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Abstract

Targeting to understand the underlying explainable factors behind observations and
modeling the conditional generation process on these factors, we connect disen-
tangled representation learning to Diffusion Probabilistic Models (DPMs) to take
advantage of the remarkable modeling ability of DPMs. We propose a new task,
disentanglement of (DPMs): given a pre-trained DPM, without any annotations
of the factors, the task is to automatically discover the inherent factors behind the
observations and disentangle the gradient fields of DPM into sub-gradient fields,
each conditioned on the representation of each discovered factor. With disentangled
DPMs, those inherent factors can be automatically discovered, explicitly repre-
sented, and clearly injected into the diffusion process via the sub-gradient fields.
To tackle this task, we devise an unsupervised approach named DisDiff, achiev-
ing disentangled representation learning in the framework of DPMs. Extensive
experiments on synthetic and real-world datasets demonstrate the effectiveness of
DisDiff.

1 Introduction

As one of the most successful generative models, diffusion probabilistic models (DPMs) achieve
remarkable performance in image synthesis. They use a series of probabilistic distributions to corrupt
images in the forward process and train a sequence of probabilistic models converging to image
distribution to reverse the forward process. Despite the remarkable success of DPM in tasks such
as image generation [41], text-to-images [37], and image editing [32], little attention has been paid
to representation learning [49] based on DPM. Diff-AE [33] and PDAE [49] are recently proposed
methods for representation learning by reconstructing the images in the DPM framework. However,
the learned latent representation can only be interpreted relying on an extra pre-trained with predefined
semantics linear classifier. In this paper, we will refer DPMs exclusively to the Denoising Diffusion
Probabilistic Models (DDPMs) [19].

On the other hand, disentangled representation learning [17] aims to learn the representation of the
underlying explainable factors behind the observed data and is thought to be one of the possible ways
for AI to understand the world fundamentally. Different factors correspond to different kinds of image
variations, respectively and independently. Most of the methods learn the disentangled representation
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based on generative models, such as VAE [16, 5, 23] and GAN [27]. The VAE-based methods have
an inherent trade-off between the disentangling ability and generating quality [16, 5, 23]. The GAN-
based methods suffer from the problem of reconstruction due to the difficulty of gan-inversion [44].

In this paper, we connect DPM to disentangled representation learning and propose a new task: the
disentanglement of DPM. Given a pre-trained DPM model, the goal of disentanglement of DPM
is to learn disentangled representations for the underlying factors in an unsupervised manner, and
learn the corresponding disentangled conditional sub-gradient fields, with each conditioned on the
representation of each discovered factor, as shown in Figure 1.

The benefits of the disentanglement of DPM are two-fold: (i) It enables totally unsupervised
controlling of images by automatically discovering the inherent semantic factors behind the image
data. These factors help to extend the DPM conditions information from human-defined ones such
as annotations [49]/image-text pairs [21], or supervised pre-trained models [22] such as CLIP [34].
One can also flexibly sample partial conditions on the part of the information introduced by the
superposition of the sub-gradient field, which is novel in existing DPM works. (ii) DPM has
remarkable performance on image generation quality and is naturally friendly for the inverse problem,
e.g., the inversion of DDIM [39], PDAE. Compared to VAE (trade-off between the disentangling
ability and generating quality) or GAN (problem of gan-inversion), DPM is a better framework for
disentangled representation learning. Besides, as Locatello et al. [30] points out, other inductive
biases should be proposed except for total correlation. DPM makes adopting constraints from all
different timesteps possible as a new type of inductive bias. Further, as Srivastava et al. [42] points
out, and the data information includes: factorized and non-factorized. DPM has the ability to sample
non-factorized (non-conditioned) information [18], which is naturally fitting for disentanglement.

To address the task of disentangling the DPM, we further propose an unsupervised solution for
the disentanglement of a pre-trained DPM named DisDiff. DisDiff adopts an encoder to learn the
disentangled presentation for each factor and a decoder to learn the corresponding disentangled
conditional sub-gradient fields. We further propose a novel Disentangling Loss to make the encoded
representation satisfy the disentanglement requirement and reconstruct the input image.

Our main contributions can be summarized as follows:

• We present a new task: disentanglement of DPM, disentangling a DPM into several disen-
tangled sub-gradient fields, which can improve the interpretability of DPM.

• We build an unsupervised framework for the disentanglement of DPM, DisDiff, which learns
a disentangled representation and a disentangled gradient field for each factor.

• We propose enforcing constraints on representation through the diffusion model’s classifier
guidance and score-based conditioning trick.

2 Related Works

Diffusion Probabilistic Models DPMs have achieved comparable or superior image generation
quality [38, 40, 19, 41, 20] than GAN [13]. Diffusion-based image editing has drawn much attention,
and there are mainly two categories of works. Firstly, image-guided works edit an image by mixing
the latent variables of DPM and the input image [7, 31, 32]. However, using images to specify the
attributes for editing may cause ambiguity, as pointed out by Kwon et al. [25]. Secondly, the classifier-
guided works [9, 1, 28] edit images by utilizing the gradient of an extra classifier. These methods
require calculating the gradient, which is costly. Meanwhile, these methods require annotations
or models pre-trained with labeled data. In this paper, we propose DisDiff to edit the image in an
unsupervised way. On the other hand, little attention has been paid to representation learning in the
literature on the diffusion model. Two related works are Diff-ae [33] and PDAE [49]. Diff-ae [33]
proposes a diffusion-based auto-encoder for image reconstruction. PDAE [49] uses a pre-trained
DPM to build an auto-encoder for image reconstruction. However, the latent representation learned
by these two works does not respond explicitly to the underlying factors of the dataset.

Disentangled Representation Learning Bengio et al. [2] introduced disentangled representation
learning. The target of disentangled representation learning is to discover the underlying explanatory
factors of the observed data. The disentangled representation is defined as each dimension of the
representation corresponding to an independent factor. Based on such a definition, some VAE-based
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works achieve disentanglement [5, 23, 16, 3] only by the constraints on probabilistic distributions of
representations. Locatello et al. [30] point out the identifiable problem by proving that only these
constraints are insufficient for disentanglement and that extra inductive bias is required. For example,
Yang et al. [47] propose to use symmetry properties modeled by group theory as inductive bias.
Most of the methods of disentanglement are based on VAE. Some works based on GAN, including
leveraging a pre-trained generative model [36]. Our DisDiff introduces the constraint of all time
steps during the diffusion process as a new type of inductive bias. Furthermore, DPM can sample
non-factorized (non-conditioned) information [18], naturally fitting for disentanglement. In this way,
we achieve disentanglement for DPMs.

3 Background

3.1 Diffusion Probabilistic Models (DPM)

We take DDPM [19] as an example. DDPM adopts a sequence of fixed variance distributions
q(xt|xt−1) as the forward process to collapse the image distribution p(x0) to N (0, I). These
distributions are

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI). (1)

We can then sample xt using the following formula xt ∼ N (xt;
√
ᾱtx0, (1−ᾱt)), where αt = 1−βt

and ᾱt = Πtt=1αt, i.e., xt =
√
ᾱtx0 +

√
1− ᾱtϵ. The reverse process is fitted by using a sequence

of Gaussian distributions parameterized by θ:

pθ(xt−1|xt) = N (xt;µθ(xt, t), σtI), (2)

where µθ(xt, t) is parameterized by an Unet ϵθ(xt, t), it is trained by minimizing the variational
upper bound of negative log-likelihood through:

Lθ = E
x0,t,ϵ

∥ϵ− ϵθ(xt, t)∥. (3)

3.2 Representation learning from DPMs

The classifier-guided method [9] uses the gradient of a pre-trained classifier, ∇xt log p(y|xt), to
impose a condition on a pre-trained DPM and obtain a new conditional DPM: N (xt;µθ(xt, t) +
σt∇xt log p(y|xt), σt). Based on the classifier-guided sampling method, PDAE [49] proposes an
approach for pre-trained DPM by incorporating an auto-encoder. Specifically, given a pre-trained
DPM, PDAE introduces an encoder Eϕ to derive the representation by equation z = Eϕ(x0). They
use a decoder estimator Gψ(xt, z, t) to simulate the gradient field ∇xt

log p(z|xt) for reconstructing
the input image.

By this means, they create a new conditional DPM by assembling the unconditional DPM as the
decoder estimator. Similar to regular DPM N (xt;µθ(xt, t) + σtGψ(xt, z, t), σt), we can use the
following objective to train encoder Eϕ and the decoder estimator Gψ:

Lψ = E
x0,t,ϵ

∥ϵ− ϵθ(xt, t) +

√
αt
√
1− ᾱt
βt

σtGψ(xt, z, t)∥. (4)

4 Method

In this section, we initially present the formulation of the proposed task, Disentangling DPMs, in
Section 4.1. Subsequently, an overview of DisDiff is provided in Section 4.2. We then elaborate
on the detailed implementation of the proposed Disentangling Loss in Section 4.3, followed by a
discussion on balancing it with the reconstruction loss in Section 4.4.

4.1 Disentanglement of DPM

We assume that dataset D = {x0|x0 ∼ p(x0)} is generated by N underlying ground truth factors f c,
where each c ∈ C = {1, . . . , N}, with the data distribution p(x0). This implies that the underlying
factors condition each sample. Moreover, each factor f c follows the distribution p(f c), where p(f c)
denotes the distribution of factor c. Using the Shapes3D dataset as an example, the underlying
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Figure 1: Illustration of disentanglement of DPMs. (a) is the diagram of Probabilistic Graphical
Models (PGM). (b) is the diagram of image space. (c) is the demonstration of sampled images in
(b). Surface indicates the conditional data distribution of a single factor p(x|f c). Different colors
correspond to various factors. Here, we show three factors: object color, background color, and floor
color. Arrows are gradient fields ∇xt log p(f

c|xt) modeled by using a decoder Gcϕ(xt, t, z
c). The

black points are the sampled images shown in (b).

concept factors include background color, floor color, object color, object shape, object scale, and
pose. We illustrate three factors (background color, floor color, and object color) in Figure 1 (c). The
conditional distributions of the factors are {p(x0|f c)|c ∈ C}, each of which can be shown as a curved
surface in Figure 1 (b). The relation between the conditional distribution and data distribution can be
formulated as: The conditional distributions of the factors, denoted as {p(x0|f c)|c ∈ C}, can each be
represented as a curved surface in Figure 1 (b). The relationship between the conditional distribution
and the data distribution can be expressed as follows:

p(x0) =

∫
p(x0|f c)p(f c)df c =

∫
· · ·

∫
p(x0|f1, . . . , fN )p(f1) . . . p(fN )df1 . . . dfN , (5)

this relationship holds true because f1, . . . , fN and x0 form a v-structure in Probabilistic Graphical
Models (PGM), as Figure 1 (a) depicts. A DPM learns a model ϵθ(xt, t), parameterized by θ,
to predict the noise added to a sample xt. This can then be utilized to derive a score function:
∇xt

log p(xt) = 1/
√
αt − 1 · ϵθ(xt, t). Following [9] and using Bayes’ Rule, we can express the

score function of the conditional distribution as:

∇xt log p(xt|f c) = ∇xt log p(f
c|xt) +∇xt log p(xt), (6)

By employing the score function of p(xt|f c), we can sample data conditioned on the factor f c, as
demonstrated in Figure 1 (b). Furthermore, the equation above can be extended to one conditioned
on a subset S ⊆ C by substituting f c with S. The goal of disentangling a DPM is to model
∇xt log p(xt|f c) for each factor c. Based on the equation above, we can learn ∇xt log p(f

c|xt)
for a pre-trained DPM instead, corresponding to the arrows pointing towards the curve surface in
Figure 1 (b). However, in an unsupervised setting, f c is unknown. Fortunately, we can employ
disentangled representation learning to obtain a set of representations {zc|c = 1, . . . , N}. There are
two requirements for these representations: (i) they must encompass all information of x0, which we
refer to as the completeness requirement, and (ii) there is a bijection, zc 7→ f c, must exist for each
factor c, which we designate as the disentanglement requirement. Utilizing these representations,
the gradient ∇xt

log p(zc|xt) can serve as an approximation for ∇xt
log p(f c|xt). In this paper, we

propose a method named DisDiff as a solution for the disentanglement of a DPM.

4.2 Overview of DisDiff

The overview framework of DisDiff is illustrated in Figure 2. Given a pre-trained unconditional
DPM on dataset D with factors C, e.g., a DDPM model with parameters θ, pθ(xt−1|xt) =
N (xt−1;µθ(xt, t), σt), our target is to disentangle the DPM in an unsupervised manner. Given
an input x0 ∈ D, for each factor c ∈ C, our goal is to learn the disentangled representation zc
simultaneously and its corresponding disentangled gradient field ∇xt

log p(zc|xt). Specifically,
for each representation zc, we employ an encoder Eϕ with learnable parameters ϕ to obtain the
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Figure 2: Illustration of DisDiff. (a) Grey networks indicate the pre-trained Unet of DPM ϵθ(xt, t).
Image x0 is first encoded to representations {z1, z2, . . . zN} of different factors by encoder Eϕ
(N = 3 in the figure), which are then decoded by decoder Gψ to obtain the gradient field of the
corresponding factor. We can sample the image under the corresponding condition with the obtained
gradient field. (b) We first sample a factor c and decode the representation zc to obtain the gradient
field of the corresponding factor, which allows us to obtain the predicted x0 of that factor. At the
same time, we can obtain the predicted x̂0 of the original pre-trained DPM. We then encode the
images into two different representations and calculate the disentangling loss based on them.

representations as follows: Eϕ(x0) = {E1
ϕ(x0), E

2
ϕ(x0), . . . , E

N
ϕ (x0)} = {z1, z2, . . . , zN}. As the

random variables z1, . . . , zN and x0 form a common cause structure, it is evident that z1, . . . , zN are
independent when conditioned on x0. Additionally, this property also holds when conditioning on ϵ.
We subsequently formulate the gradient field, denoted as ∇xt log p(z

S |xt), with zS = {zc|c ∈ S},
conditioned on a factor subset S ⊆ C, as follows:

∇xt
log p(zS |xt) =

∑
c∈S

∇xt
log p(zc|xt). (7)

Adopting the approach from [9, 49], we formulate the conditional reverse process as a Gaussian
distribution, represented as pθ(xt−1|xt, zS). In conjunction with Eq. 7, this distribution exhibits a
shifted mean, which can be described as follows:

N (xt−1;µθ(xt, t) + σt
∑
c∈S

∇xt
log p(zc|xt), σt). (8)

Directly employing ∇xt
log p(zc|xt) introduces computational complexity and complicates the

diffusion model training pipeline, as discussed in [18]. Therefore, we utilize a network Gψ(xt, zc, t),
with c ∈ S and parameterized by ψ, to estimate the gradient fields ∇xt log p(z

S |xt). To achieve this
goal, we first use

∑
c∈C Gψ(xt, z

c, t) to estimate ∇xt log p(z
C |xt) based on Eq. 7. Therefore, we

adopt the same loss of PDAE [49] but replace the gradient field with the summation of Gψ(xt, zc, t)
as

Lr = E
x0,t,ϵ

∥ϵ− ϵθ(xt, t) +

√
αt
√
1− ᾱt
βt

σt
∑
c∈C

Gψ(xt, z
c, t)∥. (9)

The aforementioned equation implies that x0 can be reconstructed utilizing all disentangled represen-
tations when S = C, thereby satisfying the completeness requirement of disentanglement. Secondly,
in the following, we fulfill the disentanglement requirement and the approximation of gradient field
∇xt

log p(zc|xt) with decoder Gψ(xt, zc, t). In the next section, we introduce a disentangling loss
to address the remaining two conditions.

4.3 Disentangling Loss

In this section, we present the Disentangling Loss to address the disentanglement requirement
and ensure that Gψ(xt, zc, t) serves as an approximation of ∇xt

log p(zc|xt). Given the difficulty
in identifying sufficient conditions for disentanglement in an unsupervised setting, we follow the
previous works in disentangled representation literature, which propose necessary conditions that are
effective in practice for achieving disentanglement. For instance, the group constraint in [47] and
maximizing mutual information in [27, 45] serve as examples. We propose minimizing the mutual
information between zc and zk, where k ̸= c, as a necessary condition for disentangling a DPM.

Subsequently, we convert the objective of minimizing mutual information into a set of constraints
applied to the representation space. We denote x̂0 is sampled from the pre-trained unconditioned
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DPM using ϵθ(xt, t), x̂c0 is conditioned on zc and sampled using pθ(xt−1|xt, zc). Then we can
extract the representations from the samples x̂0 and x̂c0 with Eϕ as ẑk = Ekϕ(x̂0) and ẑk|c = Ekϕ(x̂

c
0),

respectively. According to Proposition 1, we can minimize the proposed upper bound (estimator) to
minimize the mutual information.
Proposition 1. For a PGM in Figure 1 (a), we can minimize the upper bound (estimator) for the
mutual information between zc and zk (where k ̸= c) by the following objective:

min E
k,c,x0,x̂c

0

∥ẑk|c − ẑk∥ − ∥ẑk|c − zk∥+ ∥ẑc|c − zc∥ (10)

The proof is presented in Appendix K. We have primarily drawn upon the proofs in CLUB [6] and
VAE [24] as key literature sources to prove our claims. As outlined below, we can partition the
previously mentioned objectives into two distinct loss function components.

Invariant Loss. In order to minimize the first part, ∥ẑk|c − ẑk∥, where k ̸= c, we need to minimize
∥ẑk|c − ẑk∥, requiring that the k-th (k ̸= c, k ∈ C) representation remains unchanged. We calculate
the distance scalar between their k-th representation as follows:

dk = ∥ẑk|c − ẑk∥. (11)
We can represent the distance between each representation using a distance vector d =
[d1, d2, . . . , dC ]. As the distances are unbounded and their direct optimization is unstable, we
employ the CrossEntropy loss3 to identify the index c, which minimizes the distances at other indexes.
The invariant loss Lin is formulated as follows:

Lin = E
c,x̂0,x̂c

0

[CrossEntropy(d, c)]. (12)

Variant Loss. In order to minimize the second part, ∥ẑc|c − zc∥ − ∥ẑk|c − zk∥, in Eq. 10. Similarly,
we implement the second part in CrossEntropy loss to maximize the distances at indexes k but
minimize the distance at index c, similar to Eq. 12. Specifically, we calculate the distance scalar of
the representations as shown below:

dnk = ∥ẑk − zk∥,
dpk = ∥ẑk|c − zk∥,

(13)

We adopt a cross-entropy loss to achieve the subjective by minimizing the variant loss Lva, we denote
[dn1 , d

n
2 , . . . , d

n
N ] as dn and [dp1, d

n
2 , . . . , d

p
N ] as dp.

Lva = E
c,x0,x̂0,x̂c

0

[CrossEntropy(dn − dp, c)], (14)

However, sampling x̂c0 from pθ(xt−1|xt, zc) is not efficient in every training step. Therefore, we
follow [9, 49] to use a score-based conditioning trick [41, 40] for fast and approximated sampling.
We obtain an approximator ϵψ of conditional sampling for different options of S by substituting the
gradient field with decoder Gψ:

ϵψ(xt, z
S , t) = ϵθ(xt, t)−

∑
c∈S

√
1− ᾱtGψ(xt, z

c, t). (15)

To improve the training speed, one can achieve the denoised result by computing the posterior
expectation following [8] using Tweedie’s Formula:

x̂S0 = E[x0|xt, S] =
xt −

√
1− ᾱtϵψ(xt, z

S , t)√
ᾱt

. (16)

4.4 Total Loss

The degree of condition dependence for generated data varies among different time steps in the
diffusion model [46]. For different time steps, we should use different weights for Disentangling
Loss. Considering that the difference between the inputs of the encoder can reflect such changes in
condition. We thus propose using the MSE distance between the inputs of the encoder as the weight
coefficient:

γd = λ∥x̂0 − x̂c0∥2,La = Lr + γd(Lin + Lva). (17)
where λ is a hyper-parameter. We stop the gradient of x̂0 and x̂c0 for the weight coefficient γd.

3We denote the function torch.nn.CrossEntropyLoss as CrossEntropy.
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Table 1: Comparisons of disentanglement on the FactorVAE score and DCI disentanglement metrics
(mean ± std, higher is better). DisDiff achieves state-of-the-art performance with a large margin in
almost all the cases compared to all baselines, especially on the MPI3D dataset.

Method Cars3D Shapes3D MPI3D

FactorVAE score DCI FactorVAE score DCI FactorVAE score DCI

VAE-based:

FactorVAE 0.906± 0.052 0.161± 0.019 0.840± 0.066 0.611± 0.082 0.152± 0.025 0.240± 0.051
β-TCVAE 0.855± 0.082 0.140± 0.019 0.873± 0.074 0.613± 0.114 0.179± 0.017 0.237± 0.056

GAN-based:

InfoGAN-CR 0.411± 0.013 0.020± 0.011 0.587± 0.058 0.478± 0.055 0.439± 0.061 0.241± 0.075

Pre-trained GAN-based:

LD 0.852± 0.039 0.216± 0.072 0.805± 0.064 0.380± 0.062 0.391± 0.039 0.196± 0.038
GS 0.932± 0.018 0.209± 0.031 0.788± 0.091 0.284± 0.034 0.465± 0.036 0.229± 0.042

DisCo 0.855± 0.074 0.271± 0.037 0.877± 0.031 0.708± 0.048 0.371± 0.030 0.292± 0.024

Diffusion-based:

DisDiff-VQ (Ours) 0.976± 0.018 0.232± 0.019 0.902± 0.043 0.723± 0.013 0.617± 0.070 0.337± 0.057

5 Experiments

5.1 Experimental Setup

Implementation Details. x0 can be a sample in an image space or a latent space of images. We take
pre-trained DDIM as the DPM (DisDiff-IM) for image diffusion. For latent diffusion, we can take
the pre-trained KL-version latent diffusion model (LDM) or VQ-version LDM as DPM (DisDiff-KL
and DisDiff-VQ). For details of network Gθ, we follow Zhang et al. [49] to use the extended Group
Normalization [9] by applying the scaling & shifting operation twice. The difference is that we use
learn-able position embedding to indicate c:

AdaGN(h, t, zc) = zcs(t
c
sGN(h) + tcb) + zcb , (18)

where GN denotes group normalization, and [tcs, t
c
b], [z

c
s, z

c
b ] are obtained from a linear projection:

zcs, z
c
b = linearProj(zc), tcs, t

c
b = linearProj([t, pc]). pc is the learnable positional embedding. h

is the feature map of Unet. For more details, please refer to Appendix A and B.

Table 2: Ablation study of DisDiff on image en-
coder, components, batchsize and token numbers
on Shapes3D.

Method FactorVAE score DCI

DisDiff-IM 0.783 0.655
DisDiff-KL 0.837 0.660
DisDiff-VQ 0.902 0.723

DisDiff-VQ wo Lin 0.782 0.538
DisDiff-VQ wo Lva 0.810 0.620
DisDiff-VQ wo Ldis 0.653 0.414
wo detach 0.324 0.026

constant weighting 0.679 0.426
loss weighting 0.678 0.465

attention condition 0.824 0.591
wo pos embedding 0.854 0.678
wo orth embedding 0.807 0.610

latent number N= 6 0.865 0.654
latent number N= 10 0.902 0.723

Datasets To evaluate disentanglement, we fol-
low Ren et al. [36] to use popular public
datasets: Shapes3D [23], a dataset of 3D shapes.
MPI3D [12], a 3D dataset recorded in a con-
trolled environment, and Cars3D [35], a dataset
of CAD models generated by color renderings.
All experiments are conducted on 64x64 image
resolution, the same as the literature. For real-
world datasets, we conduct our experiments on
CelebA [29].

Baselines & Metrics We compare the per-
formance with VAE-based and GAN-based
baselines. Our experiment is conducted fol-
lowing DisCo. All of the baselines and our
method use the same dimension of the repre-
sentation vectors, which is 32, as referred to
in DisCo. Specifically, the VAE-based mod-
els include FactorVAE [23] and β-TCVAE [5].
The GAN-based baselines include InfoGAN-
CR [27], GANspace (GS) [14], LatentDiscov-
ery (LD) [43] and DisCo [36]. Considering the
influence of performance on the random seed. We have ten runs for each method. We use two
representative metrics: the FactorVAE score [23] and the DCI [11]. However, since {zc|c ∈ C}
are vector-wise representations, we follow Du et al. [10] to perform PCA as post-processing on the
representation before evaluation.
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Figure 3: The qualitative results on Shapes3D and CelebA. The source (SRC) images provide the
representations of the generated image. The target (TRT) image provides the representation for
swapping. Other images are generated by swapping the representation of the corresponding factor.
The learned factors on Shapes3D are orientation (Oren), wall color (Wall), floor color (Floor), object
color (Color), and object shape (Shape). For more visualizations, please refer to Appendix C-H.

5.2 Main Results

We conduct the following experiments to verify the disentanglement ability of the proposed DisDiff
model. We regard the learned representation zc as the disentangled one and use the popular metrics in
disentangled representation literature for evaluation. The quantitative comparison results of disentan-
glement under different metrics are shown in Table 1. The table shows that DisDiff outperforms the
baselines, demonstrating the model’s superior disentanglement ability. Compared with the VAE-based
methods, since these methods suffer from the trade-off between generation and disentanglement [26],
DisDiff does not. As for the GAN-based methods, the disentanglement is learned by exploring the
latent space of GAN. Therefore, the performance is limited by the latent space of GAN. DisDiff
leverages the gradient field of data space to learn disentanglement and does not have such limitations.
In addition, DisDiff resolves the disentanglement problem into 1000 sub-problems under different
time steps, which reduces the difficulty.

Table 3: Comparisons of disentanglement on Real-
world dataset CelebA with TAD and FID metrics
(mean ± std). DisDiff still achieves state-of-the-art
performance compared to all baselines.

Model TAD FID

β-VAE 0.088± 0.043 99.8± 2.4
InfoVAE 0.000± 0.000 77.8± 1.6
Diffae 0.155± 0.010 22.7± 2.1
InfoDiffusion 0.299± 0.006 23.6± 1.3

DisDiff (ours) 0.3054± 0.010 18.249± 2.1

We also incorporate the metric for real-world
data into this paper. We have adopted the TAD
and FID metrics from [45] to measure the dis-
entanglement and generation capabilities of Dis-
Diff, respectively. As shown in Table 3, Dis-
Diff still outperforms new baselines in com-
parison. It is worth mentioning that InfoDif-
fusion [45] has made significant improvements
in both disentanglement and generation capabil-
ities on CelebA compared to previous baselines.
This has resulted in DisDiff’s advantage over
the baselines on CelebA being less pronounced
than on Shapes3D.

The results are taken from Table 2 in [45], except for the results of DisDiff. For TAD, we follow
the method used in [45] to compute the metric. We also evaluate the metric for 5-folds. For FID,
we follow Wang et al. [45] to compute the metric with five random sample sets of 10,000 images.
Specifically, we use the official implementation of [48] to compute TAD, and the official GitHub
repository of [15] to compute FID.
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Figure 4: The partial condition sampling on Shapes3D and CelebA. The target (TRT) image provides
the representation of partial sampling images. Images in each row are generated by imposing a single
gradient field of the corresponding factor on the pre-trained DPM. DisDiff samples image condition
on only a single factor. The sampled image has a fixed factor, e.g., the images in the third row have
the same background color as the target one. The conditioned factors on Shapes3D are orientation
(Oren), wall color (Wall), floor color (Floor), object color (Color), and object shape (Shape).

5.3 Qualitative Results

In order to analyze the disentanglement of DisDiff qualitatively, we swap the representation zc of
two images one by one and sample the image conditioned on the swapped representation. We follow
LDM-VQ to sample images in 200 steps. For the popular dataset of disentanglement literature,
we take Shapes3D as an example. As Figure 3 shows, DisDiff successfully learned pure factors.
Compared with the VAE-based methods, DisDiff has better image quality. Since there are no ground
truth factors for the real-world dataset, we take CelebA as an example. As demonstrated in Figure
3, DisDiff also achieves good disentanglement on real-world datasets. Please note that, unlike
DisCo [36], DisDiff can reconstruct the input image, which is unavailable for DisCo. Inspired
by Kwon et al. [25], we generalize DisDiff to complex large-natural datasets FFHQ and CelebA-HQ.
The experiment results are given in Appendix E-H.

5.4 Ablation Study

In order to analyze the effectiveness of the proposed parts of DisDiff, we design an ablation study
from the following five aspects: DPM type, Disentangling Loss, loss weighting, condition type, and
latent number. We take Shapes3D as the dataset to conduct these ablation studies.

DPM type The decomposition of the gradient field of the diffusion model derives the disentanglement
of DisDiff. Therefore, the diffusion space influences the performance of DisDiff. We take Shapes3D
as an example. It is hard for the model to learn shape and scale in image space, but it is much easier in
the latent space of the auto-encoder. Therefore, we compare the performance of DisDiff with different
diffusion types: image diffusion model, e.g., DDIM (DisDiff-IM), KL-version latent diffusion model
(DisDiff-KL), and VQ-version latent diffusion model, e.g., VQ-LDM (DisDiff-VQ). As shown in
Table 2, the LDM-version DisDiff outperforms the image-version DisDiff as expected.

Disentangling Loss Disentangling loss comprises two parts: Invariant loss Lin and Variant loss
Lva. To verify the effectiveness of each part, we train DisDiff-VQ without it. Lin encourages
in-variance of representation not being sampled, which means that the sampled factor will not affect
the representation of other factors (zk, k ̸= c of generated x̂c0). On the other hand, Lva encourages the
representation of the sampled factor (zc of generated x̂c0) to be close to the corresponding one of x0.
As shown in Table 2, mainly Lin promotes the disentanglement, and Lva further constrains the model
and improves the performance. Note that the disentangling loss is optimized w.r.t. Gθ but not Ecθ . If
the loss is optimized on both modules, as shown in Table 2, DisDiff fails to achieve disentanglement.
The reason could be that the disentangling loss influenced the training of the encoder and failed to do
reconstruction.

Loss weighting As introduced, considering that the condition varies among time steps, we adopt the
difference of the encoder as the weight coefficient. In this section, we explore other options to verify
its effectiveness. We offer two different weighting types: constant weighting and loss weighting. The
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first type is the transitional way of weighting. The second one is to balance the Distangling Loss and
diffusion loss. From Table 2, these two types of weighting hurt the performance to a different extent.

Condition type & Latent number DisDiff follows PDAE [49] and Dhariwal and Nichol [9] to adopt
AdaGN for injecting the condition. However, there is another option in the literature: cross-attention.
As shown in Table 2, cross-attention hurt the performance but not much. The reason may be that
the condition is only a single token, which limits the ability of attention layers. We use learnable
orthogonal positional embedding to indicate different factors. As shown in Table 2, no matter whether
no positional embedding (wo pos embedding) or traditional learnable positional embedding (wo orth
embedding) hurt the performance. The reason is that the orthogonal embedding is always different
from each other in all training steps. The number of latent is an important hyper-parameter set in
advance. As shown in Table 2, if the latent number is greater than the number of factors in the dataset,
the latent number only has limited influence on the performance.

5.5 Partial Condition Sampling

As discussed in Section 4.2, DisDiff can partially sample conditions on the part of the factors.
Specifically, we can use Eq. 15 to sample image condition on factors set S. We take Shapes3D
as an example when DisDiff sampling images conditioned on the background color is red. We
obtain images of the background color red and other factors randomly sampled. Figure 4 shows that
DisDiff can condition individual factors on Shapes3D. In addition, DisDiff also has such ability on
the real-world dataset (CelebA) in Figure 4. DisDiff is capable of sampling information exclusively
to conditions.

6 Limitations

Our method is completely unsupervised, and without any guidance, the learned disentangled represen-
tations on natural image sets may not be easily interpretable by humans. We can leverage models like
CLIP as guidance to improve interpretability. Since DisDiff is a diffusion-based method, compared
to the VAE-based and GAN-based, the generation speed is slow, which is also a common problem for
DPM-based methods. The potential negative societal impacts are malicious uses.

7 Conclusion

In this paper, we demonstrate a new task: disentanglement of DPM. By disentangling a DPM into
several disentangled gradient fields, we can improve the interpretability of DPM. To solve the task,
we build an unsupervised diffusion-based disentanglement framework named DisDiff. DisDiff
learns a disentangled representation of the input image in the diffusion process. In addition, DisDiff
learns a disentangled gradient field for each factor, which brings the following new properties for
disentanglement literature. DisDiff adopted disentangling constraints on all different timesteps, a
new inductive bias. Except for image editing, with the disentangled DPM, we can also sample partial
conditions on the part of the information by superpositioning the sub-gradient field. Applying DisDiff
to more general conditioned DPM is a direction worth exploring for future work. Besides, utilizing
the proposed disentangling method to pre-trained conditional DPM makes it more flexible.

Acknowledgement

We thank all the anonymous reviewers for their constructive and helpful comments, which have
significantly improved the quality of the paper. The work was partly supported by the National
Natural Science Foundation of China (Grant No. 62088102).

References
[1] Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of natural

images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
18208–18218, 2022.

[2] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. PAMI, 2013.

10



[3] Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins, and
Alexander Lerchner. Understanding disentangling in beta-vae. arXiv:1804.03599, 2018.

[4] Jinkun Cao, Ruiqian Nai, Qing Yang, Jialei Huang, and Yang Gao. An empirical study on disentanglement
of negative-free contrastive learning. arXiv preprint arXiv:2206.04756, 2022.

[5] Ricky TQ Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of disentanglement
in variational autoencoders. In NeurPIS, 2018.

[6] Pengyu Cheng, Weituo Hao, Shuyang Dai, Jiachang Liu, Zhe Gan, and Lawrence Carin. Club: A
contrastive log-ratio upper bound of mutual information. In International conference on machine learning,
pages 1779–1788. PMLR, 2020.

[7] Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sungroh Yoon. Ilvr: Conditioning
method for denoising diffusion probabilistic models. arXiv preprint arXiv:2108.02938, 2021.

[8] Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for
inverse problems using manifold constraints. Advances in Neural Information Processing Systems, 35:
25683–25696, 2022.

[9] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances in
Neural Information Processing Systems, 34:8780–8794, 2021.

[10] Yilun Du, Shuang Li, Yash Sharma, Josh Tenenbaum, and Igor Mordatch. Unsupervised learning of
compositional energy concepts. Advances in Neural Information Processing Systems, 34, 2021.

[11] Cian Eastwood and Christopher K. I. Williams. A framework for the quantitative evaluation of disentangled
representations. In ICLR, 2018.

[12] Muhammad Waleed Gondal, Manuel Wuthrich, Djordje Miladinovic, Francesco Locatello, Martin Breidt,
Valentin Volchkov, Joel Akpo, Olivier Bachem, Bernhard Schölkopf, and Stefan Bauer. On the transfer of
inductive bias from simulation to the real world: a new disentanglement dataset. In NeurIPS, 2019.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the ACM, 63(11):
139–144, 2020.

[14] Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. Ganspace: Discovering interpretable
GAN controls. In NeurIPS, 2020.

[15] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information
processing systems, 30, 2017.

[16] Irina Higgins, Loïc Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational
framework. In ICLR, 2017.

[17] Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo Rezende, and Alexan-
der Lerchner. Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230,
2018.

[18] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

[19] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

[20] Alexia Jolicoeur-Martineau, Rémi Piché-Taillefer, Rémi Tachet des Combes, and Ioannis Mitliagkas.
Adversarial score matching and improved sampling for image generation. arXiv preprint arXiv:2009.05475,
2020.

[21] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and Michal
Irani. Imagic: Text-based real image editing with diffusion models. arXiv preprint arXiv:2210.09276,
2022.

[22] Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusionclip: Text-guided diffusion models for
robust image manipulation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2426–2435, 2022.

[23] Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In ICML, 2018.

[24] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[25] Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion models already have a semantic latent space.
arXiv preprint arXiv:2210.10960, 2022.

11



[26] José Lezama. Overcoming the disentanglement vs reconstruction trade-off via jacobian supervision. In
International Conference on Learning Representations, 2018.

[27] Zinan Lin, Kiran Thekumparampil, Giulia Fanti, and Sewoong Oh. Infogan-cr and modelcentrality:
Self-supervised model training and selection for disentangling gans. In ICML, 2020.

[28] Xihui Liu, Dong Huk Park, Samaneh Azadi, Gong Zhang, Arman Chopikyan, Yuxiao Hu, Humphrey
Shi, Anna Rohrbach, and Trevor Darrell. More control for free! image synthesis with semantic diffusion
guidance. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages
289–299, 2023.

[29] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

[30] Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Schölkopf,
and Olivier Bachem. Challenging common assumptions in the unsupervised learning of disentangled
representations. In international conference on machine learning, pages 4114–4124. PMLR, 2019.

[31] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11461–11471, 2022.

[32] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. Sdedit:
Guided image synthesis and editing with stochastic differential equations. In International Conference on
Learning Representations, 2021.

[33] Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn. Diffusion
autoencoders: Toward a meaningful and decodable representation. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

[34] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International Conference on Machine Learning, pages 8748–8763. PMLR,
2021.

[35] Scott E. Reed, Yi Zhang, Yuting Zhang, and Honglak Lee. Deep visual analogy-making. In NeurIPS, 2015.

[36] Xuanchi Ren, Tao Yang, Yuwang Wang, and Wenjun Zeng. Learning disentangled representation by
exploiting pretrained generative models: A contrastive learning view. In International Conference on
Learning Representations, 2021.

[37] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-
image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022.

[38] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning, pages
2256–2265. PMLR, 2015.

[39] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020.

[40] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in Neural Information Processing Systems, 32, 2019.

[41] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. ICLR, 2020.

[42] Akash Srivastava, Yamini Bansal, Yukun Ding, Cole L. Hurwitz, Kai Xu, Bernhard Egger, Prasanna
Sattigeri, Josh Tenenbaum, David D. Cox, and Dan Gutfreund. Improving the reconstruction of disentangled
representation learners via multi-stage modelling. CoRR, abs/2010.13187, 2020.

[43] Andrey Voynov and Artem Babenko. Unsupervised discovery of interpretable directions in the GAN latent
space. In ICML, 2020.

[44] Tengfei Wang, Yong Zhang, Yanbo Fan, Jue Wang, and Qifeng Chen. High-fidelity gan inversion for
image attribute editing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11379–11388, 2022.

[45] Yingheng Wang, Yair Schiff, Aaron Gokaslan, Weishen Pan, Fei Wang, Christopher De Sa, and Volodymyr
Kuleshov. Infodiffusion: Representation learning using information maximizing diffusion models. interna-
tional conference on machine learning, 2023.

[46] Qiucheng Wu, Yujian Liu, Handong Zhao, Ajinkya Kale, Trung Bui, Tong Yu, Zhe Lin, Yang Zhang, and
Shiyu Chang. Uncovering the disentanglement capability in text-to-image diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1900–1910, 2023.

12



[47] Tao Yang, Xuanchi Ren, Yuwang Wang, Wenjun Zeng, and Nanning Zheng. Towards building a group-
based unsupervised representation disentanglement framework. In International Conference on Learning
Representations, 2021.

[48] Eric Yeats, Frank Liu, David Womble, and Hai Li. Nashae: Disentangling representations through
adversarial covariance minimization. In European Conference on Computer Vision, pages 36–51. Springer,
2022.

[49] Zijian Zhang, Zhou Zhao, and Zhijie Lin. Unsupervised representation learning from pre-trained diffusion
probabilistic models. NeurIPS, 2022.

13



Appendix
A The Training and Sampling Algorithms

As shown in Algorithm 1, we also present the training procedure of DisDiff. In addition, Algorithms
2 and 3 show the sampling process of DisDiff in the manner of DDPM and DDIM under the condition
of S.

Algorithm 1 Training procedure
Prepare: dataset distribution p(x0), pre-trained DPM ϵθ, pre-trained VQ-VAE, EV Q, DV Q,
Initialize: encoder Eϕ, decoder Gψ .
repeat
x0 ∼ p(x0)
zx0 = EV Q(x0)
t ∼ Uniform(0, 1, . . . , T )
ϵ ∼ N (0, I)
zxt =

√
ᾱtzx0 +

√
1− ᾱtϵ

c ∼ Uniform(1, 2, . . . , N)
z = Eϕ(x0)

Lr = ∥ϵ− ϵθ(zxt, t) +
√
αt

√
1−ᾱt

βt
σt

∑
i∈C Gψ(zxt, z

i, t, i)∥

Use zxt, t, Eϕ, EV Q, DV Q and c to calculate Lin and Lva by Eq. 12 and Eq. 14.
Calculate weight γd by Eq. 17
Update by taking gradient descent step on
∇ϕ,ψ(Lr + γd(Lin + Lva))

until converged;

Algorithm 2 DDPM Sampling
Prepare: pre-trained DPM ϵθ, pre-trained VQ-VAE, EV Q, DV Q, the sampling factor set S ⊆ C,
Input: image x
z = Eϕ(x)
zxT ∼ N (0, I)
for t = T to 1 do

if t ̸= 1 then
ϵ ∼ N (0, I)

else
ϵ = 0

end if
zx(t−1) =

1√
αt

[
zxt − βt√

1−αt
ϵθ(zxt, t)

]
+ σ2

t

∑
i∈S Gϕ(zxt, z

i, t, i) + σtϵ

end for
return DV Q(zx0)

B Training Details

Encoder We use the encoder architecture following DisCo [36] for a fair comparison. The details of
the encoder are presented in Table 3, which is identical to the encoder of β-TCVAE and FactorVAE
in Table 1.

Decoder We use the decoder architecture following PADE [49]. The details of the decoder are
presented in Table 4, which is identical to the Unet decoder in the pre-trained DPM. DPM We
adopted the VQ-version latent diffusion for image resolution of 64 and 256 as our pre-trained DPM.
The details of the DPM are presented in Table 4. During the training of DisDiff, we set the batch
size as 64 for all datasets. We always set the learning rate as 1e − 4. We use EMA on all model
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Algorithm 3 DDIM Sampling
Prepare: pre-trained DPM ϵθ, pre-trained VQ-VAE EV Q, DV Q, the sampling factor set S ⊆ C,
Input: sample x, sampling sequence {ti}Ki=1, and t1 = 0, tK = T
z = Eϕ(x)
zxT ∼ N (0, I) or inferred zxT of inverse DDIM
for j = K to 2 do
ϵθ(zxtj , z

S , tj) = ϵθ(zxtj , t)−
∑
i∈S

√
1− ᾱtjGψ(zxtj , z

i, tj , i)

zxtj−1
=

√
ᾱtj−1

(
zxtj

−
√

1−ᾱtj
ϵθ(zxtj

,zS ,tj)√
αtj

)
+
√
1− ᾱtj−1

ϵθ(zxtj , z
S , tj)

end for
return DV Q(zx0)

parameters with a decay factor of 0.9999. Following DisCo [36], we set the representation vector
dimension to 32.

Table 4: Encoder E architecture used in DisDiff.

Conv 7× 7× 3× 64, stride = 1
ReLu
Conv 4× 4× 64× 128, stride = 2
ReLu
Conv 4× 4× 128× 256, stride = 2
ReLu
Conv 4× 4× 256× 256, stride = 2
ReLu
Conv 4× 4× 256× 256, stride = 2
ReLu
FC 4096× 256
ReLu
FC 256× 256
ReLu
FC 256×K

Table 5: Decoder (pre-trained DPM) architecture used in DisDiff.

Parameters Shapes3D / Cars3D/ MPI3D FFHQ CelebA-HQ

Base channels 16 64 64
Channel multipliers [ 1,2,4,4 ] [1,2,3,4] [1,2,3,4]
Attention resolutions [ 1, 2, 4] [2,4,8] [2,4,8]
Attention heads num 8 8 8
Model channels 64 224 224
Dropout 0.1
Images trained 0.48M/0.28M/1.03M 130M 52M
β scheduler Linear
Training T 1000
Diffusion loss MSE with noise prediction ϵ

C Visualizations on Cars3D.

We also provide the qualitative results on Cars3D in Figure 5. We can observe that on the artificial
dataset Cars3D, DisDiff also learns disentangled representation. In addition, we also provide the
results of swapping representations that contain no information.
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Figure 5: The qualitative results on Cars3D. The source (SRC) images provide the representations
of the generated image. The target (TRT) image provides the representations for swapping. The
remaining rows of images are generated by swapping the representation of the corresponding factor
on Shapes3D. DisDiff learns pure factors by each representation. The learned factors are None, None,
azimuth, grey, and car color.

D Visualizations on MPI3D.

We provide the qualitative results on MPI3D in Figure 6. We can observe that even on such a
challenging dataset (MPI3D) of disentanglement, DisDiff also learns disentangled representation. In
addition, we also provide three rows of images swapping representations that contain no information.

E Orthogonal-constrained DisDiff

We follow DisCo [36] and LD [43] to construct learnable orthogonal directions of the bottleneck layer
of Unet. The difference is that we use QR decomposition rather than the orthonormal matrix proposed
by LD. Specifically, for a learnable matrix A ∈ RC×d, where d is the dimension of direction, we
have the following equation:

A = QR (19)
where Q ∈ RC×d is an orthogonal matrix, and R ∈ Rd×d is an upper triangular matrix, which is
discarded in our method. We useQ to provide directions in Figure 7. Since the directions are sampled,
and we follow DisCo and LD to discard the image reconstruction loss, we use the DDIM inverse
ODE to obtain the inferred xT for image editing. The sampling process is shown in Algorithm 3.

F Qualitative Results on CelebA-HQ

In order to demonstrate the effectiveness of Orthogonal-constrained DisDiff, we train it on dataset
CelebA-HQ. We also conduct our experiments with the latent unit number of 10. The results are
shown in Figure 9. Since the real-world datasets have many factors that are more than 10, we also
conduct our experiment with the latent unit number of 30. As shown in Figure 11, Orthogonal-
constrained DisDiff learns consistent factors for different images. There are more factors than Figure
9 shows. Therefore, we conduct another experiment using another random seed with a latent unit
number of 10. The results are shown in Figure 10.
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Figure 6: The qualitative results on MPI3D. The source (SRC) images provide the representations of
the generated image. The target image provides the representations for swapping. The remaining
rows of images are generated by swapping the representations of the corresponding factor on MPI3D.
DisDiff learns pure factors by each representation. The learned factors are object color (OB color),
object shape (OB shape), None, None, None, and background color (BG color).

𝜖 (𝑥 , 𝑡)

Disentangling loss
𝐺 (𝑥 , 𝑡, 𝑧 )

𝐺 (𝑥 , 𝑡, 𝑧 )

𝐺 (𝑥 , 𝑡, 𝑧 )

Encoder 𝐸

Encoder 𝐸Decoder 𝐺

Pre-trained DPM

Figure 7: Illustration of Orthogonal-constrained DisDiff. In this architecture, we use a powerful
decoder to replace the original decoder in DisDiff. Since we train the decoder from scratch, the ability
to disentanglement on large natural datasets is limited. However, we can use the pre-trained Unet
decoder as our powerful decoder by feeding a set of learnable orthogonal directions to make it output
the corresponding gradient field. These directions and the decoder compose a powerful decoder that
takes directions as input and generates the corresponding gradient fields as output.

G CLIP-guided DisDiff

To tackle the disentanglement in real-world settings, we propose replacing the encoder in DisDiff
with a powerful encoder, which lets us leverage the knowledge of the pre-trained model to facilitate
the disentanglement. Specifically, we adopt CLIP as the encoder. Since the CLIP is an image-text
pair pre-trained model, the multi-modal information is the pre-trained information we can leverage.
Therefore, we use the CLIP text encoder to provide the condition but use the CLIP image encoder to
calculate the disentangling loss. Figure 8 shows the obtained new architecture.
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Pre-trained DPM

Figure 8: Illustration of CLIP-guided DisDiff. In this architecture, a powerful encoder replaces the
original one in DisDiff. Specifically, we adopt the CLIP Image encoder as our new encoder, which
also serves as guidance for ASYRP [25]. By leveraging knowledge learned from pre-trained CLIP,
DisDiff can learn meaningful gradient fields. To use the learned knowledge of the language-image
pair contrastive pre-training, we utilize attribute words as inputs, where different words correspond
to different gradient fields. Finally, we incorporate disentangling loss at the end of the encoder to
enforce both the invariant and variant constraints.

H Qualitative Results on FFHQ

We train the CLIP-guided DisDiff on FFHQ to verify its effectiveness. Since the attribute words
used in the training of the CLIP-guided DisDiff are unpaired and provided in ASYRP, the learning
of these factors is still unsupervised. As discussed in Section 4.2, DisDiff can do partial sampling
that is conditioned on the part of the factors. Similarly, as shown in Figure 13, CLIP-guided DisDiff
also has such an ability. In addition, as shown in Figure 12, we can also use the trained decoder of
CLIP-guided DisDiff to edit the images by using the inverse ODE of DDIM to infer the xT .

I The Latent Number < The Number of GT Factors

When the latent number is smaller than the number of factors, the model’s performance will sig-
nificantly decrease, which is in accordance with our intuition. However, the performance of other
methods will also decrease under this condition. We conducted experiments using FactorVAE and
β-TCVAE to demonstrate it. We trained our model, FactorVAE and β-TCVAE on Shapes3D (The
number of factors is 6) with a latent number of 3, and the hyperparameters and settings in their
original paper were adopted for the latter two models accordingly. As shown in Table 6, our model
showed a lower degree of disentanglement reduction than these two models and was significantly
lower than β-TCVAE.

Table 6: The disentanglement performance when the latent number is 3 (mean ± std, higher is better).

Model DCI score FactorVAE score

β-TCVAE 0.098± 0.043 0.383± 0.0444
FactorVAE 0.3113± 0.014 0.4982± 0.0049
DisDiff (ours) 0.3279± 0.023 0.4986± 0.0054

J Quantitative Results on More Metrics

We experiment with MIG and MED metrics on the Shapes3D dataset, two classifier-free metrics.
For MIG, we utilized the implementation provided in disentanglement_lib4, while for MED, we
used the official implementation available at Github5. The experimental results in Table 7 indicate
that our proposed method still has significant advantages, especially in MED-topk and MIG.

4https://github.com/google-research/disentanglement_lib
5https://github.com/noahcao/disentanglement_lib_med
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Table 7: Comparisons of disentanglement on the additional metrics: MED, MED-topk, and MIG
(mean ± std, higher is better). Except for DisCo and DisDiff, other results (MED and MED-topk)
are taken from the MED [4]. The missing value is due to the need for publicly released pre-trained
models.

Model MED MED-topk MIG
β-VAE 52.5± 9.4 19.2± 1.4 –
β-TCVAE 53.2± 4.9 25.0± 0.5 0.406± 0.175
FactorVAE 55.9± 8.0 8.2± 4.0 0.434± 0.143
DIP-VAE-I 43.5± 3.7 16.2± 0.9 –
DIP-VAE-II 52.6± 5.2 – –
AnnealedVAE 56.1± 1.5 – –
MoCo – 18.1± 0.6 –
MoCov2 – 13.6± 1.7 –
BarlowTwins – 20.0± 0.3 –
SimSiam – 30.0± 2.0 –
BYOL – 19.7± 1.3 –
InfoGAN-CR – – 0.297± 0.124
LD – – 0.168± 0.056
DS – – 0.356± 0.090
DisCo 38.0± 2.7 54.8± 2.1 0.512± 0.068
DisDiff (Ours) 59.5± 1.1 64.5± 1.6 0.5671± 0.033

K Proof of Proposition 1

Background: Our encoder transforms the data x0 (hereafter denoted as x, the encoder keeps fixed
for disentangling loss) into two distinct representations zc and zk. We assume that the encoding
distribution follows a Gaussian distribution p(zc|x), with a mean of Ec(x). However, the distribution
p(x|zc) is intractable. We can employ conditional sampling of our DPM qθ(x|zc) to approximate
the sampling from the distribution p(x|zc). Given that we optimize the disentangling loss at each
training step, we implement Eq. 15 and Eq. 16 in the main paper as an efficient alternative to
sample from qθ(x|zc). We further assume that the distribution used to approximate p(zk|zc) follows
a Gaussian distribution qθ(zk|zc), with a mean of zk|c = Ek(D(zc)), where D represents the
operations outlined in Eq. 15 and Eq. 16. We represent the pretrained unconditional DPM using the
notation qθ(x) ≈ p(x).

Proposition 2. For a PGM: zc → x → zk, we can minimize the upper bound (estimator) for the
mutual information between zc and zk (where k ̸= c) by the following objective:

min E
k,c,x0,x̂c

0

∥ẑk|c − ẑk∥ − ∥ẑk|c − zk∥+ ∥ẑc|c − zc∥ (20)

Considering the given context, we can present the PGM related to q as follows:zc → x→ zk. The
first transition is implemented by DPM represented by the distribution qθ. Subsequently, the second
transition is implemented by the encoder, denoted by the distribution p.

Proposition 1.1 The estimator below is an upper bound of the mutual information I(zc, zk). For
clarity, we use expectation notation with explicit distribution.

Iest = Ep(zc,zk)[log p(zk|zc)]− Ep(zc)p(zk)[log p(zk|zc)]. (21)

Equality is attained if and only if zk and zc are independent.

Proof : Iest − I(zc, zk) can be formulated as follows:

Ep(zc,zk)[log p(zk|zc)]− Ep(zc)p(zk)[log p(zk|zc)]− Ep(zc,zk)[log p(zk|zc)− log p(zk)]

= Ep(zc,zk)[log p(zk)]− Ep(zc)p(zk)[log p(zk|zc)]
= Ep(zk)[log p(zk)− Ep(zc)[log p(zk|zc)]].

(22)

19



Using Jensen’s Inequality, we obtain log p(zk) = log(Ep(zc)[p(zk|zc)]) ⩾ Ep(zc)[log p(zk|zc)].
Therefore, the following holds:

Iest − I(zc, zk) = Ep(zk)[log p(zk)− Ep(zc)[log p(zk|zc)]] ⩾ 0. (23)

Since the distribution p(zk|zc) is intractable, we employ qθ(zk|zc) to approximate p(zk|zc).

Iθ = Ep(zc,zk)[log qθ(zk|zc)]− Ep(zc)p(zk)[log qθ(zk|zc)]. (24)

Proposition 1.2: The new estimator can be expressed as follows:

Iθ = −Ep(zc,zk)∥zk − ẑk|c∥+ Ep(zc)Eqθ(x̂)Ep(ẑk|x̂)∥ẑ
k − ẑk|c∥+ C1. (25)

The first term corresponds to dpk in Eq. 13 of the main paper, while the second term corresponds to
Eq. 11 in the main paper.

Proof :

Considering the first term, we obtain:

log qθ(z
k|zc) = log exp(−∥zk − Ek(D(zc))∥) + C2 = −∥zk − ẑk|c∥+ C2. (26)

For the second term, we obtain:

Ep(zk)[log qθ(zk|zc)] =
∫ ∫

p(x, zk) log qθ(z
k|zc)dzkdx

=

∫
p(x)

∫
p(zk|x) log qθ(zk|zc)dzkdx

≈
∫
qθ(x̂)

∫
p(ẑk|x̂) log qθ(ẑk|zc)dẑkdx̂

= Eqθ(x̂)Ep(ẑk|x̂)[log qθ(ẑ
k|zc)]

= Eqθ(x̂)Ep(ẑk|x̂)∥ẑ
k − Ek(D(zc))∥+ C3

= Eqθ(x̂)Ep(ẑk|x̂)∥ẑ
k − ẑk|c∥+ C3.

(27)

Proposition 1.3: If the following condition is fulfilled, the new estimator Iθ can serve an upper bound
for the mutual information I(zc, zk), i.e., Iθ ⩾ I(zc, zk). The equality holds when zk and zc are
independent. We denote qθ(zk|zc)p(zc) as qθ(zk, zc).

DKL(p(z
k, zc)||qθ(zk, zc)) ⩽ DKL(p(z

k)p(zc)||qθ(zk, zc)). (28)

Proof :

Iθ − I(zc, zk) can be formulated as follows:

Ep(zc,zk)[log qθ(zk|zc)]− Ep(zc)p(zk)[log qθ(zk|zc)]− Ep(zc,zk)[log p(zk|zc)− log p(zk)]

= Ep(zc,zk)[log qθ(zk|zc)− log p(zk|zc)] + Ep(zc)p(zk)[− log qθ(z
k|zc) + log p(zk)]

= Ep(zc)p(zk)[− log qθ(z
k|zc) + log p(zk)]− Ep(zc,zk)[log p(zk|zc)− log qθ(z

k|zc)]

= Ep(zc)p(zk)
[
log

p(zk)p(zc)

qθ(zk|zc)p(zc)

]
− Ep(zc,zk)

[
log

p(zk|zc)p(zc)
qθ(zk|zc)p(zc)

]
= DKL(p(z

c)p(zk)||qθ(zk, zc))−DKL(p(z
c, zk)||qθ(zk, zc)).

(29)

If DKL(p(z
k, zc)||qθ(zk, zc)) ⩽ DKL(p(z

k)p(zc)||qθ(zk, zc)), we obtain:

Iθ ⩾ I(zc, zk). (30)

Since the condition is not yet applicable, we will continue exploring alternative conditions.

Proposition 1.4: If DKL(p(z
k|zc)||qθ(zk|zc)) ⩽ ϵ, then, either of the following conditions holds:

Iθ ⩾ I(zc, zk) or |Iθ − I(zc, zk)| ⩽ ϵ.
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Proof : If DKL(p(z
k, zc)||qθ(zk, zc)) ⩽ DKL(p(z

k)p(zc)||qθ(zk, zc)), then

Iθ ⩾ I(zc, zk), (31)
else:

DKL(p(z
k)p(zc)||qθ(zk, zc)) < DKL(p(z

k, zc)||qθ(zk, zc))

= Ep(zc,zk)
[
log

p(zk|zc)
qθ(zk|zc)

]
= DKL(p(z

k|zc)||qθ(zk|zc))
⩽ ϵ.

(32)

|Iθ − I(zc, zk)| < max(DKL(p(z
k, zc)||qθ(zk, zc)), DKL(p(z

k)p(zc)||qθ(zk, zc))) ⩽ ϵ. (33)

Proposition 1.5: Consider a PGM zc → x → zk; if DKL(qθ(x|zc)|p(x|zc)) = 0, it follows that
DKL(p(z

k|zc)||qθ(zk|zc)) = 0.

Proof : if DKL(qθ(x|zc)|p(x|zc)) = 0, we have qθ(x|zc) = p(x|zc).

DKL(p(z
k|zc)||qθ(zk|zc)) = Ep(zc,zk)

[
log

p(zk|zc)
qθ(zk|zc)

]
= Ep(zc,zk)

[
log

∫
p(x|zc)p(zk|x)dx∫
qθ(x|zc)p(zk|x)dx

]
= Ep(zc,zk)[log 1] = 0.

(34)

Ideally, by minimizing DKL(qθ(x|zc)|p(x|zc)) to 0, we can establish Iθ either as an upper bound or
as an estimator of I(zc, zk).

Proposition 1.6: we can minimize DKL(qθ(x|zc)|p(x|zc)) by minimizing the following objective:

Ep(zc)Eqθ(x|zc)∥z
c − ẑc|c∥+ C4. (35)

Note that the equation above exactly corresponds to dpc in Eq. 13, and dnk is a constant.

Proof :

DKL(qθ(x|zc)|p(x|zc)) =
∫
p(zc)

∫
qθ(x|zc) log

qθ(x|zc)
p(x|zc)

dxdzc. (36)

We focus on the following term:∫
qθ(x|zc) log

qθ(x|zc)
p(x|zc)

dx =

∫
qθ(x|zc)[log qθ(x|zc)− log p(x|zc)]dx. (37)

Applying the Bayes rule, we obtain:

=

∫
qθ(x|zc)[log qθ(x|zc)− log

p(zc|x)p(x)
p(zc)

]dx

=

∫
qθ(x|zc)

[
log

qθ(x|zc)
p(x)

− log p(zc|x) + log p(zc)

]
dx

= DKL(qθ(x|zc)|p(x))− Eqθ(x|zc)[log p(z
c|x)] + log p(zc)

⩽ −Eqθ(x|zc)[log p(z
c|x)] + log p(zc)

= −Eqθ(x|zc)[log exp(−|zc − Ec(x)|)] + log p(zc) + C5

= Eqθ(x|zc)∥z
c − ẑc|c∥+ log p(zc) + C5.

(38)

We can minimize Ep(zc)Eqθ(x|zc)∥zc − ẑc|c∥ instead.

Note that the loss usually cannot be optimized to a global minimum in a practical setting, but how
the gap influences Iθ is beyond the scope of this paper. We leave it as future work. Figure 4 in the
main paper shows that our model has successfully fitted the distribution of p(x|zc) using qθ(x|zc).
Therefore, we can understand that the model’s loss can be regarded as Iest.

21



Table 8: Ablation study of DisDiff on image encoder, components, batchsize and token numbers on
Shapes3D.

Method SSIM(↑) LPIPS(↓) MSE(↓) DCI(↑) Factor VAE(↑)

PDAE 0.9830 0.0033 0.0005 0.3702 0.6514
DiffAE 0.9898 0.0015 8.1983e− 05 0.0653 0.1744
DisDiff (ours) 0.9484 0.0006 9.9293e− 05 0.723 0.902

L Comparison with Diffusion-based Autoencoders

We include a comparison with more recent diffusion baselines, such as PADE [49] and DiffAE [33].
The results are shown in Table 8.

The relatively poor disentanglement performance of the two baselines can be attributed to the fact that
neither of these models was specifically designed for disentangled representation learning, and thus,
they generally do not possess such capabilities. DiffAE primarily aims to transform the diffusion
model into an autoencoder structure, while PDAE seeks to learn an autoencoder for a pre-trained
diffusion model. Unsupervised disentangled representation learning is beyond their scope.

Traditional disentangled representation learning faces a trade-off between generation quality and
disentanglement ability (e.g., betaVAE [16], betaTCVAE [5], FactorVAE [23]). However, fortunately,
disentanglement in our model does not lead to a significant drop in generation quality; in fact, some
metrics even show improvement. The reason for this, as described in DisCo [36], is that using a
well-pre-trained generative model helps avoid this trade-off.
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SRC
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Bangs

Expose

Long hair

Figure 9: The qualitative results of orthogonal constraint on CelebA-HQ (seed 0). The source (SRC)
row provides the images of the generated image. The remaining rows of images are generated by
shifting the representation along the learned direction of the corresponding factor on CelebA-HQ.
DisDiff learns the direction of pure factors unsupervised. The learned factors are listed in the leftmost
column. The images are sampled by using the inferred xT .
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Figure 10: The qualitative results of orthogonal constraint on CelebA-HQ (seed 1). The source (SRC)
row provides the images of the generated image. The remaining rows of images are generated by
shifting the representation along the learned direction of the corresponding factor on CelebA-HQ.
DisDiff learns the direction of pure factors unsupervised. The learned factors are listed in the leftmost
column. The images are sampled by using the inferred xT .
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Zoom in

Figure 11: The qualitative results of orthogonal constraint on CelebA-HQ (latent number = 30). The
source (SRC) row provides the images of the generated image. The remaining rows of images are
generated by shifting the representation along the learned direction of the corresponding factor on
CelebA-HQ. DisDiff learns the direction of pure factors unsupervised. The learned factors are listed
in the leftmost column. The images are sampled by using the inferred xT .
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Figure 12: The qualitative results of CLIP-guided DisDiff on FFHQ. The source (SRC) row provides
the images of the generated image. The remaining rows of images are generated by shifting the
representation along the learned direction of the corresponding factor on FFHQ. DisDiff learns the
direction of pure factors unsupervised. The learned factors are listed in the leftmost column. The
images are sampled by using the inferred xT .
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Figure 13: The partial condition sampling results of CLIP-guided DisDiff on FFHQ. The source
(SRC) row provides the images of the generated image. The remaining rows of images are generated
by shifting the representation along the learned direction of the corresponding factor on FFHQ.
DisDiff learns the direction of pure factors unsupervised. The learned factors are listed in the leftmost
column. The images are sampled by using the inferred xT .
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