
On permutation symmetries in Bayesian neural
network posteriors: Appendix

Anonymous Author(s)
Affiliation
Address
email

A Additional details on the alignment method1

In the main paper, to align the distributions with respect to permutation matrices we argue to use the2

Wasserstein distance rather than the Kullback-Leibler (KL) divergence. Indeed, by considering the KL3

divergence KL [P#q1 ∥ q0] between Gaussians we have4

KL [P#q1 ∥ q0] = log det diag(s0) − log det diag(P s1) + Tr
(
diag(P s1s−1

0)
)
+ (1)

(m0 − P m1)⊤diag(s−1
0)(m0 − P m1) (2)

It’s easy to verify that the first three terms do not depend on P , leading to just a distance between5

means and disregarding any covariance information. In the figure below, we visualize the difference6

between doing linear assignment problem (LAP) with the KL cost and LAP with the Wasserstein cost.7

-2 -1 0 1 2
-2

-1

0

1

2

Original distributions
q1
q2

-2 -1 0 1 2

LAP with KL cost

-2 -1 0 1 2

LAP with Wasserstein cost

Figure A1: Alignment using different objectives. Given two distributions symmetrical w.r.t. the y = x plane,
using the KL cost LAP results in the identity permutation (which fails to recover the symmetry), while the
Wasserstein cost better aligns the two distributions

B Experimental setup8

Tables 2 and 3 show details on the multilayer perceptrons (MLPs) and convolutional neural networks9

(CNNs) base architectures used in our experimental campaign, while Table 1 reports the hyper-10

parameters used in the experiments. Note that differently from Entezari et al. [5] and Ainsworth et al.11

[2], we don’t use data augmentation. A possible protocol for handling data augmentation in Bayesian12

neural networks (BNNs) is presented by Osawa et al. [14] and involves carefully tuning the likelihood13

temperature to correctly counting the number of data points.14

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Table 1: Hyperparameters used for the experiments

Dataset CIFAR10 MNIST
Model ResNet20 MLP MLP

Data Aug. False False False
Batch size 500 500 500
Temperature 1.0 1.0 1.0
Test samples 128 128 128
Train samples 1 1 1
VI std. init 0.01 0.01 0.01
Base features 16 512 512
Prior var 0.01 0.0025 0.01
Learning rate 0.000001 0.000001 0.000001
Train epochs 1000 1000 1000

Table 2: MLP

Layer Dimensions
Linear-ReLU 512 × Din
Linear-ReLU 512 × 512
Linear-ReLU 512 × 512

Linear-Softmax Dout × 512

Table 3: ResNet20

Layer Dimensions
Conv2D 16 × 3 × 3 × Din

Residual Block

[
3 × 3, 16
3 × 3, 16

]
× 3

Residual Block

[
3 × 3, 32
3 × 3, 32

]
× 3

Residual Block

[
3 × 3, 64
3 × 3, 64

]
× 3

AvgPool 8 × 8
Linear-Softmax Dout × 64

B.1 Computing platform15

The experiments have been performed using JAX [4] and run on two AWS p4d.24xlarge instances16

with 8 NVIDIA A100 GPUs. Experiments were conducted using in the eu-west-1 region, which has a17

carbon efficiency of 0.62 kgCO2eq/kWh. A cumulative of 6500 hours of computation was performed18

on GPUs and it includes interactive sessions as well as small experiments with very low GPU usage,19

providing a pessimistic estimation of the true utilization. Total emissions are estimated to be 1007.520

kgCO2eq of which 100 percents were directly offset by AWS.21

C Additional results22

We present timings obtained by profiling the time needed to solve the sum of bilinear assignment23

problems (SOLAP) with the Wasserstein cost, as well as the time for the deterministic case [2]. In24

Fig. A2 we show the results for MLP and ResNet20 architectures, varying the model width. It25

is evident that, in the majority of cases, the algorithm completes within a minute. Moreover, as26

anticipated, in case of variational inference (VI) solving our distribution alignment problem for wide27

neural networks is more computationally demanding compared to merely matching weights from28

stochastic gradient descent (SGD) solutions.29

Finally, we also test our setup on the CIFAR100 dataset [11]. Surprisingly, we were not able to30

replicate the same level of performance as in the other cases. In Fig. A3, we see that, despite31

converging well, we fall short to find zero-barrier solutions. Similarly to the comments of Ainsworth32

et al. [2], we also stress that the failure to align distributions does not rule out the existence of a proper33

permutation map that the algorithm couldn’t find. Nonetheless, this raises a number of questions:34

the Bayesian posterior is the product of two ingredients, the prior and the likelihood, conditioned to35

observing a dataset.36

2

16 32 64 128 256 512 1024 2048
Model width

10 1

100

101

102

Ti
m

e
[se

c.]

MLP
Mode

VI
SGD

16 32 64 128 256 512
Model width

100

101

Ti
m

e
[se

c.]

ResNet20
Mode

VI
SGD

Figure A2: Timings. Profile of the algorithms to align the VI solutions and to match weights from SGD solutions.

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation coefficient τ

-4

-2

0

Pr
ed

ict
ive

 li
ke

lih
oo

d

ResNet20 on CIFAR100

VI (Train)
VI with distr. alignment (Train)
VI (Test)
VI with distr. alignment (Test)

Figure A3: Alignment failure. The method proposed fails to recover zero-barrier solutions for CIFAR100.

D A primer on variational inference for Bayesian neural networks37

VI is a classic tool to tackle intractable Bayesian inference [9, 3]. VI casts the inference problem into38

an optimization-based procedure to compute a tractable approximation of the true posterior. Assume39

a generic parametric model f parameterized by some unknown parameters θ (i.e. f(·, θ)) and a40

collection of data y ∈ RN corresponding to some input points X = {xi | xi ∈ RDin}i=1,...,N . In41

our setting, we have a probabilistic model p(y | f(X; θ)) with parameters θ, a prior distributions on42

them p(θ) and a set of observations {X, y}. In a nutshell, the general recipe of VI consists of (i)43

introducing a set Q of distributions; (ii) defining a tractable objective that “measure” the distance44

between any arbitrary distribution q(θ) ∈ Q and the true posterior p(θ | y); and finally (iii) providing45

a programmatic way to find the distribution q̃(θ) that minimizes such distance. In practice, q(θ)46

has some free parameters ν (also known as variational parameters), which are optimized such that47

the approximating distribution q(θ; ν) is as closer as possible to the true posterior p(θ | y). We can48

derive the variational objective starting from the definition of the KL,49

KL [q(θ; ν) ∥ p(θ | y)] = Eq(θ;ν) [log q(θ; ν) − log p(θ | y)] = (3)

= Eq(θ;ν) [log q(θ; ν) − log p(y | θ) − log p(θ)] + log p(y)
Rearranging we have that50

log p(y) − KL [q(θ; ν) ∥ p(θ | y)] = Eq(θ;ν) [log q(θ; ν) − log p(y | θ) − log p(θ)] (4)

The r.h.s. of the equation defines our variational objective, also known as evidence lower bound51

(ELBO), that can be arranged as follows,52

LELBO(ν) = Eq(θ;ν) log p(y | θ)︸ ︷︷ ︸
Model fitting term

− KL [q(θ; ν) ∥ p(θ)]︸ ︷︷ ︸
Regularization term

. (5)

This formulation highlights the property of this objective, which is made of two components: the first53

one is the expected log-likelihood under the approximate posterior q and measures how the model fits54

the data. The second term, on the other hand, has the regularization effect of penalizing posteriors55

that are far from the prior as measured by the KL. Before diving into the challenges of optimization56

of the ELBO, we shall spend a brief moment discussing the form of the approximating distribution q.57

One of the simplest and easier choice is the mean field approximation [7], where each variable θi is58

taken to be independent with respect to the remaining θ−i. Effectively, this imposes a factorization59

of the posterior,60

q(θ; ν) =
K∏

i=1
q(θi; νi) (6)

3

where νi is the set of variational parameters for the parameter θi. On top of this approximation, q(θi)61

is often chosen to be Gaussian,62

q(θi) = N (µi, σ2
i) (7)

Now, the collection of all means and variances {µi, σ2
i }K

i=1 defines the set of variational parameters63

to optimize.64

For BNNs the analytic evaluation of the ELBO (and its gradients) is always untractable due the non-65

linear nature of the expectation of the log-likelihood under the variational distribution. Nonetheless,66

this can be easily estimated via Monte Carlo integration [13], by sampling NMC times from qν ,67

Eq(θ;ν) log p(y | θ) ≈ 1
NMC

NMC∑
j=1

log p(y | θ̃j) , with θ̃j ∼ q(θ; ν) (8)

In practice, this is as simple as re-sampling the weights and the biases for all the layers NMC times68

and computing the output for each new sample.69

We now have a tractable objective that needs to be optimized with respect to the variational parameters70

ν. Very often the KL term is known, making its differentation trivial. On the other hand the expectation71

of the likelihood is not available, making the computation of its gradients more challenging. This72

problem can be solved using the so-called reparameterization trick [19, 10]. The reparameterization73

trick aims at constructing θ as an invertible function T of the variational parameters ν and of another74

random variable ε, so that θ = T (ε; ν). Generally, a T that suits this constraint might not exists;75

Ruiz et al. [18] discuss how to build “weakly” dependent transformation T for distributions like76

Gamma, Beta and Log-normal. For discrete distributions, instead, one could use a continuous77

relaxation, like the Concrete [12]. ε is chosen such that its marginal p(ε) does not depend on the78

variational parameters. With this parameterization, T separates the deterministic components of q79

from the stochastic ones, making the computation of its gradient straightforward. For a Gaussian80

distribution with mean µ and variance σ2, T corresponds to as simple scale-location transformation81

of an isotropic Gaussian noise,82

θ ∼ N (µ, σ2) ⇐⇒ θ = µ + σε with ε ∼ N (0, 1) . (9)
This simple transformation ensures that p(ε) = N (0, 1) does not depends on the variational parame-83

ters ν = {µ, σ2}. The gradients of the ELBO can be therefore computed as84

∇νLELBO = Ep(ε)
[
∇θ log p(y | θ) | θ=T (ε;ν)∇νT (ε; ν)

]
− ∇ν KL [q(θ; ν) ∥ p(θ)] . (10)

The gradient ∇θ log p(y | θ) depends on the model and it can be derived with automatic differentation85

tools [1, 15], while ∇νT (ε; ν) doesn’t have any stochastic components and therefore can be known86

deterministically. Note that the reparameterization trick can be also used when the KL is not87

analitically available. In that case, we would end up with,88

∇νLELBO = Ep(ε) [∇θ log p(y | θ) + log q(θ; ν) − log p(θ)]θ=T (ε;ν) ∇νT (ε; ν) (11)

Roeder et al. [17] argue that when we believe that q(θ; ν) ≈ p(y | θ), Eq. (11) should be prefered89

over Eq. (10) even if computing analitically the KL is possible. Note that this case is very unlikely for90

BNN posteriors, and that the additional randomness introduced by the Monte Carlo estimation of the91

KL could be harmful.92

In case of large datasets and complex models, the formulation summarized in Eq. (10) can be93

computationally challenging, due to the evaluation of the likelihood and its gradients NMC times.94

Assuming factorization of the likelihood,95

p(y | θ) = p(y | f(X; θ)) =
N∏

i=1
p(yi | f(xi; θ)) (12)

this quantity can be approximated using mini-batching [6, 8]. Recalling y as the set of labels of96

our dataset with N examples, by taking B ⊂ y as a random subset of y, the likelihood term can be97

estimated in an unbiased way as98

log pθ(y | θ) ≈ N

M

∑
yi∼B

log p(yi | θ) . (13)

where M is the number of points in the minibatch. At the cost of increase “randomness”, we can use99

Eq. (10) to compute the gradients of the ELBO with the minibatch formulation in Eq. (13). Stochastic100

optimization, e.g. any version of SGD, will converge to a local optimum provided with a decreasing101

learning rate and sufficient gradient updates [16].102

4

References103

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,104

M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,105

M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,106

B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,107

M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-Scale Machine Learning on108

Heterogeneous Systems, 2015. Software available from tensorflow.org.109

[2] S. Ainsworth, J. Hayase, and S. Srinivasa. Git Re-Basin: Merging Models modulo Permutation Symmetries.110

In The Eleventh International Conference on Learning Representations, 2023.111

[3] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational Inference: A Review for Statisticians. 112112

(518):859–877, 2017.113

[4] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,114

J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: Composable Transformations of Python+NumPy115

Programs, 2018.116

[5] R. Entezari, H. Sedghi, O. Saukh, and B. Neyshabur. The Role of Permutation Invariance in Linear Mode117

Connectivity of Neural Networks. In International Conference on Learning Representations, 2022.118

[6] A. Graves. Practical Variational Inference for Neural Networks. In J. Shawe-Taylor, R. S. Zemel, P. L.119

Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 24,120

pages 2348–2356. Curran Associates, Inc., 2011.121

[7] G. E. Hinton and D. van Camp. Keeping the Neural Networks Simple by Minimizing the Description122

Length of the Weights. In Proceedings of the Sixth Annual Conference on Computational Learning Theory,123

1993. ISBN 0897916115.124

[8] M. D. Hoffman, D. M. Blei, C. Wang, and J. W. Paisley. Stochastic Variational Inference. 14(1):1303–1347,125

2013.126

[9] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An Introduction to Variational Methods for127

Graphical Models. 37(2):183–233, 1999-11-01.128

[10] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In International Conference on Learning129

Representations, 2014.130

[11] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.131

[12] C. J. Maddison, A. Mnih, and Y. W. Teh. The Concrete Distribution: A Continuous Relaxation of Discrete132

Random Variables. In Proceedings of the 5th International Conference on Learning Representations.133

OpenReview.net, 2017.134

[13] N. Metropolis and S. Ulam. The monte carlo method. 44(247):335–341, 1949. PMID: 18139350.135

[14] K. Osawa, S. Swaroop, M. E. E. Khan, A. Jain, R. Eschenhagen, R. E. Turner, and R. Yokota. Practical Deep136

Learning with Bayesian Principles. In Advances in Neural Information Processing Systems, volume 32,137

pages 4287–4299. Curran Associates, Inc., 2019.138

[15] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,139

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,140

L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library.141

In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, editors, Advances142

in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.143

[16] H. Robbins and S. Monro. A Stochastic Approximation Method. 22(3):400–407, 1951.144

[17] G. Roeder, Y. Wu, and D. Duvenaud. Sticking the Landing: Simple, Lower-Variance Gradient Estimators145

for Variational Inference. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.146

Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages147

6925–6934, 2017.148

[18] F. R. Ruiz, M. Titsias, and D. Blei. The Generalized Reparameterization Gradient. In D. Lee, M. Sugiyama,149

U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems,150

volume 29. Curran Associates, Inc., 2016.151

[19] T. Salimans and D. A. Knowles. Fixed-Form Variational Posterior Approximation through Stochastic152

Linear Regression. 8(4):837–882, 2013.153

5

	Additional details on the alignment method
	Experimental setup
	Computing platform

	Additional results
	A primer on variational inference for Bayesian neural networks

