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Abstract

We study the problem of Inverse Reinforcement Learning (IRL) with an average-
reward criterion. The goal is to recover an unknown policy and a reward function
when the agent only has samples of states and actions from an experienced agent.
Previous IRL methods assume that the expert is trained in a discounted environment,
and the discount factor is known. This work alleviates this assumption by proposing
an average-reward framework with efficient learning algorithms. We develop
novel stochastic first-order methods to solve the IRL problem under the average-
reward setting, which requires solving an Average-reward Markov Decision Process
(AMDP) as a subproblem. To solve the subproblem, we develop a Stochastic Policy
Mirror Descent (SPMD) method under general state and action spaces that needs
O(1/") steps of gradient computation. Equipped with SPMD, we propose the
Inverse Policy Mirror Descent (IPMD) method for solving the IRL problem with a
O(1/"2) complexity. To the best of our knowledge, the aforementioned complexity
results are new in IRL literature with the average reward criterion. Finally, we
corroborate our analysis with numerical experiments using the MuJoCo benchmark
and additional control tasks.

1 Introduction

Reinforcement Learning (RL) problems are frequently formulated as Markov Decision Processes
(MDPs). The agent learns a policy to maximize the reward gained over time. However, in numerous
engineering challenges, we are typically presented with a set of state-action samples from experienced
agents, or experts, without an explicit reward signal. Inverse Reinforcement Learning (IRL) aspires
to recover the expert’s policy and reward function from these collected samples.

Methods like Imitation Learning [29, 15, 10] reduces the IRL problem to predicting an expert’s
behavior without estimating the reward signal. Such formulation is undesirable in some scenarios
when we either wish to continue training or analyze the structure of the agent’s reward signal, e.g., in
reward discovery for animal behavior study [31, 34, 26, 14]. Furthermore, as a popular methodology
in Imitation Learning, Generative Adversarial Network (GAN) [15, 42] suffers from unstable training
due to mode collapse [32]. The sampling-based Bayesian IRL (BIRL) approach [8, 9, 6] treats
the reward function as a posterior distribution from the observation. This approach is conceptually
straightforward but suffers from slow convergence of sampling. Another line of research reformulates
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the IRL as RL with general utility functions [36, 39, 12, 1]. While theoretically attractive, such a
formulation does not learn reward functions.

Furthermore, inferring rewards poses an additional challenge: without any additional assumption, the
same expert behavior can be explained by multiple reward signals [40]. To resolve this ambiguity,
the authors propose adding the principle of Maximum Entropy that favors a solution with a higher
likelihood of the trajectory. In the following work [41], the objective is replaced by maximizing the
entropy of the policy, which better characterizes the nature of stochastic sequential decision-making.
A body of work focuses on alleviating the computational burden of the nested optimization structure
of under the Maximum Entropy framework. In [11], the authors skipped the reward function update
stage by representing rewards using action-value functions. f -IRL [23] minimize the divergence of
state visitation distribution for finite-horizon MDPs. More recently, in [37], the authors propose a
dual formulation of the original Maximum Entropy IRL and a corresponding algorithm to solve IRL
in the discounted setting.

Despite the success in practice, theoretical understanding of RL/IRL methods is lacking. For RL,
specifically for Discounted Markov Decision Processes (DMDPs), analysis of policy gradient methods
for solving DMDPs is catching up only until recently [2, 16, 5, 19, 18]. Meanwhile, understanding of
the Average-reward Markov Decision Processes (AMDPs) remains very limited, where the policy
aims to maximize the long-run average reward gained. Li et al.[20] propose stochastic first-order
methods for solving AMDPs with a rate of convergence Õ(log("�1)) for policy optimization, but it is
constrained to finite states and actions with policy explicitly represented in tabular forms. Moreover,
for IRL, the only known finite time analysis are [35, 37, 38, 21] for either solving DMDPs, or
finite-horizon MDPs. There are no well-established convergence analyses for IRL with AMDPs.
Moreover, prior works only focus on MDPs with finite state and action spaces, which do not fully
address many real-life problems that inherently feature continuous elements (e.g., robotics [17]).
Such settings further require general function approximations, the usage of which lacks theoretical
understanding in recent work as well.

In summary, all previous works either do not fundamentally address our problem, which necessitates
the learning of reward functions, or they miss key elements such as general state and action spaces,
general function approximation, and the analysis incorporating approximation errors. Each of these
facets demands substantial effort. In this paper, we focus on convergence analyses for average-award
MDPs. We extend the RL algorithm [20] for AMDPs to general state and action spaces with general
function approximation and develop an algorithm to solve the IRL problem with the average-reward
criterion. Analyses of both algorithms are new in the literature to the best of our knowledge.

1.1 Main contributions

Stochastic Policy Mirror Descent for solving AMDPs: Our research introduces the Stochastic
Policy Mirror Descent (SPMD) algorithm, a novel approach designed to tackle Average-reward
Markov Decision Processes (AMDPs) that involve general state and action spaces. Leveraging a
performance difference lemma, we demonstrate that the SPMD algorithm converges within O("�1)
steps for a specific nonlinear function approximation class, and in no more than O("�2) steps for
general function approximation.

Inverse Policy Mirror Descent for solving Maximum Entropy IRL: We expound a dual form of the
Maximum Entropy IRL problem under the average-reward framework with the principle of Maximum
Entropy. This dual problem explicitly targets the minimization of discrepancies between the expert’s
and agent’s expected average reward. Consequently, we propose a first-order method named Inverse
Policy Mirror Descent (IPMD) for effectively addressing the dual problem. This algorithm operates
by partially resolving an Entropy Regularized RL problem at each iteration, which is systematically
solved by employing SPMD. Drawing upon the two-timescale stochastic approximation analysis
framework [3], we present the convergence result and establish a O("�2) rate of convergence.

Numerical experiments: Our RL and IRL methodologies have been tested against the well-known
robotics manipulation benchmark, MuJoCo, as a means to substantiate our theoretical analysis. The
results indicate that the proposed SPMD and IPMD algorithms generally outperform state-of-the-art
algorithms. In addition, we found that the IPMD algorithm notably reduces the error in recovering
the reward function.
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2 Background and problem setting

2.1 Average reward Markov decision processes

An Average-reward Markov decision process is described by a tuple M := (S,A,P, c), where S
denotes the state space, A denotes the action space, P is the transition kernel, and c is the cost
function. At each time step, the agent takes action a 2 A at the current state s 2 S according to its
policy ⇡ : S ! A. We use ⇧ as the space of all feasible policies. Then the agent moves to the next
state s0 2 S with probability P(s0|s, a), while the agent receives an instantaneous cost c(s, a) (or a
reward r(s, a) = �c(s, a)). The agent’s goal is to determine a policy that minimizes the long-term
cost

⇢⇡(s) := lim
T!1

1
T E⇡

hPT�1
t=0 (c(st, at) + h⇡(st))

��s0 = s
i
, (1)

where h⇡ is a closed convex function with respect to the policy ⇡, i.e., there exists µh � 0 such that

h⇡(s)� [h⇡0
(s) + hrh⇡0

(s, ·),⇡(·|s)� ⇡0(·|s)i] � µhD(⇡(s),⇡0(s)), (2)

where rh⇡0
denotes the subgradient of h at ⇡0 and D(·, ·) is the Bregman distance, i.e.,

D(a2, a1) := !(a1)� [!(a2) + h!(a2)0, a1 � a2i] � 1
2ka1 � a2k2, for all a1, a2 2 A. (3)

Here ! : A ! R is a strongly convex function with the associated norm k · k in the action space
A and let us denote k · k⇤ as its dual norm. In this work we also utilize a span semi-norm [27]:
kvksp,1 := max v�min v, 8v 2 Rn. If h⇡ = 0, Eq. 1 reduces to the classical unregularized AMDP.
If h⇡(s) = E⇡[� log ⇡] =: H(⇡(s)), i.e., the (differential) entropy, Eq. 1 defines the average reward
of the so-called entropy-regularized MDPs.

In this work, we consider the ergodic setting, for which we make the following assumption formally:
Assumption 2.1. For any feasible policy ⇡, the Markov chain induced by policy ⇡ is ergodic.
The Markov chain is Harris ergodic in general state and action spaces (see [22]). The stationary
distribution ⇡ induced by any feasible policy exists and is unique. There is some constant number
0 < � < 1 such that ⇡(s) � 1� �.

As a result of Assumption 2.1, for any feasible policy ⇡, the average-reward function does not depend
on the initial state (see Section 8 of [27]). Given that, one can view ⇢⇡ as a function of ⇡. For a given
policy we also define the basic differential value function (also called bias function; see, e.g., [27])

V̄ ⇡(s) := E [
P1

t=0c (st, at) + h⇡(st)� ⇢⇡|s0 = s, at ⇠ ⇡(·|st), st+1 ⇠ P(·|st, at)] , (4)

and the basic differential action-value function (or basic differential Q-function) is defined as

Q̄⇡(s, a) := E [
P1

t=0c (st, at) + h⇡(st)� ⇢⇡|s0 = s, a0 = a, at ⇠ ⇡(·|st), st+1 ⇠ P(·|st, at)] .
(5)

Moreover, we define the sets of differential value functions and differential action-value functions
(differential Q-functions) as the solution sets of the following Bellman equations, respectively,

V̄ ⇡(s) = E[Q̄⇡(s, a)|a ⇠ ⇡(·|s)], (6)

Q̄⇡(s, a) = c(s, a) + h⇡(s)(s)� ⇢⇡(s) +

Z
P(ds0 | s, a)V̄ ⇡(s0). (7)

Under Assumption 2.1, the solution of Eq. (6) (resp., Eq. (7)) is unique up to an additive constant.
Finally, our goal in solving an AMDP is to find an optimal policy ⇡⇤ that minimizes the average cost:

⇢⇤ = ⇢⇡
⇤
= min

⇡
⇢⇡ s.t. ⇡(·|s) 2 ⇧, 8s 2 S. (AMDP)

2.2 Inverse Reinforcement Learning

Suppose there is a near-optimal policy, and we are given its demonstrations ⇣ := {(si, ai)}i�1. IRL
aims to recover a reward function such that the estimated reward best explains the demonstrations.
We consider solving the IRL problem under the Maximum Entropy framework (MaxEnt-IRL), which
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aims to find a reward representation that maximizes the entropy of the corresponding policy and
incorporates feature matching as a constraint. Formally, the MaxEnt-IRL problem is described as

max
⇡

H(⇡) := E(s,a)⇠d⇡(·,·)[� log ⇡(a|s)] (MaxEnt-IRL)

s.t. E(s,a)⇠d⇡ ['(s, a)] = E(s,a)⇠dE ['(s, a)]

where dE and d⇡ denote the state-action distribution induced by the expert and current policy ⇡E and
⇡ respectively, and '(s, a) 2 Rn denotes the feature of a given (s, a) pair. If we assume that for a
given state-action pair, the cost is a linear function to its feature, i.e., c(s, a; ✓) = ✓T'(s, a) for some
parameter ✓ with the same dimension of the feature '(s, a), we can show that the parameter ✓ is the
dual multiplier of the above optimization problem, as the Lagrangian function can be written as

L(⇡, ✓) = H(⇡) + E(s,a)⇠dE [c(s, a; ✓)]� E(s,a)⇠d⇡ [c(s, a; ✓)] . (8)

Therefore, the dual problem is formulated as

min
✓

L(✓) := E(s,a)⇠dE [c(s, a; ✓)]� E(s,a)⇠d⇡ [c(s, a; ✓)] (Dual IRL)

s.t. ⇡ = argmax
⇡0

E(s,a)⇠d⇡0 [�c(s, a; ✓)] +H(⇡0).

Notice that to find ⇡, we need to solve an Entropy Regularized Reinforcement Learning problem, i.e.,
solving AMDP with the regularizer set to be the negative entropy, h⇡ = �H(⇡). To this end, we
first propose a Stochastic Policy Mirror Descent (SPMD) method for solving AMDP. The solution
methods are presented in section 3. Then we introduce an Inverse Policy Mirror Descent (IPMD)
algorithm based on SPMD for the inverse RL problem (Dual IRL), introduced in section 4. We will
see that we only need to solve the subproblem AMDP partially.

3 Stochastic Policy Mirror Descent for AMDPs

This section proposes an SPMD method to solve Regularized Reinforcement Learning problems for
AMDPs. SPMD operates in an actor-critic fashion. In each step, the agent evaluates its current policy
(critic step) and performs a policy optimization step (actor step). In this work, we assume there is
a way to perform the critic step using standard methods, e.g., Temporal Difference learning using
neural networks. Further discussion on implementation is included in section 3.1. We will focus on
designing a novel actor step and providing its complexity analysis.

Our policy optimization algorithm is motivated by the following performance difference lemma ,
which characterizes the difference in objective values of two policies ⇡,⇡0.
Lemma 3.1. (Performance Difference) Assume that Assumption 2.1 holds. For any ⇡,⇡0 2 ⇧

⇢⇡
0
� ⇢⇡ =

Z
 ⇡(s,⇡0(s))⇡

0
(ds), 8s 2 S, (9)

where

 ⇡(s,⇡0(s)) := Q̄⇡(s,⇡0(s))� V̄ ⇡(s) + h⇡0
(s)� h⇡(s). (10)

Proof can be found in A.1. The above lemma shows the gradient of the objective function with respect
to action a is Q̄⇡(s,⇡(s)) + h⇡(s), i.e.,

ra⇢
⇡ =

Z
ra(Q̄

⇡(s,⇡(s)) + h⇡(s))⇡(ds). (11)

The existence of the above equation requires the differentiability of Q̄, h and locally Lipschitz
continuity of ⇡ [see 24, 25]. Note that  can be seen as some generalized advantage function.
Lemma 3.1 shows that the gradient of the objective relates to differential Q-functions. This inspires
us to update the policy in the following mirror-descent style:

⇡k+1(s) = argmin
a2A

Q̄⇡k(s, a) + ha(s) + 1
⌘k
D(⇡k(s), a), (12)

where ⌘k is some predefined step size. The complexity analysis of this type of algorithm has been
thoroughly studied in [20] in tabular forms or linear function approximation settings, i.e., a lookup
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table represents the policy, and the differential Q-functions are approximated as linear functions
with respect to some feature space. In practice, especially in the Deep Reinforcement Learning
community, both policy and the Q-functions are represented by neural networks. Thus, novel analysis
is required for general function approximation. Additionally, the exact value of Q̄⇡ and r!(⇡) in
Eq. 19 can only be estimated through approximation. Note that r!(⇡) rises inside the Bregman
distance D(⇡k(s), a), referring to Eq. 13. We consider their stochastic estimators calculated from
state-action sample pairs ⇣ , denoted as Q̄⇡,⇣(s, a;�), r̃! (⇡(s);�) respectively, where � denotes the
parameters of the method of choice, for example, weights and biases in a neural network. For the rest
of the paper, we abbreviate Q̄⇡,⇣(s, a;�) as Q̄(s, a;�) when the context is clear. We described the
Stochastic Policy Mirror Descent (SPMD) algorithm in Algorithm 1.

Algorithm 1: The Stochastic Policy Mirror Descent (SPMD) algorithm for AMDPs
1: Input: Initialize random policy ⇡0 and step size sequence {⌘k}
2: for k = 0, 1, · · · ,K do

3: Sample collection: ⇣k = {(st, at, ct)}t�1

4: Critic step: Approximate Q̄⇡k , r!(⇡k(s)) with

Q̄⇡k(s, a) ⇡ Q̄⇡k,⇣k(s, a;�k), (13)

r!(⇡k(s)) ⇡ r̃!(⇡k(s);�k). (14)

5: Actor step: Update the policy

⇡k+1(s) = argmin
a2A

Q̄⇡k,⇣k(s, a;�k) + ha(s) + 1
⌘k
(hr̃!(⇡k(s);�k), ai+ !(a)). (15)

6: end for

The following paragraphs present the complexity analysis for Algorithm 1. Note that we assume the
approximated Q function might not be convex but weakly convex, i.e.,

Q̄(s, a;�) + µQ̄D(⇡0(s), a) (16)

is convex w.r.t. a 2 A for some µQ̄ � 0 and ⇡0 is the initialized policy. This assumption is general
as any differential function with Lipschitz continuous gradients is weakly convex. Moreover, we
assume that h·(s), Q̄(s, ·; ✓) and Q̄⇡(s, ·) are Lipschitz continuous with respect to the action.
Assumption 3.2. For all a1, a2 2 A there exist some constants Mh,MQ̄,MQ̄ such that

|ha1(s)� ha2(s)|  Mhka1 � a2k, (17)
|Q̄(s, a1;�)� Q̄(s, a2;�)|  MQ̄ka1 � a2k, (18)

|Q̄⇡(s, a1)� Q̄⇡(s, a2)|  MQ̄ka1 � a2k, (19)

and Q̄(s, a;�) is µQ̄-weakly convex, i.e., Eq. 16 is convex.

Note that the strong convexity modulus of the objective function in Eq. 15 can be very large since ⌘k
can be small, in which case the subproblem Eq. 15 is strongly convex, thus the solution of Eq. 15 is
unique due to strong convexity [18].

Our complexity analysis follows the style of convex optimization. We begin the analysis by decom-
posing the approximation error in the following way

�Qk (s, a) := Q̄ (s, a;�k)� Q̄⇡k(s, a), (20)

�!k (s) :=
1
⌘k
r̃! (⇡k(s);�k)� 1

⌘k
r! (⇡k(s)) ,

= E
h

1
⌘k
r̃! (⇡k(s);�k)

i
� 1

⌘k
r! (⇡k(s)) +

1
⌘k
r̃! (⇡k(s);�k)� E

h
1
⌘k
r̃! (⇡k(s);�k)

i
. (21)

We refer to the first two and last two approximation error terms in �! as �!,det
k and �!,sto

k , respectively,
as they represent a deterministic approximation error which we cannot reduce and a stochastic error
related to the variance of the estimator. They represent the noise introduced in the critic step. To make
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the noise tractable and the entire algorithm convergent, we must assume they are not arbitrarily large.
But before making more assumptions about these error terms, we must distinguish the case when
Q̄+ h is convex and when it’s not, i.e., when µ � 0 or µ < 0, where µ = µh � µQ̄ for simplicity.
We can obtain globally optimal solutions if µ � 0. While in the other case, only stationary points can
be obtained, e.g., both  ⇡(s,⇡0(s)) and D(⇡k,⇡k+1) approach 0. Note that  relates to the progress
we make in each iteration. See A.6 for more detail. These two cases require different assumptions on
the error terms, so they must be treated differently. We start with the optimistic case when µ � 0,
under which we make the following assumption about the approximation error �Q̄k (s, a) and �!k (s):
Assumption 3.3. When µ � 0, the critic step has bounded errors, i.e., there exist some constants
&Q̄, &!,�! such that

E⇣k,s⇠⇤ [|�k(s,⇡k(s))|+ |�k(s,⇡⇤(s))|]  &Q̄, (22)

E⇣k,s⇠⇤ [k�!,det
k (s)k⇤]  &!,E⇣k,s⇠⇤ [k�!,sto

k k2⇤]  (�!)2, (23)
where ⇣k is the samples we collect in each iteration.

With the above assumption, we present the complexity result of SPMD when µ � 0.
Theorem 3.4. Suppose 2.1, 3.2, 3.3 hold and the step size ⌘k satisfies

�k

⌘k
 �k�1(µ+ 1

⌘k�1
), k � 1, (24)

for some �k � 0. Then after running the SPMD algorithm for K iterations, we have

(
PK�1

k=0 �k)
�1

⇣
1

1��

PK�1
k=0 �k(⇢

⇡k � ⇢⇤) + �K�1(µ + 1
⌘K�1

)E[D(⇡K ,⇡⇤)]
⌘

 (
PK�1

k=0 �k)
�1

⇣
�0

⌘0
D(⇡0,⇡⇤) +

PK�1
k=0 �k⌘k[(2MQ̄ +MQ̄ +Mh)

2/2 + (�!)2]
�

+ &Q̄ + &!D̄A, (25)

where D̄A := maxa1,a22A D(a1, a2).

Proof can be found in A.4. Equation 25 encapsulates a convergence overview without specifying
explicit step size choices. To be specific, ↵k,�k are both step sizes, and the central term

P
⇢k � ⇢⇤

(distance to the optimal value) plus D(⇡k,⇡⇤) (the distance of the current policy to the optimal policy)
will shrink as k grows. The sum is bounded by some combination of ↵k and �k plus an irreducible
function approximation error & . The left-hand side is a weighted average of function value errors
plus an average error from step 1 to K. The following result summarizes the convergence rate using
particular step size choices. We obtain the first part of Corollary 3.5 by fixing the number of iteration
K and optimizing the right-hand side of Eq. 25. We get the rest by straightforward computation.

Corollary 3.5. a) If µ = 0, and ⌘k =
r

D(⇡1,⇡
⇤)

K
h
(2MQ̄+MQ̄+Mh)

2
+(�!)2

i and �k = 1, k = 1, 2, 3 . . . ,K,

then the average reward will converge to the global optimal ⇢⇤

1
K

PK�1
k=0 (⇢⇡k � ⇢⇤)/(1� �) = O(K�1/2) + &Q̄ + &!D̄A. (26)

b) If µ > 0, and ⌘k = 1
µk and �k = 1, then the average reward will converge to the global optimal

1
K

PK�1
k=0 (⇢⇡k � ⇢⇤)/(1� �) + µE[D(⇡K ,⇡⇤)] = Õ(K�1) + &Q̄ + &!D̄A. (27)

c) If µ > 0, ⌘k = 2
µk and �k = k + 1, then the average reward will converge to the global optimal

2
K(K+1)

PK�1
k=0

k+1
1�� (⇢

⇡k � ⇢⇤) + µE[D(⇡K ,⇡⇤)] = O(K�2) +O(K�1) + &Q̄ + &!D̄A. (28)

Remark The above result shows that if we carefully choose the function approximation Q̄ and the
regularizer h so that µ > 0, we need O("�1) number of SPMD iterations to obtain " precision
solution, i.e., 1

K

PK�1
k=0 ⇢

⇡
k � ⇢⇤ + E[D(⇡K ,⇡⇤)]  ". The complexity deteriorates to O("�2) if

µ = 0. Notice that &Q̄ and &! are irreducible solely by policy optimization, as they arise due to
function approximation and stochastic estimation errors.

When µ < 0, global optimal solutions are unobtainable. The best we can do is to find a stationary
point, that is when  and D(⇡k,⇡k+1) tend to 0. In this case, we only need to assume that the
estimation error terms �!,det

k (s) and �!,sto
k (s) are bounded, i.e.,
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Assumption 3.6. When µ < 0, the critic step has bounded errors for any s 2 S , i.e., there exist some
constants &̄!, �̄! such that

k�!,det
k (s)k⇤  &̄! and k�!,sto

k (s)k⇤  �̄!. (29)

Theorem 3.7. Let the number of iterations K be fixed. Suppose that 2.1, 3.2, and 3.6 hold. Also
assume that µ < 0 and that ⌘k = ⌘ = min{|µ|/2, 1/

p
K}, k = 0, . . . ,K � 1. Then for any s 2 S,

there exist iteration indices k(s) found by running K iterations of the SPMD method such that both
the generalized advantage function and the distance between the iterates will converge to 0, i.e.,

 ⇡k(s)(s,⇡k(s)+1(s)) = O(K�1) +O(K�1/2) + �&̄!D̄A/(1� �) (30)
1
2⌘D(⇡k(s),⇡k(s)+1(s)) + (µ+ 1

⌘ )D(⇡k(s)+1(s),⇡k(s)(s))

= O(K�1) +O(K�1/2) + &̄!D̄A/(1� �) (31)

Remark This is the most general case, as we don’t assume any restrictions on the function approxi-
mation class. As expected, the complexity bound becomes worse compared to previous results. To
reach a "-precision stationary point, we require at least O("�2) iterations. Note that  ⇡ 0 indicates
that Q̄⇡k(s,⇡k+1(s)) has virtually no difference than V̄ ⇡k(s). This has a similar implication of
D(⇡k+1(s),⇡k(s)) approaching 0 which implies that we are reaching a stationary point.

3.1 Practical algorithm for Entropy Regularized AMDP

The above SPMD algorithm computes ⇡(s) for every state. In each iteration, we need to solve a
subproblem Eq. 15 for every state (or for any state encountered). In practice, we prefer performing
each SPMD iteration in a mini-batch style, i.e., approximately solving Eq. 15 from some trajectories
collected. If the regularizer h and ! are the negative entropy, we can approximately solve the SPMD
actor step Eq. 15 by

⇡k+1 = argmin
⇡2⇧

KL

✓
⇡(s)

����
1

Z(�k)
exp(Q̃⇡k(s, a;�k))

◆
, (32)

where Z(�k) is some normalization constant and Q̃⇡k(s, a;�k) := � ⌘k

1+⌘k
Q̄⇡k(s, a;�k) �

1
1+⌘k

log ⇡k(s). In practice, we apply the so-called reparameterization trick [13] to obtain an unbiased
gradient estimator. Let the policy be parameterized by

⇡(a|s) = ⇡(f⇠(✏; s)|s), 8(s, a) 2 S ⇥A, (33)

where ✏ is an input noise sampled from a fixed distribution; ⇠ represents the parameters of the policy.
Then we can approximately perform the actor step by solving the following problem:

min
⇠

E(s,a)⇠⇣,✏

h
log(⇡(f⇠(✏; s)|s))� Q̃⇡k(s, f⇠(✏; s))

i
. (34)

For large action spaces, the reparameterization trick efficiently approximates the solution of Eq. 15.
As for the critic step, we can approximate Q̄ by minimizing the Temporal Difference (TD) error, i.e.,
solving the following problem:

min
�

E(s,a,c,s0,a0)⇠⇣

✓
c(s, a) + ha(s)� ⇢̃⇡ + Q̄⇡,⇣(s0, a0;�)� Q̄⇡,⇣(s, a;�)

◆2

, (35)

where ⇢̃⇡ is the estimated average cost, e.g., by taking ⇢̃⇡ = 1
|⇣|

P
c(s, a) + ha(s).

4 Inverse Policy Mirror Descent for IRL

Equipped with an efficient solver for AMDPs presented in section 3, we can now solve the IRL
problem in the form of (Dual IRL). We suppose ✓ parameterizes the reward function with arbitrary
methods, e.g., neural networks. To solve the dual problem, we update the parameter ✓ by performing
a gradient descent step ✓k+1 = ✓k � ↵kr✓L(✓) where ↵k is some predefined step size. The gradient
computation of the dual objective function is

rL(✓) = E(s,a)⇠dE [r✓c(s, a; ✓)]� E(s,a)⇠d⇡ [r✓c(s, a; ✓)] . (36)
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Algorithm 2: The Inverse Policy Mirror Descent (IPMD) algorithm
1: Input: Initialize random policy ⇡0 and step size sequence {↵k}
2: for k = 0, 1, · · · ,K do

3: Collect samples {(st, at)}t�1 and compute c(st, at; ✓k) based on current reward estimation.
4: Critic step: Implement a policy evaluation algorithm to evaluation Q̄⇡k ,

Q̄⇡k(s, a) ⇡ Q̄⇡,⇣k(s, a). (37)

5: Actor step: Update the policy by solving the following for every s 2 S

⇡k+1(s) = argmin
⇡2⇧

KL

✓
⇡(s)

����
1
Z exp(Q̃⇡k(s, a))

◆
. (38)

6: Dual Update step: Perform the stochastic update

✓k+1 = ✓k � ↵kgk. (39)

7: end for

Without accessing the transition kernel P, the true gradient is unavailable. So we use a stochastic ap-
proximation instead, denoted as gk := g(✓k; ⇣Ek )� g(✓k; ⇣⇡k ) where g(✓; ⇣) := 1

N

PN
t=1rc(st, at; ✓)

is the stochastic estimator of the gradient of the average reward. We describe the proposed Inverse
Policy Mirror Descent (IPMD) algorithm in Algorithm 2. In this section, we provide our analysis that
captures the algorithm behaviors across iterations since, in each iteration, Q̄ is only an approximation
of the true differential Q-function, which itself alters due to the change of the reward estimation. The
idea of the proof is based on the Lipschitz continuity of the iterates, as it controls the difference of
these functions across iterations. We make the following formal assumptions for such a purpose.
Assumption 4.1. For any s 2 S, a 2 A, the gradient of the reward function is bounded and Lipschitz
continuous, i.e., there exist some constant real numbers Lr, Lg so that the following holds:

krc(s, a; ✓)k2  Lr, krc(s, a; ✓1)�rc(s, a; ✓2)k2  Lgk✓1 � ✓2k2.

Note that Q̄ is also a function of ✓. As shown in section 3, Q̄ can be parameterized but we only
denote the estimator as Q̄⇡(s, a; ✓k) since its parameters do not contribute to the analysis.
Assumption 4.2. Suppose that at least one of S,A is continuous, we assume that

max
✓

kr✓Q̄⇡(s, a; ✓)k2  Lq, (40)

where Lq is some positive constant. For convenience we denote Q̄⇡(s, a; ✓k) also as Q̄⇡
✓k
(s, a).

We further assume that the estimation error from using Q̄⇡
✓ is bounded.

Assumption 4.3. For any s 2 S, a 2 A, there exist some constants &k, &, ⌫k, ⌫ such that the following
inequalities hold:

��E⇣k [Q̄
⇡k,⇣k
✓k

]� Q̄⇡k
✓k

��
sp,1  &k  &, E⇣k

���Q̄⇡k,⇣k
✓k

� Q̄⇡k
✓k

���
2

sp,1

�
 ⌫2k  ⌫2. (41)

Notice that this error bound subsumes both the estimation errors and approximation errors. In
general, the Bellman operator is nonexpansive in the average-reward setting, so analysis based on the
contraction property of the Bellman operator with the infinity norm, as what is used in [37], fails in
this case. To this end, we assume that the operator is span contractive, i.e.,
Assumption 4.4. In the critic step, there’s a way to construct a span contractive Bellman operator T
such that there exists 0 < � < 1 for any differential Q-functions Q̄1, Q̄2,

kT Q̄1 � T Q̄2ksp,1  �kQ̄1 � Q̄2ksp,1. (42)

In A.6, we provide conditions when the Bellman operator has a J-step span contraction. Now we
can discuss the convergence results in the following theorems. The convergence of the differential
Q-function is characterized in the following result.
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Theorem 4.5. Suppose that assumptions 2.1, 4.1-4.4 hold. If ↵ = ↵0p
K

, the differential Q-function
will converge to the optimal solution for a given reward function parameterized by ✓k, i.e.,

1
K

PK�1
k=0

���E⇣k [Q̄
⇡k,⇣k
✓k

]� Q̄
⇡✓k
✓k

���
sp,1

= O(K�1) +O(K�1/2) + &
1�� , (43)

where ↵0 > 0 is some step size chosen, and � is some constant defined in Assumption 4.4.

Proof can be found in A.7. The above theorem shows that the differential Q-function will approach
the optimal differential Q-function Q̄

⇡✓k
✓k

with respect to the current reward estimation ✓k. If the
reward estimation is accurate, so is the differential Q-function. Finally, in the next theorem, we show
that the policy converges to the optimal policy for a given reward function, and the reward function
approximation converges to a stationary point. Proof can be found in A.8.
Theorem 4.6. Suppose that assumptions 2.1, 4.1-4.4 hold. If ↵ = ↵0p

K
and run the proposed IPMD

algorithm K iterations, the algorithm will produce near stationary solutions for the reward function
and the optimal policy for such reward function. Specifically, the following holds,

1
K

PK�1
k=0 kE⇣k [log ⇡k+1]� log ⇡✓kk1 = O(K�1) +O(K�1/2) + &

1�� , (44)
1
KE[krL(✓k)k22] = O(K�1) +O(K�1/2) + 1

1�� 2⌫LcLrCd

p
|S| · |A|, (45)

where ↵0, ⌫, Lc, Lr, Cd are some constants and |S|, |A| some measure of the state and action space.

Remark First, the above theorem shows that the policy will converge to the optimal policy given
the reward parameterization, although each iteration’s reward parameter differs. Second, the reward
parameter ✓ will converge to a stationary point of (Dual IRL), as the objective can be highly nonconvex
under general function approximation. Third, for general AMDPs without 1-step span contraction,
we can use a J-step Bellman operator (see Appendix A.7) for policy evaluation to maintain a O("�2)
complexity for the entire algorithm.

5 Numerical experiments

In this section, we showcase the performance of the proposed SPMD and IPMD algorithms. Our code
can be found at https://anonymous.4open.science/r/IPMD-9D60. See more detail about all
our implementation in the Appendix A.9.

MuJoCo Robotics Manipulation Tasks for RL This experiment tests our RL agent’s performance
on robotics manipulation tasks. Our SPMD algorithm is based on the stable-baselines3 [28].
We compare the performance of our algorithm with Soft Acrot-Critic (SAC) [13] implemented in
[28]. The policy network employs two fully connected hidden layers of dimension 256 each, taking
actions as input and outputting a distribution. Both the Q network and reward function share the
same architecture, with ReLU activation used in hidden layers. A double Q-learning technique is
used to minimize overestimation [13]. During training, we found that setting the entropy coefficient
term to 0.01 makes training stable and efficient. The learning rate is 3e�4. Each step of the algorithm
samples 512 state-action sample pairs. Table 1 reports the numerical results of each model. Our
proposed SPMD achieves on-par performance with SAC and exceptionally better performance in the
Humanoid environment.

MuJoCo benchmark for IRL In this experiment, we compare the proposed IPMD method with
IQ-Learn [11] and f -IRL [23]. The authors of ML-IRL have not released its implementation at the
time we experimented. Nevertheless, the performance of ML-IRL is comparable to f -IRL. It is
observed in the literature that imitation learning algorithms have inferior performance [37]. Hence
we omit these methods. Table 2 reports the numerical results of each model. Note that we cannot
record a competitive result for IQ-Learn with Humanoid as claimed in the original paper, which
we highlight using ⇤. The result shows that IPMD outperforms in a variety of environments. One
possible reason Ant is falling behind is that Ant has more ground contact since it has more legs. This
will impact the mixing time of the MDP and our assumption on the 1-step contraction. Compared to
Half-Cheetah, or Humanoid, it is harder for the Ant to transition from an arbitrary state to another
arbitrary state as it involves multiple legs working together. One remedy is that we construct a J-step
contractive operator for policy evaluation, as done in [7]. The success of humanoid is possibly due to
a slightly different policy evaluation scheme compared to the discounted setting, where the entropy
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Table 1. MuJoCo Results for RL. The average
performance of RL agents across five runs.

Task SAC SPMD (Ours)
Hopper 3876± 78 3619± 5

Half-Cheetah 13300± 46 13025± 37
Walker 6115± 41 4454± 26

Ant 5118± 57 5230± 118
Humanoid 6923± 11 10249± 7

Table 2. MuJoCo Results for IRL. The aver-
age performance of IRL agents across five runs.

IQL f -IRL IPMD (ours) Expert
1909 3083 3564 4115
9132 11259 12634 15467
5155 5378 5423 5323
3486 5460 4053 5783
661⇤ 3580 7379 7137

Figure 1. Reward recovery performance of IPMD and IQ-Learn. The lower the bar, the better the
performance.

term from the policy no longer plays a part, as the term c� ⇢ cancels out the additional regularization
and entropy of the policy. We suspect this brings more stable training and thus higher performance.

Reward Recovery Finally, we compare the proposed IPMD method against IQ-Learn on recovering
the expert’s reward function in two environments: Pendulum and LunarLanderContinuous, both
implemented in [4]. The result of the experiment is shown in Figure 1. Using state-action pairs from
4 different episodes, we compare the span seminorm of the predicted reward and the true reward (the
reward the expert uses). The experts are trained with a discount factor 0.99. IQ-Learn’s discount
factor is set to 0.99. The result shows IPMD’s superiority in reward recovery.

6 Discussion

In this paper, we formulate the Maximum Entropy IRL problem with the average-reward criterion
and propose efficient algorithms to solve it. We devise the SPMD method for solving RL problems
in general state and action spaces beyond the scope of linear function approximation with strong
theoretical guarantees. We integrate this method to develop the IPMD method for solving the entire
IRL problem and provide convergence analysis. To reach a " precision stationary point, IPMD
requires O("�2) policy optimization steps.

We also notice there are possible improvements from this work. For example, we impose various
assumptions both the function approximation classes and strong reliance on the accuracy of the critic
step. It is natural to seek more robust methods when facing inaccurate estimations. Additionally, we
impose continuity assumption in various Assumptions (e.g. Assump 4.2). Such assumptions can be
violated if neural networks are used as function approximations. In practice, it is possible to alleviate
the issue by "clipping" the gradient norm when performing gradient descent, which proves effective
in related works [30]. Furthermore, we only consider uniform ergodic chains. It is interesting to see
how our method would hold under the unichain or multi-chain setting. Lastly, the analysis based on
span contraction might be improved for general MDPs. This requires nontrivial work and thus we
leave it for future development.
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