k∑
t=0

ηℓt+1(wref)

ηC4

√
2ηC3 + 2D0 + 2η

∑t
i=1 ℓi (wref)

(b)

≤ log
1

δ
+ z0D0 +

11

16
ηR(wref)(k + 1)z0 +

1

2ηC4

k∑
t=0

ηℓt+1(wref)√
2D0 + 2η

∑t+1
i=1 ℓi (wref)

(1)

For (a) we use the fact that (zt) is a decreasing sequence and R(wref) ≤ ρD0

T . For (b) we413

use the assumption ℓt+1 (wref) ≤ C3. Now notice that we can write ηℓt+1(wref )√
2D0+2η

∑t+1
i=1 ℓi(wref )

≤414 √
2D0 + 2η

∑t+1
i=1 ℓi (wref)−

√
2D0 + 2η

∑t
i=1 ℓi (wref) and sum over t we obtain415

5

16
zkη

k∑
t=0

R(wt) + zkDψ (wref ;wk+1) ≤ log
1

δ
+

11(k + 1)R(wref)

16C4

√
2ηγC3 + 2D0

+
1√
2ηC4

√√√√D0 + η

k+1∑
i=1

ℓi (wref)

Hence416

k∑
t=0

R(wt) +
16

5η
Dψ (wref ;wk+1)

≤16C4

5

log
1

δ
+

11(k + 1)R(wref)

16C4

√
2ηγC3 + 2D0

+
1√
2ηC4

√√√√D0 + η

T∑
i=1

ℓi (wref)


√√√√2ηγC3 + 2D0 + 2η

T∑
i=1

ℓi (wref)

By Lemma 5, with probability at least 1− δ we have417

T∑
i=1

ℓi (wref) ≤
7

4
TR(wref) + C3 log

1

δ
≤ 7

4
ρD0 + C3γ
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Therefore with probability at least 1− 2δ418

k∑
t=0

R(wt) +
16

5η
Dψ (wref ;wk+1)

≤

(
16C4

5
log

1

δ
+

11(k + 1)

5
√
2ηγC3 + 2D0

R(wref) +
8

5η

√
15

4
D0 + 2ηγC3

)√
15

4
D0 + 4ηγC3

≤16C4

5
log

1

δ

√
15

4
D0 + 4ηγC3 +

(
6

η
D0 +

32

5
γC3

)
+ 3(k + 1)R(wref).

which gives us the conclusion.419

Proof of Theorem 10. First we consider the bounded domain case. Let420

vt = arg min
∥w−wref∥≤R

{⟨ηtgt(vt−1), w⟩+Dψ (w; vt−1)}

where we use gt(vt−1) to denote the gradient at vt−1 using the same data point (xt, yt) when421

computing wt and we choose422

R = max


√√√√6

(
D0 + η2C2

4

(
Tµ2 + 2M

√
T

(
2

δ

) 1
p

))
, 6

(
2

3
γ

(
7

(
MT

δ

)1/2p

+ 2µ1

)
+

√
log

2

δ
Tµ2

)
ηC4


We have423

|(R(vt)−R(wref) + ℓt+1 (wref)− ℓt+1 (vt))|
≤ |ℓt+1 (wref)− ℓt+1 (vt)|+ |R(vt)−R(wref)|
≤ (Qt + µ1) ∥wref − vt∥C4 ≤ (Qt + µ1)RC4 (2)

Let us define the following variables424

Ut = (R(vt)−R(wref) + ℓt+1 (wref)− ℓt+1 (vt))

Pt =

{
Ut if |Ut| ≤ (A+ 2µ1)RC4

(A+ 2µ1)RC4sign (Ut) otherwise

where A =

(
MT

δ

)1/2p

and Bt = Ut − Pt.

In words, Ut is the variable of our interest and Pt is the truncated version of Ut and Bt is the bias.425

We would want to control these terms in order to bound
∑k
t=0 Ut. We start with the following426

decomposition427

k∑
t=0

Ut =

k∑
t=0

(Pt − E [Pt | Ft]) +
k∑
t=0

E [Pt | Ft] +
k∑
t=0

Bt

First, we consider the term
∑k
t=0 E [Pt | Ft].428

E [Pt | Ft] = E [Pt − Ut | Ft] ≤ E [|Pt − Ut| | Ft]

=E

[
|Pt − Ut|

(
1 [|Ut| ≤ (A+ 2µ1)RC4] +

∞∑
k=2

1 [(k − 1)ARC4 + 2µ1RC4 ≤ |Ut| ≤ kARC4 + 2µ1RC4]

)]

=E

[ ∞∑
k=2

|Pt − Ut|1 [(k − 1)ARC4 + 2µ1RC4 ≤ |Ut| ≤ kARC4 + 2µ1RC4]

]

≤
∞∑
k=2

(kARC4 + 2µ1RC4 − (A+ 2µ1)RC4)RC4E [1 [|Ut| ≥ (k − 1)ARC4 + 2µ1RC4]]

16



≤
∞∑
k=1

kARC4E [1 [(Qt + µ1)RC4 ≥ kARC4 + 2µ1RC4]] (due to 2)

=

∞∑
k=1

kARC4 Pr [Qt ≥ kA+ µ1] ≤ ARC4

∞∑
k=1

kPr
[
|Qt − µ1|2p ≥ (kA)

2p
]

≤ARC4

∞∑
k=1

Mk

k2pA2p
= A1−2pRC4M

∞∑
k=1

k1−2p ≤ 2A1−2pRC4M

where the last inequality is because p ≥ 2. We obtain429

k∑
t=0

E [Pt | Ft] ≤ 2A1−2pRC4MT

The term
∑k
t=0Bt ≤

∑k
t=0 |Bt| ≤

∑T−1
t=0 |Bt| will be bounded by Markov inequality. From the430

above deduction,431

E

[
T−1∑
t=0

|Bt|

]
=

T−1∑
t=0

E [|Bt|] =
T−1∑
t=0

E [E [|Ut − Pt| | Ft]] ≤ 2A1−2pRC4MT

With probability at least 1− δ,432

T−1∑
t=0

|Bt| ≤ 2TA1−2pRC4M
1

δ
= 2RC4A

1−2p

(
MT

δ

)
Finally, we will use Freedman’s inequality to bound the remaining term

∑k
t=0 (Pt − E [Pt | Ft]).433

First, notice that434

E
[
|Pt − E [Pt | Ft]|2 | Ft

]
≤ E

[
P 2
t | Ft

]
≤ E

[
U2
t | Ft

]
≤ E

[
(ℓt+1 (wref)− ℓt+1 (vt))

2 | Ft
]

≤ R2C2
4E
[
Q2
t

]
≤ R2C2

4µ2.

We have (Pt − E [Pt | Ft]) is a martingale difference sequence with |Pt − E [Pt | Ft]| ≤435

2 (A+ 2µ1)RC4. We can apply Freedman’s inequality,436

Pr

[
∃k ≥ 0 :

∣∣∣∣∣
k∑
t=0

Pt − E [Pt | Ft]

∣∣∣∣∣ > a and
k∑
t=0

E
[
|Pt − E [Pt | Ft]|2 | Ft

]
≤ F

]

≤2 exp

(
−2a2

2F + 4 (A+ 2µ1)RC4a/3

)
If we select437

F = Tµ2R
2C2

4

and a =
2

3
log

2

δ
(A+ 2µ1)RC4 +RC4

√
log

2

δ
Tµ2

we obtain with probability at least 1− δ, for all k ≥ 0438

k∑
t=0

Pt − E [Pt | Ft] ≤
2

3
log

2

δ
(A+ 2µ1)RC4 +RC4

√
log

2

δ
Tµ2

Therefore with probability at least 1− 3δ we have the following event E : for all k ≥ 0439

k∑
t=0

Ut ≤
2

3
log

2

δ
(A+ 2µ1)RC4 +RC4

√
log

2

δ
Tµ2 + 4RC4A

1−2p

(
MT

δ

)

≤ 2

3
γ

(
7

(
MT

δ

)1/2p

+ 2µ1

)
RC4 +RC4

√
log

2

δ
Tµ2
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and
k+1∑
t=1

Q2
t ≤ Tµ2 + 2M

√
T

(
2

δ

) 1
p

.

where we denote γ = max
{
1, log 2

δ

}
. Furthermore440

η2

2

k∑
t=0

∥gt+1(vt)∥2∗ ≤ η2

2

k∑
t=0

Q2
t+1 (C1 + C2 (1 + ∥vt∥))2

≤ η2

2

k∑
t=0

Q2
t+1 (C4 + C2 ∥vt − wref∥)2

≤ η2C2
4

k+1∑
t=1

Q2
t + η2C2

2

k∑
t=0

Q2
t+1 ∥vt − wref∥2

≤ η2
(
C2

4 + C2
2R

2
)(

Tµ2 + 2M
√
T

(
2

δ

) 1
p

)
Now we will proceed by induction to show that conditioned on the event E, wt = vt. For the base441

case, we have w0 = v0. Suppose that we have wt = vt for all t ≤ k. We will show that wk+1 = vk+1.442

From Lemma 2, we have443

k∑
t=0

η (R(wt)−R∗) +Dψ (wref ;wk+1)

≤D0 +

k∑
t=0

η (R(wref)−R∗) + η

k∑
t=0

(R(wt)−R(wref) + ℓt+1 (wref)− ℓt+1 (wt)) +
η2

2

k∑
t=0

∥gt+1∥2∗

≤D0 + η
√
TD0 + η

k∑
t=0

Ut +
η2

2

k∑
t=0

∥gt+1(vt)∥2∗

≤D0

(
1 + η

√
T
)

+

(
2

3
γ

(
7

(
MT

δ

)1/2p

+ 2µ1

)
+

√
log

2

δ
Tµ2

)
ηRC4 + η2

(
C2

4 + C2
2R

2
)(

Tµ2 + 2M
√
T

(
2

δ

) 1
p

)

≤R
2

2

Thus ∥wk+1 − wref∥ ≤ R. And thus wk+1 = vk+1. Finally, we can conclude that with probability444

at least 1− 3δ, for all 0 ≤ k ≤ T − 1445

1

k + 1

k∑
t=0

(R(wt)−R(wref)) +
Dψ (wref ;wk+1)

η (k + 1)
≤ R2

2η (k + 1)
.

446

Proof of Theorem 13. For 0 ≤ j ≤ τ − 1, we define447

Zji = zτi+jη
(
E
[
ℓτ(i+1)+j (wref) | Fτi+j

]
− E

[
ℓτ(i+1)+j (wτi+j) | Fτi+j

])
+ zτi+jη

(
ℓτ(i+1)+j (wref)− ℓτ(i+1)+j (wτi+j)

)
− 8 (zτi+jη)

2
C2

4Dψ (wref ;wτi+j) ∀0 ≤ i ≤ T − 1− j

τ

Sjk =

k∑
i=0

Zji ∀0 ≤ k ≤ T − 1− j

τ

where448

zt =
1

8η2C2
4 (T + 1 + t)

∀ − 1 ≤ t ≤ T − 1
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We bound449 ∣∣E [ℓτ(i+1)+j (wref) | Fτi+j
]
− E

[
ℓτ(i+1)+j (wτi+j) | Fτi+j

]
+ ℓτ(i+1)+j (wref)− ℓτ(i+1)+j (wτi+j)

∣∣
≤2C4 ∥wref − wτi+j∥

By Lemma 15450

E
[
exp

(
Zji

)
| Fτi+j

]
=exp

(
−8 (zτi+jη)

2
C2

4Dψ (wref ;wτi+j)
)

× E

[
exp

(
zτi+jη

(
E
[
ℓτ(i+1)+j (wref) | Fτi+j

]
− E

[
ℓτ(i+1)+j (wτi+j) | Fτi+j

]
+ ℓτ(i+1)+j (wref)− ℓτ(i+1)+j (wτi+j)

))
| Fτi+j

]
≤ exp

(
−8 (zτi+jη)

2
C2

4Dψ (wref ;wτi+j)
)
exp

(
4 (zτi+jη)

2
C2

4 ∥wref − wτi+j∥2
)
≤ 1

Therefore E
[
exp

(
Zji

)
| Fτi+j

]
≤ 1 and hence

(
exp

(
Sjk

))
k≥0

is a supermartingale. By Ville’s451

inequality, we have with probability at least 1− δ, for all 0 ≤ k ≤ κ452

k∑
i=0

Zji ≤ log
1

δ

By union bound over j = 0, . . . , τ − 1, and with probability at least 1 − τδ we have for all453

0 ≤ k ≤ T − τ − 1454

k∑
t=0

ztη (E [ℓt+τ (wref) | Ft]− E [ℓt+τ (wt) | Ft] + ℓt+τ (wref)− ℓt+τ (wt))

≤
k∑
t=0

8 (ztη)
2
C2

4Dψ (wref ;wt) + τ log
1

δ

We will proceed to prove by induction that Dψ (wref ;wt) ≤ 1
2R

2455

For the base case t = 0, this holds trivially. Suppose that this is true for all 0 ≤ t ≤ k, we now show456

for t = k + 1.457

If k ≤ τ − 1,458

k∑
t=0

η (R(wt)−R∗) +Dψ (wref ;wk+1)

≤D0 +

k∑
t=0

η (R(wref)−R∗) +

k∑
t=0

η (R(wt)−R(wref) + ℓt+1 (wref)− ℓt+1 (wt)) +
η2

2

k∑
t=0

∥gt+1∥2∗

We have459

k∑
t=0

η |R(wt)−R(wref) + ℓt+1 (wref)− ℓt+1 (wt)| ≤
k∑
t=0

2ηC4 ∥wref − wt∥ ≤ 2ηC4R(k + 1) ≤ 2ηC4Rτ

and460

η2

2

k∑
t=0

∥gt+1∥2∗ ≤ η2

2

k∑
t=0

(C1 + C2 (1 + ∥wt∥))2

≤ η2

2

k∑
t=0

(C4 + C2 ∥wt − wref∥)2
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≤ η2C2
4 (k + 1) + η2C2

2R
2(k + 1)

≤ τη2
(
C2

4 + C2
2R

2
)

Therefore461

Dψ (wref ;wk+1) ≤ D0 + ηD0

√
T + 2ηC4Rτ + τη2

(
C2

4 + C2
2R

2
)
≤ R2

2
.

If k ≥ τ ,462

k∑
t=0

ztη (R(wt)−R∗) + zkDψ (wref ;wk+1)− z−1Dψ (wref ;w0)

≤
k∑
t=0

ztη (R(wref)−R∗) +

k∑
t=0

ztη (R(wt)−R(wref))

+

k∑
t=0

ztη (ℓt+1 (wref)− ℓt+1 (wt)) +

k∑
t=0

ztη
2

2
∥gt+1∥2∗ +

k∑
t=0

(zt − zt−1)Dψ (wref ;wt)

≤
k∑
t=0

ztη (R(wref)−R∗) +

k∑
t=k−τ+1

ztη (R(wt)−R(wref))

+

k−τ∑
t=0

ztη (R(wt)−R(wref)− E [ℓt+τ (wref) | Ft] + E [ℓt+τ (wt) | Ft])

+

k−τ∑
t=0

ztη (E [ℓt+τ (wref) | Ft]− E [ℓt+τ (wt) | Ft] + ℓt+τ (wref)− ℓt+τ (wt))

+

k−τ∑
t=0

ztη (ℓt+τ (wt)− ℓt+τ (wref)) +

k∑
t=0

ztη (ℓt+1 (wref)− ℓt+1 (wt))

+

k−τ∑
t=0

(zt − zt−1)Dψ (wref ;wt) +

k∑
t=0

ztη
2

2
∥gt+1∥2∗

≤
k∑
t=0

ztη (R(wref)−R∗) +

k∑
t=k−τ+1

ztη (R(wt)−R(wref))

+

k−τ∑
t=0

ztη (R(wt)−R(wref)− E [ℓt+τ (wref) | Ft] + E [ℓt+τ (wt) | Ft])

+ τ log
1

δ
+

k−τ∑
t=0

8 (ztη)
2
C2

4Dψ (wref ;wt) +

k−τ∑
t=0

(zt − zt−1)Dψ (wref ;wt)

+

k∑
t=0

ztη
2

2
∥gt+1∥2∗ +

k−τ∑
t=0

ztη (ℓt+τ (wt)− ℓt+τ (wt+τ−1))

+

k−1∑
t=τ−1

zt−τ+1η (ℓt+1 (wt)− ℓt+1 (wref)) +

k∑
t=0

ztη (ℓt+1 (wref)− ℓt+1 (wt))

≤
k∑
t=0

ztη (R(wref)−R∗) +

k∑
t=k−τ+1

ztη (R(wt)−R(wref))

+

k−τ∑
t=0

ztη (R(wt)−R(wref)− E [ℓt+τ (wref) | Ft] + E [ℓt+τ (wt) | Ft]) + τ log
1

δ

+

k∑
t=0

ztη
2

2
∥gt+1∥2∗ +

k−τ∑
t=0

ztη (ℓt+τ (wt)− ℓt+τ (wt+τ−1))
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+

k−1∑
t=τ−1

η (zt−τ+1 − zt) (ℓt+1 (wt)− ℓt+1 (wref))

+

τ−2∑
t=0

ztη (ℓt+1 (wref)− ℓt+1 (wt)) + zkη (ℓk+1 (wref)− ℓk+1 (wk))

where in the last inequality we use zt = 1
8η2C2

4 (T+1+t)
to see that zt + 8 (ztη)

2
C2

4 ≤ zt−1. Notice463

that, ztzk ≤ 2, and (R(wref)−R∗) ≤ D0√
T

we have464

k∑
t=0

η (R(wt)−R∗) +Dψ (wref ;wk+1)

≤2D0 + 2ηD0

√
T + 16η2C2

4Tτ log
1

δ
+ 2η

k∑
t=k−τ+1

|R(wt)−R(wref)|︸ ︷︷ ︸
A

+ 2η

k−τ∑
t=0

|R(wt)−R(wref)− E [ℓt+τ (wref) | Ft] + E [ℓt+τ (wt) | Ft]|︸ ︷︷ ︸
B

+ η2
k∑
t=0

∥gt+1∥2∗︸ ︷︷ ︸
C

+2η

k−τ∑
t=0

|ℓt+τ (wt)− ℓt+τ (wt+τ−1)|︸ ︷︷ ︸
D

+
2(τ − 1)η

T

k−1∑
t=τ−1

|ℓt+1 (wt)− ℓt+1 (wref)|+ 2η

τ−2∑
t=0

|ℓt+1 (wref)− ℓt+1 (wt)|+ 2η |ℓk+1 (wref)− ℓk+1 (wk)|︸ ︷︷ ︸
E

Now we bound each term. For A465

A = 2η

k∑
t=k−τ+1

|R(wt)−R(wref)| ≤ 2η

k∑
t=k−τ+1

C4 ∥wref − wt∥ ≤ 2ητC4R

For B, by Assumption 3, supt∈Z≥0
supFt TV

(
P t+τt , π

)
≤ ϵ,466

2η |R(wt)−R(wref)− E [ℓt+τ (wref) | Ft] + E [ℓt+τ (wt) | Ft]| ≤2ηC4Rϵ

Thus467

B = 2η

k−τ∑
t=0

|R(wt)−R(wref)− E [ℓt+τ (wref) | Ft] + E [ℓt+τ (wt) | Ft]| ≤ 2ηC4RϵT

For C, similarly to before468

C = η2
k∑
t=0

∥gt+1∥2∗ ≤ 2Tη2
(
C2

4 + C2
2R

2
)

For D, we have469

|ℓt+τ (wt)− ℓt+τ (wt+τ−1)|

≤
t+τ−1∑
i=t+1

|ℓt+τ (wi)− ℓt+τ (wi−1)|

≤
t+τ−1∑
i=t+1

∥wi − wi−1∥ (C1 + C2 (1 + ∥wi∥))
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≤
t+τ−1∑
i=t+1

η ∥∇ℓi (wi−1)∥ (C4 + C2 ∥wi − wref∥)

≤η (C4 + C2R)

t+τ−1∑
i=t+1

(C4 + C2 ∥wi−1 − wref∥)

≤η (C4 + C2R)
2
τ ≤ ητ

(
2C2

4 + 2C2
2R

2
)

We obtain470

D = 2η

k−τ∑
t=0

|ℓt+τ (wt)− ℓt+τ (wt+τ−1)| ≤ 2η2τT
(
2C2

4 + 2C2
2R

2
)

For E, since471

|ℓt+1 (wt)− ℓt+1 (wref)| ≤ C4R

Hence472

E =
2(τ − 1)η

T

k−1∑
t=τ−1

|ℓt+1 (wt)− ℓt+1 (wref)|

+ 2η

τ−2∑
t=0

|ℓt+1 (wref)− ℓt+1 (wt)|+ 2η |ℓk+1 (wref)− ℓk+1 (wk)|

≤2ηC4R

(
(τ − 1) (k − τ + 1)

T
+ τ

)
≤ 4ητC4R

Sum up we have473

k∑
t=0

η (R(wt)−R∗) +Dψ (wref ;wk+1)

≤2D0 + 2ηD0

√
T + 16η2C2

4Tτ log
1

δ

+ 2ητC4R+ 2ηC4RϵT + 2Tη2
(
C2

4 + C2
2R

2
)

+ 2η2τT
(
2C2

4 + 2C2
2R

2
)
+ 4ητC4R

≤R
2

2

as needed. Finally we have474

1

k + 1

k∑
t=0

(R(wt)−R∗) +
Dψ (wref ;wk+1)

η (k + 1)
≤ R2

2η (k + 1)
.

475
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