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Abstract

We study the problem of regret minimization in Multi-Agent Multi-Armed Bandits
(MAMABs) where the rewards are defined through a factor graph. We derive an
instance-specific regret lower bound and characterize the minimal expected number
of times each global action should be explored. This bound and the corresponding
optimal exploration process are obtained by solving a combinatorial optimization
problem whose set of variables and constraints exponentially grow with the number
of agents, and cannot be exploited in the design of efficient algorithms. Inspired by
Mean Field approximation techniques used in graphical models, we provide simple
upper bounds of the regret lower bound. The corresponding optimization problems
have a reduced number of variables and constraints. By tuning the latter, we may
explore the trade-off between the achievable regret and the complexity of computing
the corresponding exploration process. We devise Efficient Sampling for MAMAB
(ESM), an algorithm whose regret asymptotically matches the approximated lower
bounds. The regret and computational complexity of ESM are assessed numerically,
using both synthetic and real-world experiments in radio communications networks.

1 Introduction

The stochastic Multi-Agent Multi-Armed Bandits (MAMABs) [35, 2, 3] is a combinatorial sequential
decision-making problem that generalizes the classical stochastic MAB problem by assuming that
(i) a global action is defined by actions individually selected by a set of agents, and (ii) the reward
function is defined through a factor graph, which defines inter-dependencies between agents. This
reward structure arises naturally in applications where agents interact in a graph with the need to
coordinate towards a common goal. MAMABs can model a wide range of real-world problems, from
wind farm control [2, 37] to radio communication networks parameters optimization (see Fig. 1).

Despite the wide spectrum of their potential applications, MAMABs are extremely hard to solve,
even when the reward function is known. The main challenge stems from the combinatorial structure
of the action set (there are KN possible global actions, where N is the number of agents and K is
the number of actions per agent). This issue is exacerbated in the learning setting where the reward
function has to be inferred. In this work, we study the regret minimization problem in MAMABs,
and more specifically, the trade-off between statistical efficiency (the learner aims at achieving low
regret), and computational efficiency (she will typically have to solve combinatorial optimization
problems over the set of possible global actions while learning).
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Contributions. We present statistically and computationally efficient algorithms for MAMABs.
Our algorithms enjoy (in the worst case) regret guarantees scaling as ρKd log(T ), where K is the
number of actions per agent, ρ and d are the number of factors and the maximal degree of the graph
defining the reward function. This scaling illustrates the gains one may achieve by exploiting the
factor graph structure: without leveraging it, the regret would scale as KN log(T ). Our algorithms
have controllable computational complexity and can be applied in large-scale MAMABs. More
precisely, our contributions are as follows.

1) Regret lower bound. We derive a regret lower bound satisfied by any algorithm. The bound is
defined through a convex program (the lower bound problem), whose solution provides an optimal
exploration strategy. Unfortunately, because of the factored reward structure, this optimization
problem contains an exponential number of variables and constraints, and is hard to use in practice.

2) Approximations of the lower bound problem. We devise approximations of the lower bound
problem by combining variable and constraint reduction techniques inspired by methods in the
probabilistic graphical model literature [39, 20]. To reduce the number of variables, we propose (i)
locally tree-like approximation, a tight relaxation for MAMAB instances described by acyclic factor
graphs, and (ii) Mean Field (MF) approximation for general graphs. The MF approximation yields
an upper bound of the regret lower bound, scaling as ρKd log(T ) (where T is the time horizon).

Both approximations yield lower bound problems with a polynomial number of variables and
exponential number of constraints (in N ). To reduce the number of constraints, we propose a
technique that leverages an ordering of them smallest gaps and a Factored Constraint Reduction (FCR)
method to represent the exponentially many constraints in a compact manner. The corresponding
optimization problems have a reduced number of variables and constraints. By tuning the latter,
we may explore the trade-off between the achievable regret and the complexity of computing the
corresponding exploration process.

3) The ESM algorithm. Based on this approximation, we devise Efficient Sampling for MAMABs
(ESM), an algorithm whose regret provably matches our approximated regret lower bound. The
algorithm trades off statistical and computational complexity by performing exploration as prescribed
by the solution of the approximated lower bound problem. We test the performance of ESM
numerically on both synthetic experiments and learn to coordinate the antenna tilts in a radio
communication network. In both sets of experiments, ESM can solve problems with a large number
of global actions in a statistical and computationally efficient manner.

2 Related Work

Our work belongs to the framework of structured regret minimization in MABs, which encompasses
a large variety of reward structures such as linear [21], unimodal [9], Lipschitz [11], etc. For general
structured bandits, [8] propose Optimal Sampling for Structured Bandits (OSSB), a statistically
optimal algorithm, i.e., matching the regret lower bound. The algorithm is computationally inefficient
when applied to the MAMABs combinatorial structure. Our algorithm is inspired by OSSB, but relies
on approximated lower bound problems to trade-off statistical and computational complexity.

A few studies investigate MAMABs with the same factored reward structure as ours [35, 2, 37]. These
works focus on devising algorithms with regret guarantees using methods based on, e.g., Upper Confi-
dence Bound (UCB) [35, 2] or Thompson Sampling (TS) [37]. For example, Stranders et al. [35] pro-
pose HEIST, an UCB-type algorithm whose asymptotic regret scales as O(KN∆max/∆min log(T )),
where ∆min and ∆max are the minimal and maximal gaps, respectively. The MAUCE algorithm from
Bargiacchi et al., [2] improves over [35] yielding asymptotic regret O(ρ2Kd∆2

max/∆
2
min log(T )).

Our worst approximation improves of a factor ∆max w.r.t. this bound, a quantity that typically scales
with ρKd (see App. M).

There is a large body of work [24, 10, 12, 13, 38] investigating regret minimization in the (linear)
combinatorial semi-bandit feedback setting. Although our model can be interpreted as a particular
instance of this setting (see App. E for details), the MAMAB combinatorial structure has never
been explicitly considered in this context. The closest related work is [12], in which the authors
study a regret lower bound problem with an exponentially large number of variables and constraints.
They leverage [12, Assumption 6] to compactly represent the lower bound optimization problem and
propose a gradient-based procedure to solve it in polynomial time. Unfortunately, for MAMABs, the
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above-mentioned assumption only holds for rewards described by acyclic factor graphs (see App.
M). We propose computationally efficient approximations valid for any factor graph while retaining
statistical tightness in the case of acyclic factor graphs.

3 Problem Setting

We consider the generic MAMAB model with factored structure introduced in [2]. The model is
defined by the tuple ⟨S,A, r⟩, where:

1. S = [N ] ≜ {1, . . . , N} is a set of N agents;

2. A = ×i∈[N ]Ai is a set of global actions, which is the Cartesian product over i of the set Ai
of actions available to the agent i. We assume w.l.o.g. that |Ai| = K, for all i ∈ [N ], and
define A ≜ |A| = KN ;

3. r is the reward function mapping the global action to the collected reward.

Rewards and their factor-graph representation. We model the collected rewards. There are ρ
possibly overlapping groups of agents (Se)e∈[ρ], with Se ⊆ S and |Se| = Ne. The local reward
generated by group e depends on group actions ae ≜ (ai)i∈Se ∈ Ae ≜ ×i∈SeAi only. More
precisely, each time ae is selected, the collected local rewards are i.i.d. copies of a random variable
re(ae) ∼ N (θe(ae), 1/2). Rewards collected in various groups are independent. The global reward
for action a is then r(a) =

∑
e∈[ρ] re(ae), a random variable with expectation θ(a) =

∑
e∈[ρ] θe(ae).

The number of possible group actions in group e isAe ≜ |Ae| = KNe , and we define Ã ≜
∑
e∈[ρ]Ae.

The reward function can be represented using a factor graph [39]. Factor graphs are bipartite graphs
with two types of node: N action nodes, one for each agent, and ρ factor nodes, one for each group.
An edge between a factor re and an agent i exists if the action ai selected by the agent i is an
input of re: i ∈ Se. Fig. 1 shows an example of a factor graph modeling interference in a radio
communication network.
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Figure 1: Factor graph in a radio communication network. An agent (represented by a circle)
corresponds to a base-station (BS) whose transmissions cover a cell. The possible actions at a BS
may correspond to different transmission power levels and antenna tilts (the physical angle of the
antennas). The local rewards correspond to the throughput (in bit/s) achieved in a given cell, and
hence each cell is associated with a factor (represented by a square). The throughput in a given
cell depends on the action of the corresponding BS but also on those of neighboring BSs through
interference. In the factor graph, each BS or agent has hence an edge to factors or cells it interferes.

Sequential decision process. The decision maker sequentially selects global actions based on the
history of previous observations and receives a set of samples of the local rewards associated to
the various groups. Specifically, in each round t ≥ 1, the decision maker selects a global action
at = (at,1, . . . , at,N ) and observes the local rewards rt = (rt,1, . . . , rt,ρ) from each group. The
global action at+1 is selected based on the history of observationsHt = (as, rs)s∈[t]. This type of
interaction is known as semi-bandit feedback.

Regret minimization. The goal is to devise an algorithm π = (at)t≥1, i.e., a sequence of global
actions at ∈ A selected in each round t ≥ 1, that minimizes the regret up to time T ≥ 1, defined as

Rπ(T ) = E

[
T∑
t=1

θ(a⋆θ)− θ(at)
]
,

3



where a⋆θ ∈ argmaxa∈A θ(a) denotes the best global action. Throughout the paper, we assume that
a⋆θ is unique and we use a⋆ and a⋆θ interchangeably. We define the gap of a sub-optimal global action
a by ∆(a) = θ(a⋆)− θ(a).

4 Regret Lower Bound

To derive instance-specific regret lower bounds, we restrict our attention to the class of uniformly good
algorithms: An algorithm π is uniformly good if for any θ, ∀α > 0, we have that Rπ(T ) = o(Tα).

Theorem 4.1. The regret of any uniformly good algorithm satisfies for any θ, lim inf
T→∞

Rπ(T )
log(T ) ≥ C⋆θ ,

where C⋆θ is the value of the following convex optimization problem

min
v∈RA≥0

∑
a∈A

va∆(a) s.t.
∑

e∈[ρ]:ae ̸=a⋆e

 ∑
b∈A\{a⋆θ}:be=ae

vb

−1

≤ ∆(a)2, ∀a ∈ A. (1)

The proof of this result leverages classical change-of-measure arguments [25] (see App. A.1 for
details). If v⋆ denotes the solution of the lower bound optimization problem, then for a ̸= a⋆θ ,
v⋆a log(T ) can be interpreted as the asymptotic expected number of times the sub-optimal action
a is explored under a uniformly good algorithm minimizing regret. We conclude this section by
reformulating (1) using group variables ṽ. Introduce the marginal cone:

Ṽ =

ṽ ∈ RÃ≥0 : ∃v ∈ RA≥0,∀e ∈ [ρ], ae ∈ Ae, ṽe,ae =
∑

b∈A\{a⋆θ}:be=ae

vb,

 .

The set Ṽ contains group variables ṽ = (ṽe)e∈[ρ] where ṽe = (ṽe,ae)ae∈Ae .
Lemma 4.2. For any θ, C⋆θ is the value of the following convex optimization problem

min
ṽ∈Ṽ

∑
e∈[ρ],ae∈Ae

ṽe,ae(θe(a
⋆
e)− θe(ae)) s.t.

∑
e∈[ρ]:ae ̸=a⋆e

ṽ−1
e,ae ≤ ∆(a)2, ∀a ∈ A. (2)

Again, if the solution of (2) is ṽ⋆, then for any e ∈ [ρ] and ae ∈ Ae, ṽ⋆e,ae log(T ) can be interpreted as
the asymptotic expected number of times the group action ae is selected under an optimal algorithm
when it explores, i.e., when the global action a ̸= a⋆θ .

5 Lower Bound Approximations

As suggested above, if we are able to solve (1) and hence obtain v⋆, the latter specifies the optimal
exploration process. From there, we could devise an algorithm with minimal regret [8]. Unfortunately,
solving (1) is an extremely hard task, even for relatively small problems. Indeed, the problem has
KN variables and KN constraints, and using general-purpose solvers, e.g., based on the interior-
point method, would require poly(KN ) log(1/ε) floating-point operations [33]. To circumvent this
difficulty, we present approximations of the lower bound problem with a reduced number of variables
and constraints. We will then leverage these approximations to design efficient algorithms.

5.1 Variable reduction

To reduce the number of variables, we apply approximation techniques inspired by methods in
the probabilistic graphical model literature [39]. In Sec. 5.1.1, we first propose a locally tree-like
reduction, yielding an optimization problem whose value CL

θ exactly matches the true lower bound
C⋆θ for MAMABs with acyclic factor graphs (see App. J for a formal definition and examples). For
graphs containing cycles however, we have CL

θ < C⋆θ , and hence for those graphs, it is impossible
to devise an algorithm based on this reduction (such an algorithm would lead to a regret CL

θ log(T ),
which contradicts the lower bound).

Instead, for general graphs, we propose in Sec. 5.1.2 the ψ-mean-field reduction, an approximation
based on a local decomposition inspired by Mean Field (MF) methods [39]. The ψ-mean field
reduction leads to an optimization problem whose value CMF

θ provably upper bounds C⋆θ , and hence
that can be used to devise an algorithm with regret approaching CMF

θ log(T ).
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5.1.1 Locally tree-like reduction

This reduction imposes local consistency constraints between group variables ṽ and local variables
local variables w = (wi)i∈[N ], where wi = (wi,ai)ai∈Ai ∈ RK≥0. Define the local cone as:

ṼL =

{
ṽ ∈ RÃ : ∃w ∈ RKN≥0 : ∀e ∈ [ρ],∀i ∈ Se,∀ai ∈ Ai, wi,ai =

∑
be∈Ae:be∼ai

ṽbe

}
,

where the notation ae ∼ ai means that the ith element of ae equals ai. The locally tree-like
approximation, presented in the next lemma, is obtained by replacing Ṽ by ṼL in (2).
Lemma 5.1. For any θ with rewards described by an acyclic factor graph, we have that C⋆θ = CL

θ ,
where CL

θ is the value of the following convex optimization problem:

min
ṽ∈ṼL

∑
e∈[ρ],ae∈Ae

ṽe,ae(θe(a
⋆
e)− θe(ae)) s.t.

∑
e∈[ρ]:ae ̸=a⋆e

ṽ−1
e,ae ≤ ∆(a)2, ∀a ∈ A. (3)

The proof is presented in App. A.2. This approximation reduces the number of variables from KN to
Ã+KN . The lemma states that, for acyclic factor graphs, the locally tree-like approximation (3) is
tight, i.e., CL

θ = C⋆θ . Unfortunately, for general graphs, we have that CL
θ < C⋆θ (a direct consequence

of [39, Prop. 4.1]), and hence it is impossible to devise algorithms based on this approximation.

5.1.2 ψ-Mean-Field reduction

Our ψ-MF reduction is loosely inspired by MF approximation methods in graphical models [39].
It consists in decomposing global variables v as a function ψ of the local variables w = (wi)i∈[N ].
Specifically, the ψ-MF reduction introduces the following set of constraints: va = ψa(w), ∀a ̸= a⋆θ ,
where ψa : RKN≥0 → R≥0. Let Vψ =

{
v ∈ RA≥0 : ∃w ∈ RKN≥0 , va = ψa(w),∀a ̸= a⋆θ

}
, and define

the ψ-MF marginal cone as

Ṽψ-MF =

ṽ ∈ RÃ≥0 : ∃v ∈ Vψ,∀e ∈ [ρ], ae ∈ Ae, ṽe,ae =
∑

b∈A\{a⋆θ}:be=ae

vb,

 .

We get the ψ-MF approximation, Cψ-MF
θ by replacing Ṽ by Ṽψ-MF in (2).

Lemma 5.2. For any θ, ψ, we have that C⋆θ ≤ Cψ-MF
θ , where Cψ-MF

θ is the value of the optimization
problem:

min
ṽ∈Ṽψ-MF

∑
e∈[ρ],ae∈Ae

ṽe,ae(θe(a
⋆
e)− θe(ae)) s.t.

∑
e∈[ρ]:ae ̸=a⋆e

ṽ−1
e,ae ≤ ∆(a)2, ∀a ∈ A. (4)

Clearly, the tractability of the problem Cψ-MF
θ depends on the choice of ψ. A natural choice would

be ψa(w) =
∏
i∈[N ] wi,ai , as proposed, e.g., in approximate inference methods [39]. However, this

choice leads to a non-convex program (see App. B). The following lemma proposes a choice of ψ
which leads to a convex program over local variables w only.

Lemma 5.3. Let ψa(w) =
∑
i∈[N ] wi,ai , ∀a ̸= a⋆. Then Cψ-MF

θ is the value of the following convex
optimization problem:

min
w∈RKN≥0

∑
e∈[ρ],ae∈Ae

fe,ae(w)(θ(a
⋆
e)− θe(ae)) s.t.

∑
e∈[ρ]:ae ̸=a⋆e

fe,ae(w)
−1 ≤ ∆(a)2, ∀a ∈ A, (5)

where fe,ae(w) = KN−|Se|
∑
i∈Se,ai∈Ai wi,ai +KN−|Se|−1

∑
i ̸∈Se wi,ai . Furthermore, it holds

that Cψ-MF
θ ≤ ρ∆−2

min

∑
e∈[ρ],ae∈Ae(θ(a

⋆
e)− θe(ae)), where ∆min = mina ̸=a⋆ ∆(a).

The proof is presented in App. A.3. The lemma provides a worst-case scaling of Cψ-MF
θ : it scales

at most as Ã =
∑
e∈[ρ]K

|Se| (remember that if we were considering a MAMAB as a standard
bandit problem, the latter would have KN arm and hence a regret scaling exponentially in N ).
The number of variables involved in (5) is KN . The quantities (fe,ae(w))e∈[ρ],ae∈Ae are group
quantities interpreted as the group variables ṽe,ae , and uniquely determined by local variables w. In
the following, we use the notation CMF

θ to represent Cψ-MF
θ for the function ψ defined in Lemma 5.3.
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5.2 Constraint reduction

The remaining challenge is to reduce the number of constraints in (3), (4) or (5). For each global
action a, the constraint writes

∑
e∈[ρ] ṽ

−1
e,ae ≤ ∆(a)2. The major issue is the non-linearity of the

function appearing in the constraints w.r.t. group actions ae. Upon inspection, it appears that the
heterogeneity in the gaps (generally ∆(a) ̸= ∆(b) for a ̸= b) is causing the non-linearity. To
address this problem, we present, in the following lemma, a family of approximations leveraging an
ordering of the first m smallest gaps. For m ∈ [KN ], let a(m) be the mth best global action and, for
m ∈ [KN − 1], let ∆m = θ(a⋆θ)− θ(a(m+1)) be the mth minimal non-zero gap (with ties breaking
arbitrarily).

Lemma 5.4. Let m ∈ [KN − 1], and ⋄ ∈ {L,MF}. Let C⋄
θ (m) be the value of the convex program:

min
ṽ∈Ṽ⋄

∑
e∈[ρ],ae∈Ae

ṽe,ae(θe(a
⋆
e)− θe(ae)) (6)

s.t.
∑

e∈[ρ]:a
(j+1)
e ̸=a⋆e

ṽ−1

e,a
(j+1)
e

≤ ∆2
j , ∀j ∈ [m] (7)

∑
e∈[ρ]:ae ̸=a⋆e

ṽ−1
e,ae ≤ ∆2

m, ∀a ∈ A \ ∪j∈[m]{a(j+1)}. (8)

Then, for any ⋄ ∈ {L,MF}, m ∈ [KN − 2], we have C⋄
θ (m+ 1) ≤ C⋄

θ (m), C⋆θ ≤ C⋄
θ (m), and by

definition C⋄
θ (K

N − 1) = C⋄
θ .

The proof is reported in App. F. Clearly, C⋄
θ (m) has still |A| constraints (7)-(8). However, as the

gap ∆m used in (8) is constant, these constraints are now a linear sum of terms depending on group
actions ae. For constraints with this type of structure, there exists an efficient and provably equivalent
representation. The procedure yielding this representation, which we refer to as FCR, is based on
a generalization of the popular Factored LP algorithm described in [19, 20] for Factored Markov
Decision Processes (FMDPs).

For the sake of brevity, we briefly describe the procedure below and postpone its detailed exposition
to App. G. FCR is inspired by the Variable Elimination (VE) procedure in graphical models [14].
It iteratively eliminates constraints from (8), according to an elimination order O. The elimination
procedure induces an elimination graph, which encodes dependencies between constraints as we
perform elimination. As shown in the following lemma, the number of constraints is exponential in
the degree AO of the elimination graph induced by the order of elimination O.

Lemma 5.5. There exists a procedure which, given the constraints in (8) returns a provably equivalent
constraint set of size O(NKAO+1).

Although for general graphs finding an ordering O minimizing AO is an NP-hard problem [14], for
specific graphs there are orderings yielding AO ≪ N . For example, these orderings yield AO = 2
for line or star factor graphs, and AO = 3 for ring factor graphs, independently of the number of
agents N (see Fig. 3 and refer to App. J for details). Solving C⋄

θ (m), requires computing the first
m+ 1 best global actions and the m minimal gaps. To solve this task, the elim-m-opt algorithm [15]
has complexity O((m + 1)NKAO+1) (see App. G). Fig. 2 shows an illustration of the trade-off
between statistical and computational complexity. Note that ESM is meant to be applied when m
does not grow exponentially in N . In practice, we observed that selecting m = Ã yields a good
trade-off between statistical complexity and computational complexity.

6 The ESM algorithm

In this section, we present ESM, an algorithm whose regret matches (asymptotically) our approx-
imated lower bounds. The algorithm is inspired by OSSB [8]. It ensures that sub-optimal actions
are sampled as prescribed by the solution of the approximated optimization problems CMF

θ (m) or
CL
θ (m): each group e must explore each group action ae for ṽe,ae log(T ) times, and selecting the

action yielding the largest estimated reward for the remaining rounds. As the lower bounds depend
on the unknown parameter θ, it has to be estimated.
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ρÃ∆max

∆2
min

Computational complexity

S
ta
ti
st
ic
a
l
co

m
p
le
x
it
y
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Figure 2: Left: idealized curve illustrating possible ranges of the trade-off between statistical and
computational complexity for CMF(m), when varying m. Right: an instance of this trade-off for a
line factor graph (darker colors for the points represent higher running times). Selecting m = Ã
yields a good trade-off between computational and statistical complexity for this instance.

Generally, the estimation of θ would require evaluating an exponentially large number of com-
ponents, i.e., θ(a),∀a ∈ A. Instead, by leveraging the factored reward structure, we can sim-
ply focus on estimating group parameters (θe)e∈[ρ]. We define the estimate at time t, group e,
and action ae as θ̂t,e,ae = 1

Nt,e,ae

∑
s∈[t]:as,e=ae

rs,e where Nt,e,ae =
∑
s∈[t] 1{as,e=ae} is the

number of times action ae is selected for group e. We also define θ̂t = (θ̂t,e,ae)e∈[ρ],ae∈Ae , and
Nt = (Nt,e,ae)e∈[ρ],ae∈Ae .

Algorithm 1 ESM(A0, ε, γ, ⋄, m)

Sample each group actions inA0 once and update (NT0
, θ̂T0

); sT0
= 0 ————- ▷ Initialization

for t = T0, . . . , T do(
(ṽt,e)e∈[ρ]

)
← Solve C⋄

θ̂t
(m)

if Nt,e,ae ≥ (1 + γ)ṽt,e,ae log(t), ∀e ∈ [ρ], ae ∈ Ae then ▷ Exploitation
at = a⋆

θ̂t
st = st−1

else
st = st−1 + 1
if mine∈[ρ],ae∈Ae Nt,e,ae ≤ εst then ▷ Estimation

at ∈ A0 : at,e′ = be′ with (e′, be′) ∈ argmine,ae Nt,e,ae
else ▷ Exploration

at ∈ A : at,e′ = be′ with (e′, be′) ∈ argmine,ae
Nt,e,ae
ṽt,e,ae

Update (Nt,e,at,e , θ̂t,e,at,e)e∈[ρ]

The pseudocode of ESM is presented in Alg. 1. It takes as inputs two exploration parameters
ε, γ > 0, an exploration setA0 ⊂ A, the approximation parameter m ∈ [KN − 1], and ⋄ ∈ {MF,L}
depending on the targeted regret lower bound approximation. The parameters ε, γ > 0 impact the
amount of exploration performed by ESM. When decreasing both these parameters the exploration of
ESM also decreases. After an initialization phase, the algorithm alternates between three additional
phases as described below.

Initialization. In the initialization phase, we select actions fromA0 to ensure that each group action is
sampled at least once. The setA0 ⊆ A is chosen in such a way that it covers all possible group actions,
i.e.,A0 is such that ∀e ∈ [ρ],∀ae ∈ Ae,∃b ∈ A0 : be = ae. In App. I, we present an efficient routine
to selectA0. Let T0 = inf {t ≥ 0 : Nt,e,ae > 0,∀e ∈ [ρ], ae ∈ Ae} be the length of the initialization
phase. For t ≤ T0 we select at ∈ A0 : at,e′ = be′ with (e′, be′) ∈ argmine,ae Nt,e,ae (with ties
breaking arbitrarily), i.e., we select a global action containing the most under-explored group action.
This choice ensures that T0 ≤ Ã. For t > T0, the algorithm solves the approximated lower bound
optimization problem C⋄

θ̂t
(m) and alternates between exploitation, exploration, and estimation.
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Exploitation. If Nt,e,ae ≥ (1 + γ)ṽt,e,ae log(t), ESM enters the exploitation phase: it selects the
best empirical action a⋆

θ̂t
= argmaxa∈A

∑
e∈[ρ] θ̂t,e,ae . Generally, computing a⋆

θ̂t
requires a max

operation over an exponential number of actions a ∈ A. Fortunately, due to the factored structure,
we can implement the max operation efficiently through a VE procedure [39] (see App. G).

Estimation. If not enough information has been gathered, ESM enters an estimation phase, where
it selects the least explored group action similarly to the initialization phase. This ensures that the
certainty equivalence holds, i.e., that θ̂t is estimated accurately.

Exploration. Otherwise, the algorithm enters the exploration phase and selects actions as suggested
by the solution of C⋄

θ̂t
(m). More precisely, we select a global action at ∈ A which contains a group

action at,e′ = be′ that minimizes the following ratio where e′ and be′ are the group index and group
action which minimize Nt,e,ae

ṽt,e,ae
.

Upper bound. We establish that the ESM algorithm achieves a regret, matching the approximate
lower bound C⋄

θ (m) log(T ), asymptotically as T →∞. The proof is given in App. D.

Theorem 6.1. Let ε < 1/|A0|. For any m ∈ [KN − 1], we have that

1. lim supT→∞
Rπ(T )
log(T ) ≤ CMF

θ (m)ξ(ε, γ), for π = ESM(A0, ε, γ,MF,m), for any θ,

2. lim supT→∞
Rπ(T )
log(T ) ≤ CL

θ (m)ξ(ε, γ), for π = ESM(A0, ε, γ,L,m), for any θ described
by acyclic factor graphs,

where ξ is a function such that lim(ε,γ)→(0,0) ξ(ε, γ) = 1.

7 Experiments

In this section, we present numerical experiments to assess the performance of our algorithm. We
propose two sets of experiments: (i) a set of synthetic MAMABs with different graph topologies,
and (ii) an industrial use-case from the radio communication domain: antenna tilt optimization. The
code for the synthetic experiments and the additional experiments presented in App. K is available at
this link.

7.1 Synthetic Experiments

Problem instances. We consider the factor graphs depicted in Fig. 3. The expected rewards are
selected uniformly at random in the interval [0, 10]. In our experiments, select N = 5 and K = 3.
We execute our experiments for Nsim = 5 independent runs. Following previous work [8], we select
γ = 0, and ε = 0.01. The elimination order is chosen as O = [N ]. We implement the solver for the
lower bound optimization problems using CVXPY [17] with a MOSEK solver [1].

Figure 3: Factor graphs used in the synthetic experiments: ring (left), line (center), star (right).

Results. The results for the regret (in log scale) are presented in Fig. 4. The performance of ESM is
compared to that of MAUCE [3], HEIST [35], and to a random strategy selecting actions uniformly
at random. The computational complexity results, reported in Fig. 5, measure the running time (in
sec.) to solve an instance of the approximate lower bound optimization problem C⋄

θ (m). We use
m = Ã, and ⋄ = MF for the ring, or ⋄ = L for the star and line graph topologies.
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Figure 4: Regret results for the synthetic instances.
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Figure 5: Running time (in sec.) to solve an instance of Cθ⋄(m), when varying m.

7.2 Antenna tilt optimization

Next, we test our algorithm on a radio network optimization task. The goal is to control the vertical
antenna tilt at different network Base Stations to optimize the network throughput. In the following,
we detail the network model, our simulation setup, and present our experimental results.

Network model. We consider a sectorized radio network consisting of a set of sectors S = [N ].
The set of sectors corresponds to the set of agents in our MAMAB framework. Since each sector is
associated to a unique antenna, we will use the terms sector and antenna interchangeably. We assume
that each sector i ∈ S serves (on the downlink) a fixed set of Users Equipments (UEs) Ui (each UE is
associated with a unique antenna, that from which it receives the strongest signal).

Factor graph. We model the observed reward in the radio network as a factor graph with N = |S|
agent nodes and ρ = |S| factor nodes. Each sector is associated with a unique factor, which models
the rewards observed in that sector. We build the factor graph based on the interference pattern of
the antennas, i.e., antennas that can interfere with each other are connected to common factors. An
example of such a graph and additional experimental details are reported in App. L.

Actions and rewards. The action at,i represents the antenna tilt for sector i ∈ S and at time
t. It is chosen from a discrete set of K tilts, i.e., at,i ∈ {α1, . . . , αK}. The tilt for a group of
sectors e is denoted by ae. Rewards are based on the throughput of UEs in sector i, which depends
on the actions of a group of agents ae: re(ae) =

∑
u∈Ui Ti,u(ae), where Ti,u is the throughput

of an UE u associated to sector i. Hence, the global reward for a tilt configuration a ∈ A is
r(a) =

∑
i∈[N ]

∑
u∈Ui Ti,u(ae). The throughput Ti,u depends on channel conditions (or fading)

between the antenna and the user. These conditions rapidly evolve over time around their mean.

Simulator. We run our experiments in a proprietary mobile network simulator in an urban environ-
ment. The simulation parameters used in our experiments are reported in App. K. Based on the user
positions and network parameters, the simulator computes the path loss in the network environment
using a BEZT propagation model [32] and returns the throughput for each sector by conducting user
association and resource allocation in a full-buffer traffic demand scenario.

Results. We test our algorithm for Ai = {2◦, 7◦, 13◦}, and for |S| = 6 sectors. As the factor graph
contains cycles, we use ⋄ = MF and select m = 3. The results, presented in Fig. 6, are in line with
the experimental findings of the previous section. However, the ESM running time is higher due to
the higher complexity of the factor graph.
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Figure 6: Results for the antenna tilt optimization experiments.

8 Conclusions

In this paper, we investigated the problem of regret minimization in MAMABs: we derived a regret
lower bound, proposed approximations of it, and devised ESM, an algorithm trading off statistical
and computational efficiency. We then assessed the performance of ESM on both synthetic examples
and the antenna tilt optimization problem. Interesting future research directions include proposing
efficient distributed implementations of ESM, quantifying on its communication complexity, and
investigating representation learning problems in MAMABs where the underlying factor graph
defining the reward is unknown and needs to be learned.
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