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Abstract

We propose a Bayesian encoder for metric learning. Rather than relying on neural
amortization as done in prior works, we learn a distribution over the network
weights with the Laplace Approximation. We first prove that the contrastive loss is
a negative log-likelihood on the spherical space. We propose three methods that en-
sure a positive definite covariance matrix. Lastly, we present a novel decomposition
of the Generalized Gauss-Newton approximation. Empirically, we show that our
Laplacian Metric Learner (LAM) yields well-calibrated uncertainties, reliably de-
tects out-of-distribution examples, and has state-of-the-art predictive performance.

1 Introduction
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Figure 1: Reliable stochastic embeddings. LAM
(ours) estimates reliable uncertainties of latent image
embeddings that reflect the amount of blur, noise, or
occlusion in the input image.

Metric learning seeks data representations
where similar observations are near and dis-
similar ones are far. This elegantly allows
for building retrieval systems with simple
nearest-neighbor search. Such systems eas-
ily cope with a large number of classes, and
new classes can organically be added with-
out retraining. While these retrieval sys-
tems show impressive performance, they
quickly, and with no raised alarms, dete-
riorate with out-of-distribution data [38].
In particular, in safety-critical applications,
the lack of uncertainty estimation is a con-
cern as retrieval errors may propagate un-
noticed through the system, resulting in er-
roneous and possibly dangerous decisions.

We present the Laplacian Metric Learner
(LAM) to estimate reliable uncertainties
of image embeddings as demonstrated in
Fig. 1. We learn a distribution over the
network weights (weight posterior) from
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which we obtain a stochastic representation by embedding an image through sampled neural networks.
This Bayesian formulation has multiple benefits, namely (1) robustness to out-of-distribution
examples, (2) calibrated in-distribution uncertainties, and (3) a slight improvement in predictive
performance.

More specifically, our method extends the Laplace Approximation [27] for metric learning. We present
a probabilistic interpretation of the contrastive loss [15] which justifies that it can be interpreted as an
unnormalized negative log-likelihood. We propose three solutions to ensure a positive semidefinite
Hessian for the contrastive loss and present two approaches to compute the Generalized Gauss-
Newton [12] approximation for ℓ2-normalized networks. Finally, we boost our method with the
online training procedure from [29] to achieve state-of-the-art performance.

We are not the first to consider uncertainty quantification in image retrieval. Seminal works [38, 33]
have addressed the lack of uncertainties in retrieval with amortized inference [14], where a neural
network predicts a stochastic embedding. The issues with this approach are that (1) it requires strong
assumptions on the distribution of the embedding, (2) the networks are often brittle and difficult
to optimize, and (3) out-of-distribution detection relies on the network’s capacity to extrapolate
uncertainties. As neural networks extrapolate poorly [50], the resulting predicted uncertainties are
unreliable for out-of-distribution data [10] and are thus, in practice, of limited value.

In contrast, our method does not assume any distribution on the stochastic embeddings, is simple
to optimize, and does not rely on a neural network to extrapolate uncertainties. Instead, our weight
posterior is derived from the curvature of the loss landscape and the uncertainties of the latent embed-
dings deduced (rather than learned) with sampling. Empirically, we show that this leads to reliable
out-of-distribution performance and calibrated uncertainties in both controlled toy experiments and
challenging real-world applications such as bird, face, and place recognition.

2 Related Work

Metric learning attempts to map data to an embedding space, where similar data are close together
and dissimilar data are far apart. This is especially useful for retrieval tasks with many classes and
few observations per class such as place recognition [46] and face recognition [37] or for tasks where
classes are not well-defined, such as food tastes [48] or narratives in online discussions [4].

There exist many metric losses that optimize for a well-behaved embedding space. We refer to the
excellent survey by [30] for an overview. We here focus on the contrastive loss [15]

Lcon(θ) =
1

2
∥fθ(xa)− fθ(xp)∥2 +

1

2
max

(
0,m− ∥fθ(xa)− fθ(xn)∥2

)
, (1)

which has shown state-of-the-art performance [30] and is one of the most commonly used metric
losses. Here, fθ is a neural network parametrized by θ which maps from the observation space to the
embedding space. The loss consists of two terms, one that attracts observations from the same class
(anchor xa and positive xp), and one that repels observations from different classes (anchor xa and
negative xn). The margin m ≥ 0 ensures that negatives are repelled sufficiently far. We will later
present a probabilistic extension of the contrastive loss that allows us to learn stochastic, rather than
deterministic, features in the embedding space.

Uncertainty in deep learning is studied across many domains to mitigate fatal accidents and allow
for human intervention when neural networks make erroneous predictions. Current methods can
be divided into methods that apply amortized optimization to train a neural network to predict the
parameters of the output distribution, and methods that do not. The amortized methods, best known
from the variational autoencoder (VAE) [19, 36], seem attractive at first as they can directly estimate
the output distribution (without requiring sampling), but they suffer from mode collapse and are
sensitive to out-of-distribution data due to the poor extrapolation capabilities of neural networks
[31, 10]. ‘Bayes by Backprop’ [2] learns a distribution over parameters variationally but is often
deemed too brittle for practical applications. Alternatives to amortized methods includes deep
ensembles [23], stochastic weight averaging (SWAG) [28], Monte-Carlo dropout [13] and Laplace
Approximation (LA) [24, 27] which all approximate the generally intractable weight posterior p(θ|D)
of a neural network. We propose to extend LA to metric learning.

Laplace approximations (LA) can be applied for every loss function L that can be interpreted as an
unnormalized log-posterior by performing a second-order Taylor expansion around a chosen weight
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vector θ∗ such that

L(θ) ≈ L∗ + (θ − θ∗)⊤∇L∗ +
1

2
(θ − θ∗)⊤∇2L∗(θ − θ∗), (2)

where L∗ is the loss evaluated in θ∗. Imposing the unnormalized log-posterior to be a second-order
polynomial is equivalent to assuming the posterior to be Gaussian. If θ∗ is a MAP estimate, the
first-order term vanishes, and the second-order term can be interpreted as a precision matrix, the
inverse of the covariance. Assuming θ∗ is a MAP estimate, this second-order term is negative semi-
definite for common (convex) supervised losses, such as the mean-squared error and cross-entropy.
Recently, Daxberger et al. [8] demonstrated that post-hoc LA is scalable and produces well-behaved
uncertainties for classification and regression. The Laplacian Autoencoder (LAE) [29] improves on
the post-hoc LA with an online Monte Carlo EM training procedure to learn a well-behaved posterior.
It demonstrates state-of-the-art uncertainty quantification for unsupervised representation learning.

Uncertainty in metric learning is not new [44], but the majority of recent methods apply amortized
inference to predict distributions in the embedding space [47, 3, 5, 33, 38, 39, 41], making them sen-
sitive to mode collapse and out-of-distribution data. Alternatives like deep ensembles [42] and Monte-
Carlo dropout [43] suffer from increased training time, poor empirical performance, and limited
Bayesian interpretation [8]. We explore LA in metric learning and attain state-of-the-art performance.

3 Laplacian Metric Learning
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Figure 2: Model overview. We learn a dis-
tribution over parameters, such that we em-
bed an image through sampled encoders fθ to
points zi (red dots) in a latent space Z . We re-
duce these latent samples to a single measure
of uncertainty by estimating the parameters
of a von Mises-Fisher distribution.

To perform Bayesian retrieval, we estimate the weight
posterior of the embedding network fθ such that we
can sample data embeddings to propagate uncertainty
through the decision process. The embedding net-
work is parametrized by θ ∈ Θ and trained with
the contrastive loss. The network maps an image
x ∈ X := RHWC to an embedding z ∈ Z , which
is restricted to be on a Z-dimensional unit sphere
Z := SZ . This spherical normalization is often done
in retrieval to obtain faster retrieval and a slight per-
formance boost [1, 35]. Fig. 2 illustrate our Bayesian
mapping from image to latent space.

Laplace Approximation (LA) recap. We apply LA to obtain the posterior over the weights θ. LA
comes in two flavors: (1) The post-hoc LA is found by first training a standard deterministic network
through gradient steps with the contrastive loss to find the maximum a posteriori (MAP) parameters
θ∗. Since we are in a local optimum, the first-order term in the second-order Taylor expansion (Eq. 2)
vanishes, and we can define the parameter distribution as

p(θ|D) = N
(
θ
∣∣∣θ∗,(∇2

θLcon (θ
∗;D) + σ−2

priorI
)−1

)
. (3)

The advantage of post-hoc LA is that the training procedure does not change, and already trained
neural networks can be made Bayesian. In practice, however, we empirically observe post-hoc LA
to be unstable. We refer to the large standard deviation in Table 1, Table 2, and Table 3 over random
seeds. The instability stems from curvature differences between the local minimas through stochastic
optimization. (2) Online LA [29] improves on this instability by marginalizing the LA during training
with Monte Carlo EM. This helps the training recover a solution θ∗ where the Hessian reflects the loss
landscape. Specifically, at each step t during training, we keep in memory a Gaussian distribution on
the parameters qt(θ) = N (θ|θt, H−1

θt
). The parameters are updated through an expected gradient step

θt+1 = θt + λEθ∼qt [∇θLcon(θ;D)] (4)

and a discounted Laplace update

Hθt+1 = (1− α)Hθt +∇2
θLcon(θ;D), (5)

where α describes an exponential moving average, similar to momentum-like training. The
initialization follows the isotropic prior q0(θ) = N (θ|0, σ2

priorI).
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The probabilistic contrastive likelihood. LA expects the loss function to be a log-posterior, that is
log-likelihood plus log-prior. A simple choice of the log-prior is ∥θ∥22 (weight decay). Further, we find
that the contrastive loss Eq. 1 has a probabilistic interpretation and is a negative log-likelihood on the
spherical space. We define the attractive term P��(z|x, θ) ∼ NS(z|fθ(x), κ) and the repelling term
P��(z|x, θ) ∼ N S(z| −fθ(x), κ) as Von Mises-Fisher distributions on the latent space spherical
space, where the concentration parameter κ ≥ 0. The product of these two likelihoods yields
a contrastive likelihood, which is valid on the spherical space, and its negative log-likelihood is
equivalent to the contrastive loss (proof and details in ??).

The intuition, helped by electrostatics, is that the log probability density of these Von Mises-Fisher
distributions (i.e. spherical Gaussians) plays the role of a potential energy. The precision parameter κ
controls the concentration of the potential energy and, consequently, the strength of the associated
force. If κ = 0 the distribution is uniform, the potential is constant and the associated force is zero.
On the spherical space, moreover, a repulsive term from some point is equivalent to an attractive term
from the antipodal point, which in turn is mathematically equivalent (see ??) to a negative precision
κ. This is the fundamental reason behind the non positive-definiteness of the hessian.

Hessian of the contrastive loss. Both post-hoc and online LA require the Hessian of the contrastive
loss ∇2

θLcon(θ;D). The Hessian is commonly approximated with the Generalized Gauss-Newton
(GGN) approximation [12, 8, 6, 11]. The GGN decomposes the loss into L = g ◦ f , where g is
usually chosen as the loss function and f the model function, and only f is linearized [22].

However, in our case, this decomposition is non-trivial. Recall that the last layer of our network
is an ℓ2 normalization layer, which projects embeddings onto a hyper-sphere. This normalization
layer can either be viewed as part of the model f (linearized normalization layer) or part of the loss g
(non-linearized normalization layer). The former can be interpreted as using the Euclidean distance
and the latter as using the Arccos distance for the contrastive loss (see ?? and ??). These two share
the zero- and first-order terms for normalized embeddings but not the second-order derivatives due to
the GGN linearization. The Euclidean interpretation leads to simpler derivatives and interpretations,
and we will therefore use it for our derivations. We emphasize that the Arccos is theoretically a more
accurate approximation, because the ℓ2-layer is not linearized, and we provide derivations in ??.

The GGN matrix for contrastive loss with the Euclidean interpretation is given by

∇2
θLcon(θ; I) =

∑
ij∈I

Hij
θ =

∑
ij∈Ip

Hij
θ +

∑
ij∈In

Hij
θ

GGN≈
∑
ij∈Ip

J ij
θ

⊤ (
1 −1

−1 1

)︸ ︷︷ ︸
:=Hp

J ij
θ +

∑
ij∈In

J ij
θ

⊤ (−1 1
1 −1

)︸ ︷︷ ︸
:=Hn

J ij
θ ,

(6)

where J ij
θ =

(
Jθfθ(xi)

⊤, Jθfθ(xj)
⊤)⊤, with Jθ is the Jacobian wrt. the parameters and Hp and Hn

are the Hessians of the contrastive loss wrt. the model output for positive and negative pairs. The first
sum runs over positive pairs and the second sum runs over negative pairs within the margin. Negative
pairs outside the margin do not contribute to the Hessian, and can therefore be ignored to reduce the
computational load (??).

The eigenvalues of the Hessian wrt. to the output are (0, 2) and (−2, 0) for the positive Hp and
negative Hn terms, so we are not guaranteed to have a positive semidefinite Hessian, Hθ. To avoid
covariances with negative eigenvalues, we propose three solutions to ensure a positive semidefinite
Hessian. Proofs are in ??.

Ensuring positive definiteness of the covariance matrix. We do not want to be restricted in the
choice of the prior except to have non-zero precision, so we must ensure that ∇2

θLcon(θ
∗;D) is

positive semidefinite. Differently from the standard convex losses, this is not ensured by the GGN
approximation [18]. Our main insight is that we can ensure a positive semidefinite Hessian Hθ by
only manipulating the Hessians Hp and Hn in Eq. 6.

1. Positive: The repelling term is ignored, such that only positive pairs contribute to the Hessian.

Hp =

(
1 −1

−1 1

)
, Hn =

(
0 0
0 0

)
(7)
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2. Fixed: The cross derivatives are ignored.

Hp =

(
1 0
0 1

)
, Hn =

(
−1 0
0 −1

)
(8)

3. Full: Positive semidefiniteness is ensured with ReLU, max(0,∇2
θLcon(θ;D)), on the Hessian of

the loss wrt. the parameters.

Hp =

(
1 −1

−1 1

)
, Hn =

(
−1 1
1 −1

)
(9)

The positive approximation is inspired by [38], which only uses positive pairs to train an uncertainty
module. The gradient arrows in Fig. 3a illustrate that negative pairs are neglected when computing the
Hessian of the contrastive loss. The fixed approximation considers one data point at a time, assuming
the other one is fixed. Thus, given a pair of data points, this can be interpreted as first moving one
data point, and then the second (rather than both at the same time). We formalize this in ??. Fig. 3b
illustrate this idea when all points except a are fixed. Lastly, we propose the full Hessian of the
contrastive loss (Fig. 3c) and ensure positive semidefiniteness by computing the ReLU of the diagonal
Hessian. This approximation can equivalently be interpreted as a projection into the space of psd
matrixes. In practice, the Hessian scales quadratically in memory wrt. the number of parameters. To
mitigate this, we approximate this Hessian by its diagonal and only apply the LA on the last layer
[25, 9]. We experimentally find that the fixed approximation yields the best performance (Section 4).
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(c) full

Figure 3: Hessian approximations. To ensure a pos-
itive semidefinite Hessian approximation we propose
three approximations. In (a) only the positives p con-
tribute to the Hessian as the negatives n are ignored. In
(b) we consider one point at a time, e.g., only the anchor
a contributes. In (c) we consider all interactions.

Hard negative mining. Most pairs,
namely the negatives outside the margin,
do not contribute to the Hessian, so it is
wasteful to compute their Hessian. There-
fore, we use hard negative mining [30] to
only compute the Hessian of pairs that have
non-zero Hessian, i.e. the negative sample
lie within the margin (illustrated with the
dotted line in Fig. 3).

Von Mises-Fisher distribution. To obtain
a single measure of uncertainty from our
sampled image embeddings (red dots in
Fig. 4), we fit a von Mises-Fisher distribu-
tion. The von Mises-Fisher distribution describes a normal distribution where all probability mass
lies on a Z-dimensional hyper-sphere. It is parametrized with a directional mean µ and a scalar con-
centration parameter κ, which can be interpreted as the inverse of an isotropic covariance κ = 1/σ2,
i.e., small κ means high uncertainty and large κ means low uncertainty. There exist several methods
to estimate κ. We opt for the simplest and most computationally efficient [40] (see ??).

4 Experiments

We benchmark our method against strong probabilistic retrieval models. Probabilistic Face Embed-
dings (PFE) [38] and Hedge Image Embedding (HIB) [33] perform amortized inference and thus
estimate the mean and variance of latent observation. We also compare against MC Dropout [13] and
Deep Ensemble [23], two approximate Bayesian methods, which have successfully been applied in
image retrieval [43, 42].

We compare the models’ predictive performance with the recall (recall@k) and mean average
precision (mAP@k) among the k nearest neighbors [47, 30, 1]. We evaluate the models’ abilities
to interpolate and extrapolate uncertainties by measuring the Area Under the Sparsification Curve
(AUSC), Expected Calibration Error (ECE) on in-distribution (ID) data, the Area Under Receiver
Operator Curve (AUROC), and Area Under Precision-Recall Curve (AUPRC) on out-of-distribution
(OOD) data. We provide more details on these metrics in ??.

We extend StochMan [11] with the Hessian backpropagation for the contrastive loss, and the PyTorch
[34] code is publicly available2. ?? details the experimental setup.

2See https://github.com/FrederikWarburg/bayesian-metric-learning
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(a) Out-of-distribution detection.
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(b) Predictive performance.

Figure 4: Summary of experimental results. LAM consistently outperforms existing methods
on OOD detection, as measured by AUROC, and matches or surpasses in predictive performance
measured by mAP@k. Error bars show one std across five runs.

Experimental Summary. We first summarize our experimental results. Across five datasets, three
network architectures, and three different sizes of the latent space (ranging from 3 to 2048), we find
that LAM has well-calibrated uncertainties, reliably detects OOD examples, and achieves state-of-the-
art predictive performance. Fig. 4a shows that the uncertainties from online LAM reliably identify
OOD examples. Online LAM outperforms other Bayesian methods, such as post-hoc LAM and MC
dropout, on this task, which in turn clearly improves upon amortized methods that rely on a neural
network to extrapolate uncertainties. Fig. 4b shows that LAM consistently matches or outperforms
existing image retrieval methods in terms of predictive performance. We find that the fixed Hessian
approximation with the Arccos distance performs the best, especially on higher dimensional data.

Table 1: Ablation on Hessian approximation and GGN
decomposition. Online LA with the fixed approximation
and Arccos distance performs best. Error bars show one std.
across five runs.

mAP@5 ↑ AUROC ↑ AUSC ↑

Po
st

-h
oc

Euclidean fix 0.70 ± 0.0 0.57 ± 0.25 0.44 ± 0.01
Euclidean pos 0.70 ± 0.0 0.58 ± 0.23 0.45 ± 0.01
Euclidean full 0.70 ± 0.0 0.56 ± 0.26 0.44 ± 0.01
Arccos fix 0.69 ± 0.0 0.53 ± 0.20 0.46 ± 0.02
Arccos pos 0.70 ± 0.0 0.29 ± 0.11 0.48 ± 0.01
Arccos full 0.69 ± 0.0 0.55 ± 0.18 0.45 ± 0.01

O
nl

in
e

Euclidean fix 0.63 ± 0.01 0.77 ± 0.04 0.31 ± 0.02
Euclidean pos 0.70 ± 0.0 0.38 ± 0.10 0.47 ± 0.01
Euclidean full 0.67 ± 0.01 0.59 ± 0.04 0.42 ± 0.01
Arccos fix 0.71 ± 0.0 0.78 ± 0.18 0.50 ± 0.03
Arccos pos 0.70 ± 0.0 0.23 ± 0.03 0.46 ± 0.00
Arccos full 0.71 ± 0.0 0.70 ± 0.12 0.51 ± 0.01
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Figure 5: Calibration Curves.

Ablation: Positive definiteness co-
variance matrix. We experimentally
study which method to ensure a pos-
itive semidefinite Hessian has the best
performance measured in both pre-
dictive performance (mAP@5) and
uncertainty quantification (AUROC,
AUSC). We found that all methods
perform similarly on simple datasets
and low dimensional hyper-spheres,
but the fixed approximation with Arc-
cos distance performs better on more
challenging datasets and higher di-
mensional hyper-spheres. We present
results on one of these more challeng-
ing datasets, namely the LFW [17]
face recognition dataset with the
CUB200 [45] bird dataset as an OOD
dataset. We use a ResNet50 [16] with
a GeM pooling layer [35] and a 2048
dimensional embedding and diagonal,
last-layer LA [8].

Table 1 shows the performance for
post-hoc and online LA with fixed,
positive, or full Hessian approxima-
tion using either Euclidean or Arccos
distance. Across all metrics, the on-
line LA with Arccos distance and the
fixed Hessian approximation performs
similarly or the best. We proceed to
benchmark this method against sev-
eral strong probabilistic baselines on closed-set retrieval and a more challenging open-set retrieval.

Closed-Set Retrieval. OOD capabilities are critical for identifying distributional shifts, outliers, and
irregular user inputs, which might hinder the propagation of erroneous decisions in an automated
system. We evaluate OOD performance on the commonly used benchmarks [31], where we use (1)
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Table 2: Closed-set results. LAM matches or outperforms existing methods in terms of predictive
performance. It produces reliable uncertainties ID and OOD on two standard datasets FashionMNIST
and CIFAR10. Error bars show one std. across five runs.

IMAGE RETRIEVAL OOD CALIBRATION
mAP@1 ↑ mAP@5 ↑ mAP@10 ↑ AUROC ↑ AUPRC ↑ AUSC ↑ ECE ↓

Fa
sh

io
nM

N
IS

T Deterministic 0.78 ± 0.01 0.73 ± 0.01 0.72 ± 0.01 — — — —
Deep Ensemble 0.69 0.62 0.59 0.41 0.46 0.61 0.04
PFE 0.78 ± 0.00 0.74 ± 0.00 0.72 ± 0.00 0.53 ± 0.03 0.46 ± 0.01 0.65 ± 0.01 0.26 ± 0.02
HIB 0.69 ± 0.08 0.63 ± 0.09 0.61 ± 0.09 0.60 ± 0.12 0.60 ± 0.11 0.65 ± 0.08 0.54 ± 0.08
MC dropout 0.76 ± 0.03 0.71 ± 0.03 0.70 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.84 ± 0.06 0.03 ± 0.04
LAM (post-hoc) 0.78 ± 0.00 0.74 ± 0.00 0.72 ± 0.00 0.96 ± 0.02 0.96 ± 0.02 0.86 ± 0.01 0.03 ± 0.00
LAM (online) 0.81 ± 0.00 0.77 ± 0.01 0.76 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.89 ± 0.01 0.02 ± 0.00

C
IF

A
R

10

Deterministic 0.66 ± 0.00 0.59 ± 0.00 0.58 ± 0.00 — — — —
Deep Ensemble 0.66 0.61 0.59 0.42 0.67 0.72 0.02
MC dropout 0.46 ± 0.01 0.37 ± 0.01 0.34 ± 0.01 0.60 ± 0.03 0.76 ± 0.02 0.61 ± 0.01 0.05 ± 0.00
HIB 0.11 ± 0.01 0.07 ± 0.00 0.05 ± 0.00 0.44 ± 0.17 0.70 ± 0.1 0.29 ± 0.03 0.04 ± 0.02
PFE 0.66 ± 0.00 0.60 ± 0.00 0.58 ± 0.00 0.21 ± 0.02 0.56 ± 0.01 0.56 ± 0.01 0.11 ± 0.01
LAM (post-hoc) 0.66 ± 0.00 0.60 ± 0.00 0.58 ± 0.00 0.50 ± 0.11 0.69 ± 0.07 0.81 ± 0.01 0.23 ± 0.01
LAM (online) 0.66 ± 0.01 0.60 ± 0.00 0.57 ± 0.01 0.78 ± 0.04 0.85 ± 0.03 0.83 ± 0.01 0.01 ± 0.00

FashionMNIST [49] as ID and MNIST [26] as OOD, and (2) CIFAR10 [21] as ID and SVHN [32] as
OOD. We use, respectively, a standard 2- or 3-layer relu convolutional network followed by a single
linear layer on which we compute LA with a diagonal Hessian.
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Figure 6: Receiver Operator Curves. LAM assign
high uncertainty to OOD observations.

FashionMNIST (ID) vs MNIST (OOD).
Table 2 shows that both PFE and post-
hoc LAM have a similar predictive perfor-
mance to the deterministic model. This is
not surprising, as both methods are initial-
ized with the deterministic parameters, and
then uncertainties are learned (PFE) or de-
duced (post-hoc LAM) with frozen weights.
The awareness of uncertainties during train-
ing, grants the online LAM slightly higher
predictive performance.

PFE uses amortized inference to predict variances. This works reasonably within distribution but
does not work well for OOD detection. This is because a neural network is trusted to extrapolate
far away from the data distribution. Table 2 shows that MC dropout, LAM (post-hoc), and LAM
(online) assign high uncertainty to observations outside the training distribution. Fig. 5 shows that
both post-hoc and online LAM are near perfectly calibrated, giving very low ECE measures (Table 2).

CIFAR10 (ID) vs SVHN (OOD) is a slightly harder setting. Table 2 yields similar conclusions as
before; Bayesian approaches such as MC dropout, LAM (post-hoc), and LAM (online) better detect
OOD examples than neural amortized methods such as PFE. Online LAM has a similar predictive
performance to state-of-the-art while having better ID (lower ECE and higher AUSC) and OOD
(higher AUROC and AUPRC) performance. Fig. 5 shows the calibration plot for CIFAR10, where
online LAM has near-perfect calibration. The CIFAR10 ROC curves (Fig. 6) show that online LAM
is better at distinguishing ID and OOD examples.

Open-Set Retrieval. A key advantage of metric learning methods is that they easily cope with a
large number of classes and new classes can be added seamlessly. We therefore evaluate LAM’s
performance on challenging open-set retrieval, where none of the classes in the test set are available
during training. We first test with CUB200 [45] as ID and CAR196 [20] as OOD similarly to Warburg
et al. [47], and second, test with LFW [17] as ID and CUB200 as OOD. We use a ResNet50 [16]
with a GeM pooling layer [35] and a 2048 dimensional embedding and diagonal, last-layer LA [8].

CUB200 (ID) vs CARS196 (OOD). The CUB-200-2011 dataset [45] has 200 bird species captured
from different perspectives and in different environments. We follow the zero-shot train/test split
[30]. In this zero-shot setting, the trained models have not seen any of the bird species in the test set,
and the learned features must generalize well across species. Table 3 shows that LAM matches or
surpasses the predictive performance of all other methods. LAM (post-hoc) achieves state-of-the-art
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Table 3: Open-set results. LAM matches or outperforms existing methods in terms of predictive
performance and produces state-of-the-art uncertainty quantification for challenging zero-shot metric
learning datasets LFW and CUB200. Error bars show one std. across five runs.

IMAGE RETRIEVAL OOD ID
mAP@1 ↑ mAP@5 ↑ mAP@10 ↑ AUROC ↑ AUPRC ↑ AUSC ↑

C
U

B
20

0

Deterministic 0.62 ± 0.01 0.48 ± 0.01 0.42 ± 0.01 — —
Deep Ensemble 0.21 0.11 0.07 0.47 0.55 0.21
PFE 0.62 ± 0.01 0.5 ± 0.01 0.43 ± 0.01 0.44 ± 0.16 0.5 ± 0.08 0.61 ± 0.02
HIB 0.33 ± 0.04 0.19 ± 0.02 0.14 ± 0.02 0.54 ± 0.12 0.61 ± 0.1 0.31 ± 0.07
MC dropout 0.61 ± 0.00 0.48 ± 0.00 0.42 ± 0.00 0.73 ± 0.08 0.68 ± 0.07 0.63 ± 0.01
LAM (post-hoc) 0.65 ± 0.01 0.52 ± 0.01 0.45 ± 0.01 0.56 ± 0.16 0.61 ± 0.11 0.66 ± 0.03
LAM (online) 0.61 ± 0.00 0.48 ± 0.00 0.42 ± 0.00 0.80 ± 0.03 0.75 ± 0.03 0.63 ± 0.01

L
FW

Deterministic 0.44± 0.00 0.68± 0.00 0.65± 0.00 — — —
Deep Ensemble 0.36 0.57 0.54 0.52 0.64 0.33
PFE 0.44± 0.00 0.68± 0.00 0.65± 0.00 0.03± 0.02 0.41± 0.0 0.49± 0.01
MC dropout 0.42± 0.00 0.65± 0.01 0.63± 0.01 0.03± 0.01 0.41± 0.0 0.46± 0.01
LAM (post-hoc) 0.44± 0.01 0.68± 0.01 0.65± 0.00 0.65± 0.14 0.72± 0.11 0.45± 0.03
LAM (online) 0.46 ± 0.00 0.71 ± 0.00 0.69 ± 0.00 0.71 ± 0.22 0.78 ± 0.17 0.50 ± 0.02
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Figure 7: Images with lowest and highest variance for PFE, post-hoc LAM, and online LAM across
LFW (ID) and CUB200 (OOD) datasets. LAM associates high uncertainty to OOD examples, and
vice versa for PFE. Shows the best-performing PFE and online LAM across five runs.

predictive performance, while LAM (online) matches the predictive performance of the deterministic
trained model while achieving state-of-the-art AUROC and AUPRC for OOD detection.

LFW (ID) vs CUB200 (OOD). Face recognition is another challenging metric learning task with
many applications in security and surveillance. The goal is to retrieve images of the same person
as in the query image. Table 3 shows that online LAM outperforms existing methods both in
terms of predictive performance and uncertainty quantification. Fig. 7 shows that PFE assigns
higher uncertainty to images from the ID dataset (faces) than those from the OOD dataset (birds).

0 25 50 75 100
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0.8
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PFE
MC Dropout
LAM Posthoc
LAM Online

Figure 8: Sparsification curve. Online
and post-hoc LAM’s sparsification curves
monotonically increase, showing that they
reliably associate higher uncertainty to
harder observations.

In contrast, both online and post-hoc LAM better asso-
ciate high variance to OOD examples, while PFE predicts
high variance to ID examples. Furthermore, online LAM
seems to assign the highest variance to images in which
the background is complex and thus camouflages the
birds.

Visual Place recognition is important for the long-
term operation of autonomous robots [7], where the
goal is to retrieve images taken within a radius of
25 meters from a query image. The high number of
unique places and varying visual appearance of each lo-
cation – including weather, dynamic, structural, view-
point, seasonal, and day/night changes – makes vi-
sual place recognition a challenging metric learning
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Table 5: Results on MSLS. LAM yields state-of-the-art uncertainties and matches the predictive
performance of deterministic trained models.

Validation Set Challenge Set
R@1↑ R@5↑ R@10↑ M@5↑ M@10↑ AUSC↑ R@1↑ R@5↑ R@10↑ M@5↑ M@10↑ AUSC↑

Deterministic 0.77 0.88 0.90 0.61 0.56 — 0.58 0.74 0.78 0.45 0.43 —
MC Dropout 0.75 0.87 0.87 0.59 0.54 0.77 0.55 0.71 0.76 0.43 0.41 0.57
PFE 0.77 0.88 0.90 0.61 0.56 0.73 0.58 0.74 0.78 0.45 0.44 0.57
LAM (post-hoc) 0.76 0.86 0.89 0.60 0.55 0.74 0.58 0.74 0.78 0.45 0.44 0.59
LAM (online) 0.76 0.87 0.90 0.60 0.56 0.77 0.57 0.74 0.78 0.45 0.43 0.63
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Figure 9: Images with lowest and highest variance for PFE, post-hoc LAM, and online LAM across
MSLS validation set. LAM reliably associates high uncertainty to images that are blurry, are captured
facing the pavement, or contain vegetation. These images do not contain features that are descriptive
of a specific place, making them especially challenging to geographically locate.

problem. Reliable uncertainties and reliable out-of-distribution behavior are important to
avoid incorrect loop-closure, which can deteriorate the autonomous robots’ location estimate.
We evaluate on MSLS [46], which is the largest and most diverse place recognition dataset currently
available comprised of 1.6M images from 30 cities spanning six continents. We use the standard
train/test split, training on 24 cities and testing on six other cities. We use the same model as in
open-set retrieval. Margin

mAP@5 AUROC AUSC

0.1 0.71 1.00 0.50
0.3 0.71 0.57 0.49
0.5 0.70 0.16 0.48
0.7 0.70 0.09 0.48

Number of pairs per batch
mAP@5 AUROC AUSC

1 0.72 0.99 0.49
5 0.72 0.98 0.50
10 0.71 1.00 0.49
30 0.72 1.00 0.49

Latent dimension
mAP@5 AUROC AUSC

128 0.71 0.99 0.47
256 0.71 1.00 0.49
512 0.71 1.00 0.50
2048 0.72 1.00 0.52

Memory factor α

mAP@5 AUROC AUSC

0.1 0.70 1.00 0.41
0.01 0.71 0.99 0.46
0.001 0.72 1.00 0.48
0.0001 0.72 0.98 0.50
0.00001 0.72 0.87 0.51

Post-hoc tempering β

mAP@5 AUROC AUSC
100 0.67 0.10 0.48
10 0.69 0.68 0.46
1 0.69 0.86 0.44
0.1 0.69 0.87 0.43
0.01 0.69 0.86 0.44
0.001 0.69 0.86 0.43

Table 4: Ablation on LFW.

Table 5 shows that online LAM yields state-of-the-art uncertain-
ties for visual place recognition measured with AUSC, while
matching the predictive performance of the alternative probabilis-
tic and deterministic methods on both the MSLS validation and
the challenge set. Fig. 8 shows the sparsification curves on the
challenge set. Both online and post-hoc LAM have monotonically
increasing sparsification curves, implying that when we remove
the most uncertain observations, the predictive performance in-
crease. This illustrates that LAM produces reliable uncertainties
for this challenging open-set retrieval task. Fig. 9 shows the
queries associated with the highest and lowest uncertainty. LAM
predicts high uncertainty to images with are blurry, captured
facing into the pavement, or contain mostly vegetation. These
images do not have features that are descriptive of a specific place,
making them hard to geographically locate.

Ablations. We conduct ablations on LFW for online and post-hoc
LAM. Table 4 shows that the predictive performance does not
depend on the margin, however, OOD performance decreases
significantly for larger margins. We find that LAM is robust to
the number of pairs sampled per batch. We find that a larger latent
space results in better-calibrated uncertainties. Online LAM is
rather robust to the choice of memory factor α. However, choos-
ing a memory factor in the 0.0001–0.001 range gives both good
AUROC and AUSC. This memory factor α can be interpreted
as a momentum-like parameter that relates to the learning rate
and indicates how fast we should update the current Hessian [29].
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Lastly, we perform cold-posterior tempering of post-hoc LA by scaling the log-likelihood hessian
with a factor β > 0, such that the precision in Eq. 3 became β · ∇2

θLcon (θ
∗;D) + σ−2

priorI. We do not
see any benefits from changing to other values than one.

Limitations. Similar to other Bayesian methods, LAM relies on n samples to obtain uncertainties.
This makes inferences n times slower. Computing the Hessian at every step during online LAM
also makes training time slower. To combat long training times and high memory usage, we use
a last-layer LAM and thus only estimate and sample for a weight posterior of the last layer. The
last-layer LAM training time is 3 hours for online LAM vs 2.3 hours for deterministic contrastive
loss on LFW, and 30 minutes vs 15 minutes loss on CUB200 on an NVIDIA RTX A5000.

5 Conclusion

In this paper, we have introduced a Bayesian encoder for metric learning, the Laplacian Metric Learner
(LAM), which uses the Laplace approximation. We prove that the contrastive loss is unnormalized
negative log-likelihood on the spherical space, and develop three Hessian approximations, which
ensures a positive definite covariance matrix. We propose a novel decomposition of the Generalized
Gauss-Newton approximation that improves Hessian approximations of ℓ2-normalized networks.
Empirically, we demonstrate that LAM consistently produces well-calibrated uncertainties, reliably
detects out-of-distribution examples, and achieves state-of-the-art predictive performance on both
closed-set and challenging open-set image retrieval tasks.
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