
Appendix

This appendix is structured as follows:

• In Appendix A we provide more training details. In particular, we report the hyperparameters
used for the CIFAR experiments in A.1 and for the ImageNet experiments in A.2. In A.3
we provide more details and a formal definition of the SAM-variants used throughout this
paper.

• In Appendix B we show additional experimental results for: CIFAR in B.1, ImageNet in B.3,
and a machine translation task in B.5. In B.2 we provide additional ablation studies for sparse
perturbation SSAM approaches and in B.4 we extend the discussion on adversarial robustness.
To gain a better understanding of SAM-ON, we further investigate: the weight distribution
shift induced by SAM-ON (B.6), the effect of SAM when fixing the normalization parameters
during training (B.7), SAM’s performance when only training the normalization layers (B.8),
and ablations on weight decay and dropout (B.9). Finally, we provide an extended discussion
on the sharpness evaluation and more ablations in B.10.

• In Appendix C we provide a convergence analysis for SAM-ON.

A Training Details

A.1 CIFAR training details

For our CIFAR experiments, we consider a range of SAM-variants which differ either in the norm
(p ∈ {2,∞}) or in the definition of the normalization operator. We use SGD, the original SAM
with no normalization and p = 2, Fisher-SAM and the following ASAM-variants: elementwise-
ℓ∞, layerwise-ℓ2, and elementwise-ℓ2. For the ViT-experiments, we use AdamW instead of SGD.
For each of the ASAM-variants, we normalize both bias and weight parameters and set η = 0.
Additionally, we employ the original ASAM-algorithm, where the bias parameters are not normalized
and η = 0.01. We train all models on a single GPU for 200 epochs, and m-sharpness is not employed
(unless indicated otherwise). For ResNets, we follow [37] and adopt a learning rate of 0.1, momentum
of 0.9, weight decay of 0.0005 and use label smoothing with a factor of 0.1. We use both basic
augmentations (random cropping and flipping) and strong augmentations (basic+AutoAugment). For
ViTs we use AdamW with learning rate 0.0001, batchsize 64 and only strong augmentations, the
other settings remain unchanged. The ResNet results were computed on 2080ti-GPUs and the ViT
results on A100s. The values of ρ we considered for each method can be found in Table 7. The
ResNet-networks we considered for the CIFAR-experiments in the main paper are ResNet56 (RN56)
[25], ResNeXt-29-32x4d (RNxT) [55], and WideResNet-28-10 (WRN) [59]. We adopted the ViTs to
CIFAR by setting the image-size to 32 and patch-size to 4.

Table 7: Search-space for ρ. The values used for the the experiments in Tables 1,3 and 10 are marked
in bold.

CIFAR-10 RN CIFAR-100 RN CIFAR-10/100 ViT
SAM all 0.05, 0.1, 0.25 0.05, 0.1, 0.5, 1. 0.025, 0.05, 0.1, 0.25, 0.5
SAM ON 0.1, 0.5, 1 0.1, 0.5, 1., 5. 1., 2.5, 5., 10., 25
el. l2 all 0.5, 1, 2, 3, 5 0.5, 1, 2.5, 5., 10. 0.5, 1., 2.5, 5, 10
el. l2 ON 0.5, 1, 2, 3, 5 0.5, 1., 2.5, 5., 10. 1., 2.5, 5.,10., 25
el. l2, orig. all 0.1, 0.5, 1, 5, 10 0.5, 1, 2.5, 5 0.5, 1., 2.5, 5, 10
el. l2, orig. ON 0.1, 0.5, 1, 5, 10 0.5, 1., 2.5, 5 1., 2.5, 5.,10., 25
el. l∞ all 0.001, 0.005, 0.01, 0.05 0.001, 0.005, 0.01, 0.05 0.0005, 0.001, 0.0025, 0.005, 0.01
el. l∞ ON 0.01, 0.025, 0.05, 0.1 0.01, 0.05, 0.1, 0.5 0.025, 0.05, 0.1, 0.25, 0.5
layer l2 all 0.005, 0.01, 0.025, 0.05, 0.1 0.001, 0.01, 0.05, 0.1 0.001, 0.0025, 0.005, 0.01, 0.025
layer l2 ON 0.05, 0.1, 0.25, 0.5, 1 0.1, 0.2, 0.5, 1. 0.05, 0.1, 0.25, 0.5, 1.
Fisher all 0.05, 0.1, 0.5, 1,5 0.05, 0.1, 0.5, 1 0.05,5 0.1, 0.5, 1,5
Fisher ON 0.1, 0.5,1 ,5 , 10 0.1, 0.5,1 ,5 , 10 0.1, 0.5,1 ,5 , 10

14

A.2 ImageNet training details

Table 8 shows the hyperparameters for all variants used for ImageNet training. For the ResNet-50
with SGD, SAM and elementwise-ℓ2 we used the hyperparameters from [23] and [37]. For the
layerwise ℓ2 and elementwise-ℓ∞ we tried two ρ-values per configuration and report the results of the
better one (named ρ (reported) in the table). ρ (discarded) refers to the ρ value we probed, but found
to perform worse than the other one. For the ViT-S (additional fine-tuning experiments in Appendix
B.3), we tried at least three values of ρ per SAM-configuration and reported the best one.

Table 8: Hyperparameters for training on ImageNet. Top: ResNet-50 from scratch, center: ViT-S
from scratch, bottom: finetuning the ViT-S.

param SGD SAM elem. ℓ2 ResNet-50 elem. ℓ∞ layer ℓ2
all all all onlyNorm all onlyNorm all onlyNorm

train epochs 90
warm-up epochs 3

cool-down epochs 10
batch-size 512

augmentation inception-style
lr 0.2

lr decay Cosine
weight decay 0.0001
ρ (reported) 0.05 1 1 0.001 0.005 0.005 0.05
ρ (discarded) 0.01 0.05 0.05 0.5

Input Resolution 224× 224
m 64

GPU Type 8×2080-ti

param AdamW AdamW+SAM ViT-S scratch Lion Lion+SAM
all all onlyNorm all all onlyNorm

train epochs 300
warm-up epochs 10

cool-down epochs 0
batch-size 128

augmentation inception-style
lr 0.001

lr decay Cosine
weight decay 0.1
ρ (reported) – 1 15 – 1 10
ρ (discarded) – 0.05,0.1,0.5,2 10,20 – 0.5,2 5,20

Input Resolution 224× 224
m 128

GPU Type 1×A100

param SGD SAM elem. ℓ2 ViT-S FT elem. ℓ∞ layer ℓ2
all all onlyNorm all onlyNorm all onlyNorm all onlyNorm

train epochs 9
warm-up epochs 1

cool-down epochs 0
batch-size 896

augmentation inception-style
lr 0.017

lr decay Cosine
weight decay 0.0001
ρ (reported) – 0.01 0.1 0.1 1 10−4 10−2 10−3 10−3

ρ (discarded) 0.1 0.01 0.01 0.1 10−3 10−3 10−2 10−2

ρ (discarded) 0.001 1. 1. 10 10−5 10−1 10−4 10−1

Input Resolution 224× 224
m 128

GPU Type 7×A100

15

A.3 SAM variants

Here, we provide a more comprehensive overview of the SAM-variants used throughout the exper-
iments. To this end, we first recall the definition of the (A)SAM-perturbation (Eq. (5) in the main
paper):

ϵ2 = ρ
T 2
w∇L(w)

||Tw∇L(w)||2
for p = 2, ϵ∞ = ρTwsign

(
∇L(w)

)
for p =∞.

with the normalization operator T i
w, which is diagonal for all variants. We note that SAM-ON can be

formally defined as using the conventional (A)SAM-algorithm but setting all entries T i
w = 0 if wi

is not a normalization parameter. This leads to a change of the perturbation ϵ according to Eq. (5).
Importantly, the magnitude of ϵ is still ρ, since both the nominator and the denominator of Eq. (5)
change. We provide an overview over all (A)SAM-variants and their respective perturbation models
in Table 9.

Table 9: The definition of T i
w for the considered SAM-variants.

variant T i
w p η

SAM all 1 2 0

ON
{
1 if wi is a normalization parameter
0 else

2 0

el. ℓ2
all |wi| 2 0

ON
{
|wi| if wi is a normalization parameter
0 else

2 0

el. ℓ2, orig. all
{
|wi|+ η if wi is a weight parameter
1 + η if wi is a bias parameter

2 0.01

ON


|wi|+ η if wi is a normalization weight
1 + η if wi is a normalization bias
0 else

2 0.01

el. ℓ∞
all |wi| ∞ 0

ON
{
|wi| if wi is a normalization parameter
0 else

∞ 0

layer ℓ2
all ||Wlayer[i]||2 2 0

ON
{
||Wlayer[i]||2 if wi is a normalization parameter
0 else

2 0

Fisher all
(
1 + η (∂wiLBatch(w))

2
)−0.5

2 1

ON

{(
1 + η (∂wi

LBatch(w))
2
)−0.5

if wi is a normalization parameter

0 else
2 1

B Further Experimental Results

B.1 SAM-ON on CIFAR

We omitted the results for ResNet-like models on CIFAR-10 in the main paper. Those are thus
reported in Table 10. Due to the already very high accuracies, the differences between SAM-ON and
SAM-all are smaller, yet on average SAM-ON is still clearly the better method. We further plot all
considered SAM-variants for different values of ρ in Figure 6 for a WRN-28 and in Figure 7 for a
ViT-S on CIFAR-100. We show results for various VGG-models [47] and DenseNet-100 [30] for
CIFAR-10/100 in Table 11 and observe that SAM-ON consistently improves over SAM-all.

B.2 Additional ablation studies for sparse SAM

In this section we provide additional ablation studies for sparsified perturbation approaches as
discussed in Section 5.1. Mi et al. [42] proposed two sparsified SAM (SSAM) approaches: Fisher
SSAM (SSAM-F) and Dynamic SSAM (SSAM-D). As an extension to Figure 4 for ResNet-18 on
CIFAR-10 data in the main paper we provide an accompanying Figure 8 which includes error bars

16

Table 10: SAM-ON improves over SAM-all for BatchNorm and ResNets on CIFAR-10: Test
accuracy for ResNet-like models on CIFAR-10. Bold values mark the better performance between
SAM-ON and SAM-all within a SAM-variant, and underline highlights the overall best method per
model and augmentation

SAM variant RN-56 RNxT WRN-28
all onlyNorm all onlyNorm all onlyNorm

ba
si

c
au

g.

SGD 94.28±0.2 95.37±0.1 96.20±0.1

SAM 94.94±0.1 95.18±0.1 96.35±0.2 96.48±0.1 97.08±0.1 97.10±0.0

elem. ℓ2 94.96±0.1 94.94±0.2 96.41±0.1 96.53±0.1 96.98±0.2 97.06±0.0

elem. ℓ2, orig. 95.14±0.1 95.21±0.1 96.40±0.1 96.41±0.1 97.10±0.1 97.07±0.1

elem. ℓ∞ 94.93±0.1 94.96±0.0 96.06±0.2 96.22±0.1 96.95±0.2 97.00±0.1

Fisher 95.01±0.1 95.03±0.1 96.31±0.0 96.55±0.0 96.95±0.0 97.13±0.1

layer. ℓ2 94.95±0.2 95.07±0.1 96.07±0.3 96.46±0.1 97.02±0.0 96.96±0.1

ba
si

c
au

g.
+

A
A SGD 94.70±0.1 96.19±0.2 97.01±0.0

SAM 95.25±0.1 95.40±0.1 96.98±0.1 97.22±0.3 97.57±0.1 97.58±0.0

elem. ℓ2 95.12±0.0 94.82±0.2 97.01±0.0 97.21±0.1 97.61±0.0 97.69±0.0

elem. ℓ2, orig. 95.39±0.1 95.60±0.1 97.24±0.0 97.33±0.1 97.60±0.0 97.56±0.0

elem. ℓ∞ 95.12±0.1 95.48±0.3 96.70±0.2 96.91±0.2 97.52±0.1 97.62±0.1

Fisher 95.19±0.0 95.38±0.1 96.77±0.0 97.24±0.1 97.53±0.0 97.65±0.1

layer. ℓ2 95.43±0.3 95.28±0.1 96.80±0.1 96.88±0.1 97.60±0.0 97.48±0.1

Table 11: SAM-ON improves over SAM-all for BatchNorm and more ResNet models: Bold values
mark the better performance between SAM-ON and SAM-all within a SAM-variant, and underline
highlights the overall best method per model and augmentation

VGG-13 VGG-16 VGG-19 DenseNet-100
SAM variant all onlyNorm all onlyNorm all onlyNorm all onlyNorm

C
IF

A
R

-1
00

SGD 75.44±0.2 74.43±0.4 73.40±0.2 77.00±0.2

SAM 76.74±0.2 77.57±0.1 75.81±0.2 76.86±0.1 74.08±0.6 75.60±0.1 79.42±0.6 79.90±0.3

elem. ℓ2 76.65±0.1 77.49±0.1 75.95±0.2 76.45±0.2 74.72±0.2 75.12±0.1 78.90±0.2 79.83±0.3

elem. ℓ2, η = 0.01 77.27±0.2 77.37±0.2 76.65±0.1 76.66±0.3 75.00±0.5 75.44±0.2 79.94±0.4 80.14±0.1

elem. ℓ∞ 76.82±0.3 77.62±0.2 75.43±0.4 76.68±0.1 72.74±0.2 74.50±0.4 79.47±0.3 79.64±0.2

Fisher, η = 1. 76.76±0.2 77.68±0.4 75.85±0.2 76.99±0.1 74.03±0.2 74.96±0.3 79.68±0.2 80.38±0.3

layer. ℓ2 76.76±0.2 77.91±0.2 75.99±0.2 77.12±0.2 74.65±0.5 75.28±0.2 78.25±0.2 79.86±0.3

C
IF

A
R

-1
0

SGD 94.29±0.0 93.85±0.3 93.82±0.0 94.51±0.1

SAM 94.88±0.1 95.19±0.2 94.96±0.0 95.02±0.1 94.58±0.1 94.81±0.2 95.84±0.2 95.89±0.0

elem. ℓ2 94.97±0.1 95.08±0.0 95.01±0.1 95.02±0.1 94.68±0.0 94.99±0.1 95.76±0.2 95.86±0.2

elem. ℓ2, η = 0.01 94.95±0.0 95.13±0.1 94.87±0.1 95.12±0.1 94.66±0.1 94.87±0.2 95.92±0.3 95.85±0.1

elem. ℓ∞ 94.96±0.1 95.06±0.0 94.74±0.2 94.91±0.0 94.68±0.1 94.73±0.1 95.56±0.2 95.91±0.1

Fisher, η = 1. 95.07±0.0 95.17±0.0 94.77±0.0 95.10±0.2 94.55±0.0 94.91±0.1 95.65±0.1 96.00±0.1

layer. ℓ2 94.78±0.1 95.09±0.1 94.54±0.1 95.08±0.1 66.21±48.7 94.96±0.1 95.48±0.2 95.82±0.1

and comparisons with the dynamic sparse perturbation approach (SSAM-D) [42]. We also provide
additional results for SSAM-D for a WideResNet-28 on CIFAR-100 data in Table 12. We found
optimal performance for SSAM for 50% sparsity and ρ = 0.1 on CIFAR-10 and ρ = 0.2 on CIFAR-
100 (as also observed in [42] for slightly different training settings). We find that although both SSAM
approaches can perform on par or even outperform regular SAM, they are less effective than our
SAM-ON approach. The generalization gap increases even further when considering the same high
sparsity levels as for SAM-ON.

Table 12: Although SSAM-F and SSAM-D [42] with different sparsity levels can outperform SAM-all
on CIFAR-100 with WRN-28, they are less effective than SAM-ON.

SAM SAM-ON SAM-rand SSAM-F SSAM-D
Sparsity 0% 99.95% 99.95% 50% 99.95% 50% 99.95%
Accuracy 83.11±0.3 84.19±0.2 80.97±0.2 83.94±0.1 83.14±0.1 83.53±0.1 81.01±0.1

17

10 3 10 2 10 1 100 10180.5
81.0
81.5
82.0
82.5
83.0
83.5
84.0
84.5
85.0

Te
st

 A
cc

ur
ac

y
(%

)

all
ON

no-norm

ASAM, p=2.0, elem. eta=0.01
ASAM, p=2.0, elem.
ASAM, p=2.0, layer
ASAM, p=inf, elem.
Fisher, p=2.0 eta=1.0
SAM, p=2.0
SGD

all
ON

no-norm

Figure 6: All considered SAM-variants and their SAM-ON counterpart for a WRN-28 on CIFAR-100.

10 3 10 2 10 1 100 10164

65

66

67

68

69

70

71

Te
st

 A
cc

ur
ac

y
(%

)

all
ON

no-norm

AdamW
ASAM, p=2.0, elem.
ASAM, p=2.0, elem. eta=0.01
ASAM, p=2.0, layer
ASAM, p=inf, elem.
Fisher, p=2.0 eta=1.0
SAM, p=2.0

all
ON

no-norm

Figure 7: All considered SAM-variants and their SAM-ON counterpart for a ViT-S on CIFAR-100.

10 2 10 1 100 101

95.25

95.50

95.75

96.00

96.25

96.50

Te
st

 A
cc

ur
ac

y
(%

) SGD
SAM
SSAM-F 50%
SSAM-D 50%
SSAM-F 99.93%
SSAM-D 99.93%
SAM-ON
SAM-rand

Figure 8: SAM-ON outperforms SSAM-F and SSAM-D [42] (with different sparsity levels) and
random mask SAM-rand (same sparsity level 99.93% as SAM-ON) sparse perturbation approaches on
CIFAR-10 for ResNet-18.

B.3 Finetuning from ImageNet-21k

Since ViTs are commonly trained on large-scale datasets and then fine-tuned, we investigate this
scenario for SAM-ON. In particular, we consider a ViT-S pretrained on ImageNet-21k from [48].
We fine-tune for 9 epochs with SGD for a range of SAM-variants with their respective SAM-ON
counterpart. For each setup, we probe three values of ρ and report the best result in Table 13. We find
in this setting that SAM-ON performs on par with SAM-all although there are small differences across
SAM variants: for layerwise-ℓ2 SAM-ON performs slightly worse, whereas for all other variants
SAM-ON performs equally well or slightly better than SAM-all. In all cases SAM-ON outperforms
plain SGD.

Table 13: Results for ImageNet-1k fine-tuning of a ViT-S-224 from a ImageNet-21k model.

SGD SAM ASAM elem. ℓ2 ASAM layer. ℓ2 ASAM elem. ℓ∞
all ON all ON all ON all ON

81.62 81.75 81.75 81.73 81.75 81.79 81.75 81.84 81.84

18

B.4 Adversarial robustness

Here, we provide additional results and extend the discussion on adversarial robustness from Sec-
tion 4.2. In a study by Wei et al. [52] SAM-trained models showed non-trivial robustness to small
adversarial perturbations [50]. Since there are several works highlighting the role of normalization
layers for adversarial robustness [9, 54], it is interesting to investigate whether the robustness proper-
ties of SAM can be preserved when training with SAM-ON instead of SAM-all. In Table 15 we report
the adversarial robustness of the ViT-S trained from scratch on ImageNet (as reported in Section 4.2
evaluated with the two white-box attacks from APGD, but for more radii). The SAM-ON models are
not only better than the base optimizer, but consistently outperform the SAM-all models by a small
margin. For a WRN-28-10 on CIFAR-100 the differences are less pronounced and often within the
standard deviation (reported over 3 seeds in Table 14). SAM-ON also improves over SAM-all, but
for the ASAM-elementwise-ℓ∞ the all-variant is slightly better than the ON-variant. Overall, we find
that in order to get SAM-like improvements for adversarial robustness (as shown in [52]) it is enough
to only perturb the normalization layers in SAM, illustrating again their special role.

Table 14: Adversarial robustness CIFAR-100: Reported is robust accuracy (in %) for a WRN-28
trained from scratch on CIFAR-100. Adversarial robustness is evaluated with the two whitebox
APGD attacks from autoattack [16].

SGD SAM ASAM-el.-l∞
threat model ϵ all ON all ON

ℓ2 0.10 18.14±0.11 28.14±1.0931.28 ±0.50 30.33±0.80 30.16±0.26

ℓ2 0.20 2.33±0.11 5.39±0.34 6.62 ±0.07 6.63 ±0.12 6.10±0.18

ℓ∞ 1/255 10.29±0.04 17.96±1.0819.56 ±0.33 20.69 ±0.8118.63±0.30

ℓ∞ 2/255 0.67±0.01 1.96±0.17 2.16 ±0.07 2.62 ±0.01 2.05±0.17

Clean acc. 80.7±0.2 83.1±0.3 84.2±0.2 83.3±0.2 84.1±0.2

Table 15: Adversarial robustness ImageNet: Reported is robust accuracy (in %) for a ViT-S trained
from scratch on ImageNet, as reported in Table 4. Adversarial robustness is evaluated with the two
whitebox APGD attacks from autoattack [16].

AdamW Lion
ϵ vanilla SAM-all SAM-ON vanilla SAM-all SAM-ON

ℓ2 0.25 19.67±0.47 37.53±0.69 41.16 ±0.24 22.01±0.78 38.52±0.66 43.12 ±0.97

ℓ2 0.50 5.47±0.18 17.71±0.61 22.72 ±0.25 6.63±0.46 19.03±0.92 24.27 ±1.34

ℓ2 1.00 0.43±0.09 3.34±0.36 5.58 ±0.19 0.57±0.07 3.98±0.28 6.64 ±0.69

ℓ∞ 0.25/255 33.45±0.80 48.08±0.14 49.34 ±0.08 35.31±0.08 49.57±0.60 51.37 ±0.99

ℓ∞ 0.5/255 14.98±0.18 29.68±0.09 32.46 ±0.15 15.86±0.13 31.68±0.62 34.23 ±1.73

ℓ∞ 1/255 2.61±0.16 8.64±0.01 10.82 ±0.56 2.93±0.29 10.02±0.56 12.03 ±1.30

Clean acc. 66.89±0.04 71.47±0.12 71.37±0.026 68.20±0.02 71.90±0.19 72.64±0.14

B.5 Machine translation task

To probe the effectiveness of SAM-ON outside the vision domain, we apply it to the IWSLT’14
DE-EN machine translation task, following the setup of Kwon et al. [37]. We report the resulting
Bleu scores in Table 16: SAM-all and SAM-ON perform similar (within standard deviations reported
over 3 random seeds), both improving over the vanilla optimizer. While being very limited in its
scope, this experiment is a first hint that SAM-ON might also be effective outside the vision domain.
Proper evaluations, as for instance done in [7], are required to confirm this for large-scale settings.

Table 16: IWSLT-DE-EN Bleu scores. Reported over 3 random seeds.

vanilla SAM-all SAM-ON
34.56±0.11 34.83±0.10 34.95±0.16

19

B.6 Weight distribution after training

In order to get a better understanding of the impact of SAM-ON on γ and β (as defined in Eq. 1),
we train a WideResNet-28-10 with different SAM-variants and both SAM-ON and all. We show
the distribution of |wi|, i.e. the parameter magnitudes, at the end of training for different layer
types in Figure 9. Different to the discussion in Section 5.3, we show the y-axis on log-scale, in
order to inspect more nuanced differences. For elementwise ℓ2 there is no strong change in the
distribution of the BatchNorm parameters between all and SAM-ON. For elementwise ℓ∞, layerwise
ℓ2 and SAM, however, the magnitude of the BatchNorm parameters shifts clearly towards larger
values, especially for the weight parameters. We note that this resembles a pattern we observed when
comparing the optimal ρ-value for all and SAM-ON in Table 7: The optimal ρ of elementwise ℓ2
did not change much for ResNet architectures, whereas for the other considered methods, it shifted
towards larger values for SAM-ON. Additionally and in contrast to the other methods, the elementwise
ℓ2 variant showed a strong performance decrease in no-norm (Figure 1), indicating that it implicitly
focuses on perturbing the BatchNorm layers already. We note that larger BatchNorm parameters do
not necessarily indicate a functionally different network, since there are many reparameterization
invariances in ReLU networks, some of which ASAM tries to leverage in its perturbation definition
Eq. (4). Nevertheless, the scale of the network still has an impact on the training dynamics, since
other methods like e.g. weight decay depend on it. We discuss the impact of weight decay further in
Appendix B.9.

B.7 Removing the affine parameters

Frankle et al. [24] found for SGD that fixing the normalization parameters typically decreases the
generalization performance of networks. As an ablation, we therefore study the effect of SAM when
the normalization weights are non-trainable. This is, we set γ = 1 and β = 0 and train the remaining
parameters with SAM. The results are shown for a WRN-28 in Figure 10, where it can be seen that
fixing the normalization parameters (fix-norm) does not lead to a decrease in the performance of
SAM. We thus hypothesize that in certain settings, SAM might not leverage the expressive power of
the normalization layers, which might contribute to the improved performance of SAM-ON.

B.8 Training BatchNorm and only BatchNorm

The affine parameters of the normalization layers are relatively understudied in the literature. Recently,
Frankle et al. [24] were able to obtain surprisingly high performance for ResNet architectures by only
training the BatchNorm layers (freezing all other parameters), illustrating their expressive power. We
study the effect of SAM in this setting (i.e. when all parameters except for the BatchNorm layers are
frozen) for a ResNet-101 and a WRN-28 on CIFAR-10 and find that SAM still aids generalization in
this setting (Table 17).

Table 17: Effect of SAM when training only BatchNorm layers, for networks trained on CIFAR-10.

Model SGD SAM ρ = 0.01 SAM ρ = 0.05
ResNet-101 78.75 78.63 79.27
WRN-28 63.49 64.48 62.70

B.9 Weight decay and dropout

Here, we explore potential connections of SAM-ON with weight decay and dropout. Since weight
decay is sometimes applied to all network parameters, and sometimes normalization layers are
omitted, it is worth investigating if the benefits of SAM-ON can be attributed to its interaction with
weight decay. To this end, we train a WRN-28 with SGD, SAM-all and SAM-ON, and apply weight
decay to either all parameters, all except the normalization layers, or not at all (Figure 11, right). For
each setting SAM-ON outperforms SAM, outlining that its success should not be attributed to the
interaction with weight decay.

We further test if SAM-ON-like performance can be achieved by simply applying stronger regulariza-
tion and stochasticity to the normalization parameters. To this end, we apply dropout solely on the
normalization layers (Figure 11, left) and find that this is not the case.

20

0.0 0.5 1.0

101

103

SG
D

Distribution of

0.0 0.5 1.0

101

103
Distribution of

0.0 0.5 1.0

102

104

Distribution of FC weights

0.0 0.5 1.0

101

103

SA
M

0.0 0.5 1.0

101

103

0.0 0.5 1.0

101

103

 OnlyNorm
 all

0.0 0.5 1.0

101

103

el
em

en
tw

ise
 p

=2

0.0 0.5 1.0

101

103

0.0 0.5 1.0

102

104
 all
 OnlyNorm

0.0 0.5 1.0

101

103

el
em

en
tw

ise
 p

=

0.0 0.5 1.0

101

103

0.0 0.5 1.0

101

103

 all
 OnlyNorm

0.0 0.5 1.0
i

101

103

la
ye

rw
ise

 p
=2

0.0 0.5 1.0
i

101

103

0.0 0.5 1.0
wi

101

103

 OnlyNorm
 all

Figure 9: SAM-ON leads to a shift in the distribution of γ.

10 2 10 1 10081.5

82.0

82.5

83.0

83.5

84.0

Te
st

 A
cc

ur
ac

y
(%

)

fix-norm, SAM, p=2.0
SAM, p=2.0 all
SAM, p=2.0 OnlyNorm

Figure 10: When training with SAM, fixing γ = 1, β = 0 (fix-norm) barely changes the performance
of the network. WRN-28, CIFAR-100.

21

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
 / dropout rate

80

81

82

83

84

Te
st

 A
cc

ur
ac

y
(%

)

WRN28-10 CIFAR100 - Dropout on Normalization layers

SAM all
SAM ON
SGD dropout-ON via params
SGD dropout-ON via activations

10 1 100 101
77
78
79
80
81
82
83
84
85

Te
st

 A
cc

ur
ac

y
(%

)

WRN28-10 CIFAR100 - Weight decay

SAM all
SAM ON
SGD
no wd norm, SAM all
no wd norm, SAM ON
no wd norm, SGD
no wd, SAM all
no wd, SAM ON
no wd, SGD

Figure 11: Left: Applying dropout only to the normalization layers (blue/red) performs worse than
SAM-ON. Right: SAM-ON improves over SAM-all irrespective of whether weight decay is applied to
all parameters (green), all except the normalization layers (blue) or not at all (yellow).

B.10 Details on sharpness evaluation

For the following discussion, we note that the term generalization is sometimes used as the difference
between train and test error, while in other cases people use it as a synonym for test error. Since in
CIFAR settings the models achieve train error close to zero, the two definitions become equivalent.

Many studies have attempted to better understand the possible connection between the general-
ization of deep neural networks and the flatness of the loss-surface [26, 32, 22, 34, 18]. Recently,
Andriushchenko et al. [4] conducted a large-scale study for a range of models, datasets, and sharpness-
definitions, finding that “while there definitely exist restricted settings where correlation between
sharpness and generalization is significantly positive (e.g., for ResNets on CIFAR-10 with a specific
combination of augmentations and mixup) it is not true anymore when we compare all models jointly”
and concluding “that one should avoid blanket statements like flat minima generalize better”. In
order to evaluate sharpness, we therefore adopt their setup and choose the best-performing sharpness
measure for CIFAR from their study, which is logit-normalized elementwise-adaptive worst-case-ℓ∞-
m-sharpness. This is, m-sharpness smw is defined as the largest possible change in loss within the
adaptive perturbation model defined in 4,

smw = Ex,y∼Dm
max

||T−1
w ϵ||p≤ρ

L(w + ϵ)− L(w) (6)

where T i
w = |wi|, p =∞ and Dm returns data batches of size m. ρ here denotes the size of the ball

over which sharpness is evaluated and is not to be confused with the ρ from the SAM-algorithm.
Like for ASAM [37], the motivation behind adaptive sharpness measures is to make them invariant
to reparameterizations of the network. Further, the logit-outputs of the network are normalized
with respect to their ℓ2-norm in order to mitigate the scale-sensitivity of classification losses. In
practice, Andriushchenko et al. [4] compute smw over a subset of the train set of size 1024 and use
m = 128, i.e. average 8 batches. We use a subset of size 2048 in order to obtain more reliable
sharpness estimates, and adopt m = 128. The maximization in (6) is performed with AutoPGD [16],
a hyperparameter-free method designed for accurate estimation of adversarial robustness. It is to
note that except for the logit-normalization, the sharpness definition reported in Table 6 corresponds
exactly to the perturbation model that ASAM elementwise ℓ∞ uses, and hence the 1-step sharpness
reported should be fairly close the the objective that ASAM elementwise ℓ∞ actually minimizes
during training. While ASAM elementwise ℓ∞ yields slightly smaller sharpness values than the
conventional SAM algorithm, the differences are rather small when compared to the significantly
sharper SAM-ON models. For the results in Table 6 in the main paper we tuned the sharpness radius
ρ such that we obtain sharpness values similar to those reported to yield the highest correlation
in Andriushchenko et al. [4]. In Table 18 we report sharpness values for a ResNeXt-model, in
addition to the WRN-28 from the main paper. In all cases the SAM-ON models are sharper than the
SAM-all models yet generalize better. In Table 19 we further report other sharpness measures without
logit-normalization for a WRN-28. SAM-ON is sharper than SAM-all with respect to most metrics,
although there exist some exceptions. It should however be stressed that many of those metrics did
not show good correlation with generalization in the study by Andriushchenko et al. [4].

22

Table 18: Sharpness evaluation of both a WRN-28 and a ResNeXt. SAM-ON is sharper than SAM-all
in all cases. Shown is 20-step logit-normalized ℓ∞ sharpness from [2], averaged over three models
per method. Dataset considered is CIFAR-100.

SGD SAM ASAM-el.-ℓ∞
all ON all ON

W
R

N
-2

8 Test Accuracy (%) 80.71±0.2 83.11±0.3 84.19±0.2 83.25±0.2 84.14±0.2

ℓ∞-sharpness, ρ = 0.003 0.071±0.000 0.048±0.001 0.090±0.005 0.048±0.001 0.078±0.004

ℓ∞-sharpness, ρ = 0.005 0.201±0.001 0.139±0.004 0.296±0.018 0.124±0.002 0.283±0.011

ℓ∞-sharpness, ρ = 0.007 0.433±0.002 0.309±0.011 0.585±0.018 0.255±0.005 0.580±0.020

R
es

N
eX

t Test Accuracy (%) 80.16 ±0.3 81.79 ±0.4 82.22 ±0.2 81.02 ±0.6 82.38 ±0.3

ℓ∞-sharpness, ρ = 0.001 0.036±0.001 0.029±0.000 0.034±0.000 0.026±0.002 0.034±0.001

ℓ∞-sharpness, ρ = 0.003 0.164±0.005 0.117±0.004 0.140±0.002 0.099±0.010 0.147±0.001

ℓ∞-sharpness, ρ = 0.005 0.383±0.011 0.252±0.008 0.291±0.005 0.203±0.021 0.312±0.001

Table 19: Additional sharpness measures. WRN-28 (no logitnorm).

SGD SAM ASAM-el.-ℓ∞
adaptive all ON all ON

Test Accuracy (%) 80.71±0.2 83.11±0.3 84.19±0.2 83.25±0.2 84.14±0.2

ℓ2 avg, ρ = 0.005 False 1.358±0.049 0.515 ±0.020 2.372±0.071 0.569 ±0.012 2.141±0.045

ℓ2 avg, ρ = 0.1 True 0.042±0.001 0.019 ±0.001 0.022±0.001 0.040±0.001 0.019 ±0.001

ℓ∞ avg, ρ = 0.01 False 2.643±0.097 1.264 ±0.028 3.455±0.050 1.304 ±0.007 3.259±0.031

ℓ∞ avg, ρ = 0.2 True 0.078±0.001 0.035±0.001 0.034±0.004 0.068±0.003 0.031 ±0.001

ℓ2-worst, ρ = 0.05 False 0.501±0.048 0.655±0.277 0.701±0.057 0.768±0.141 0.313 ±0.044

ℓ2-worst, ρ = 0.25 True 0.065±0.008 0.033±0.004 0.037±0.017 0.056±0.006 0.062±0.001

ℓ∞-worst, ρ = 1e− 05 False 0.149±0.003 0.055 ±0.002 0.144±0.005 0.050 ±0.002 0.123±0.007

ℓ∞-worst, ρ = 0.004 True 0.537±0.023 0.262 ±0.009 0.600±0.053 0.255 ±0.011 0.505±0.027

C Convergence Analysis

We provide in this section a convergence analysis for SAM-ON in the non-convex setting. Using
standard assumptions we obtain a theorem which resembles findings for closely related methods such
as found in [2, 42].

Our assumptions:

Assumption C.1. We assume function f : Rn → R to be L-smooth: there exists L > 0 such that

∥∇f(v)−∇f(w)∥2 ≤ L∥v − w∥2, ∀v, w ∈ Rn. (7)

Assumption C.2. There exists M > 0 for any sample xi such that

∥∇fxi
(w)∥22 ≤M, ∀w ∈ Rn. (8)

Remark C.3. If Assumption C.1 holds (L-smoothness), then ∀v, w ∈ Rn:

|f(v)− (f(w) +∇f(w)T (v − w))| ≤ L

2
∥v − w∥22. (9)

This well-known result can be derived using the fundamental theorem of calculus and Cauchy-
Schwartz.

Remark C.4. Assumption C.2 guarantees that the variance of the stochastic gradient is less than M .

SAM-ON. In the following we shall denote the true gradient as ∇f(w) and the noisy observation
gradient as g(w). The gradient of the loss of the ith training example is denoted as gxi(w). We
partition the neural network parameters layer-wise as w = {wN , wA}, with wN ∈ RnN , wA ∈ RnA ,
n = nN + nA, where wN represent the normalization layer parameters and wA all other layers. The

23

iteration for wN is:

w
t+1/2
N = wt

N + ρ
gN,xi

(wt)

∥gN,xi
(wt)∥

wt+1
N = wt

N − h gN,xi

(
wt+1/2

)
(10)

and for wA is:

w
t+1/2
A = wt

A

wt+1
A = wt

A − h gA,xi

(
wt+1/2

)
. (11)

Theorem C.5. Assuming C.1 and C.2, h ≤ 1/L, we obtain:

1

T

T−1∑
t=0

E
[
∥∇f(wt)∥2

]
≤ 2(f(w0)− f(w∗))

hT
+ 2LhM + L2ρ2(1 + Lh), (12)

with w∗ the optimal solution to f(w).

Proof. From Assumption C.1 and thus Remark C.3 it follows that:

f(wt+1) ≤ f(wt) +∇f(wt) · (wt+1 − wt) +
L

2
∥wt+1 − wt∥2 (13)

≤ f(wt)− h∇f(wt) · gxi

(
wt+1/2

)
+

h2L

2

∥∥∥gxi

(
wt+1/2

)∥∥∥2 (14)

= f(wt)− h∇f(wt) · gxi

(
wt+1/2

)
+

h2L

2

(
∥∇f(wt)− gxi(w

t+1/2)∥2 − ∥∇f(wt)∥2 + 2
(
∇f(wt) · gxi(w

t+1/2)
))

= f(wt)− Lh2

2
∥∇f(wt)∥2 + Lh2

2
∥∇f(wt)− gxi

(wt+1/2)∥2

− (1− Lh)h
(
∇f(wt) · gxi

(wt+1/2)
)

(15)

≤ f(wt)− Lh2

2
∥∇f(wt)∥2 + Lh2∥∇f(wt)− gxi

(wt)∥2

+ Lh2∥gxi
(wt)− gxi

(wt+1/2)∥2 − (1− Lh)h
(
∇f(wt) · gxi

(wt+1/2)
)
. (16)

Taking the double expectation gives (because unbiased gradient and Assumption C.2 and Remark
C.4):

E[f(wt+1)] ≤ E[f(wt)]− Lh2

2
E∥∇f(wt)∥2 + Lh2M

+ Lh2∥g(wt)− g(wt+1/2)∥2︸ ︷︷ ︸
A

− (1− Lh)hE
[
∇f(wt) · g(wt+1/2)

]
︸ ︷︷ ︸

B

. (17)

For term A we obtain using Assumption C.1:

A ≤ L3h2∥wt − wt+1/2∥2 = L3h2ρ2. (18)

For term B we obtain:

B = E
[
{∇fN (wt),∇fA(wt)} · {gN (wt+1/2), gA(w

t+1/2)}
]

(19)

= E[∇fA(wt) · (gA(wt+1/2)− gA(w
t) + gA(w

t))]

+ E[∇fN (wt) · (gN (wt+1/2)− gN (wt) + gN (wt))] (20)

= E
[
∥∇f(wt)∥2

]
+ E[∇fA(wt) · (gA(wt+1/2)− gA(w

t))] + E[∇fN (wt) · (gN (wt+1/2)− gN (wt))]︸ ︷︷ ︸
C

. (21)

24

Using xy ≤ 1
2∥x∥

2
2 +

1
2∥y∥

2
2 and Assumption C.1 we get for C:

|C| ≤ 1

2
E
[
∥∇f(wt)∥2

]
+

L2

2
∥wt+1/2 − wt∥2 =

1

2
E
[
∥∇f(wt)∥2

]
+

L2ρ2

2
. (22)

Plugging this into (17) gives:

E[f(wt+1)] ≤ E[f(wt)]− Lh2

2
E∥∇f(wt)∥2 + Lh2M + L3h2ρ2 − (1− Lh)hE∥∇f(wt)∥2

+ (1− Lh)h

(
1

2
E∥∇f(wt)∥2 + L2ρ2

2

)
(23)

≤ E[f(wt)]− h

2
E∥∇f(wt)∥2 + Lh2M +

1

2
hL2ρ2(1 + Lh). (24)

In T iterations we obtain using a telescoping sum:

f(w∗)− f(w0) ≤ E[f(wT)]− f(w0)

≤ −h

2

T−1∑
t=0

E
[
∥∇f(wt)∥2

]
+ Lh2MT +

1

2
hL2ρ2(1 + Lh)T. (25)

This gives Theorem C.5.

25

	Introduction
	Related Work
	Background: SAM and Normalization Layers
	BatchNorm and LayerNorm
	SAM and its variants

	SAM-ON: Perturbing Only the Normalization Layers
	BatchNorm and ResNet
	LayerNorm and Vision Transformer
	Computational savings

	Towards Understanding SAM-ON
	The effect of sparsified perturbations
	Sharpness and feature-rank of SAM-ON
	SAM-ON can change the affine parameter values

	Discussion and Conclusion
	Training Details
	CIFAR training details
	ImageNet training details
	SAM variants

	Further Experimental Results
	SAM-ON on CIFAR
	Additional ablation studies for sparse SAM
	Finetuning from ImageNet-21k
	Adversarial robustness
	Machine translation task
	Weight distribution after training
	Removing the affine parameters
	Training BatchNorm and only BatchNorm
	Weight decay and dropout
	Details on sharpness evaluation

	Convergence Analysis

