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A Additional Analysis and Visualizations

A.1 Our Surrogate models are effective proxies for the opaque Target model for MI
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Figure A.1: We use Dpriv = CelebA, Dpub = CelebA, T = FaceNet64, S = DenseNet-161. (c) We cast the
challenging problem setup of label-only MI attack as a white-box MI attack. To our knowledge, our proposed
approach is the first to address label-only MI via white-box MI attacks. (e) We consider high likelihood samples
under S. i.e.: PS > 0.9. Our analysis using 500k training data demonstrates that S is an effective proxy for
T for MI attack. In particular, the white-box MI attack on S mimics the white-box attack on opaque T . (f)
Additional reconstruction results using our proposed approach (Sen). We remark that our proposed approach
significantly improves the Label-only MI attack (e.g. ≈ 20% improvement in standard CelebA benchmark
compared to existing SOTA [1]) resulting in significant improvement in private data reconstruction. Best viewed
in color.
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Figure A.2: Figure 1 (e) from the main paper supports that S is a good proxy for T for MI established
using Property P1. We use Dpriv= CelebA, Dpub = CelebA, T = FaceNet64, S = DenseNet-161.
We use 500k validation data for analysis.

White-box MI attack on S mimics the white-box attack on T. For clarity, we copy Figure 1(e)
(main paper) to Supplementary Fig. A.2. In this section, we include the details of Fig. A.2 and
provide additional empirical evidence in Figure A.1(e) to support Property P1. We remark that Fig.
A.2 and Fig. A.1(e) use 500k validation and 500k training data respectively*. In both figures, we
consider high-likelihood samples under S. i.e.: PS > 0.90. We remark that since in our framework,
we optimize white-box attack w.r.t. S, the reconstructed samples usually have a very high likelihood
under S (above 0.9). Therefore, we condition our analysis on PS > 0.9. As one can clearly observe
in both conditional PT histograms in Fig. A.2 and Fig. A.1(e), high likelihood samples under S are

*We recall that the data samples are generated samples from our T-ACGAN. Using generated samples for
analysis is suitable as generated samples are utilized during white-box MI.

2



likely to have high likelihood under T (Property P1), and it is uncommon for high likelihood samples
under S to have low likelihood under T . Given P1, white-box attacks on S can mimic white-box
attacks on T , resulting in S being an effective proxy for T for MI. In addition, we report similar
observations on another setup: Dpriv=CelebA, Dpub=FFHQ, T=FaceNet64, S=DenseNet-161 in Fig.
A.3.
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Figure A.3: We use Dpriv = CelebA, Dpub = FFHQ, T = FaceNet64, S = DenseNet-161. we consider
high likelihood samples under S. i.e.: PS > 0.90, and show results for 500k training samples (left)
and 500k validation samples (right). As one can clearly observe in both conditional PT histograms,
high likelihood samples under S are likely to have high likelihood under T (Property P1), and it is
uncommon for high likelihood samples under S to have low likelihood under T . Given P1, white-box
attacks on S can mimic white-box attacks on T , resulting in S being a an effective proxy of T for MI.

Why would S possess P1? We provide additional empirical results using training and validation
sets to support why S possesses P1 using the framework by [2]. We use publicly available SOTA
face recognition model(s) † to extract face embeddings (128-dimensional) for analysis. We use the
following setup for analysis: Dpriv = CelebA [3], Dpub = CelebA [3], T = FaceNet64, S = DenseNet-
161. Based on the distance from the face-embedding centroid for each identity, we consider the
closest 70% of samples as easy samples, and the remaining 30% samples as hard samples ‡. The
training dynamic results for easy and hard samples for 3 sets of randomly chosen identities are shown
in Fig. A.4, A.5 and A.6, for both training and validation sets. We also show the training dynamics
for the validation set corresponding to the main paper analysis results in Fig. A.7.

A.2 Decision knowledge transfer to T-ACGAN during training

In this section, we provide additional analysis to support that the target model, T ’s, decision knowl-
edge is adequately transferred to our T-ACGAN during training. Following the definition in Sec. 4.3
(main paper), xf = G(z, y), ỹ = T (xf ), let γ be the percentage of samples with y the same as ỹ in a
batch of samples. In particular, we track γ throughout our T-ACGAN training. Initially, we expect γ
to be low and with increasing training iterations, we expect γ to increase indicating adequate decision
knowledge transfer from the target model T . We report γ tracking results for 2 experiment setups in
Fig. A.8. • Setup 1: We use Dpriv = CelebA [3], Dpub = CelebA [3], T = FaceNet64. • Setup 2:
We use Dpriv = CelebA [3], Dpub = FFHQ [4], T = FaceNet64. We remark that batch size=128 as
we track γ for every batch. We train T-ACGAN for 100k iterations. As one can observe, γ starts low
and gradually increases during T-ACGAN training indicating adequate knowledge transfer from T .

†https://github.com/ageitgey/face_recognition
‡Note that the 70:30 selection of easy:hard samples has no effect to our algorithm; in fact our algorithm does

not need explicit separation of easy/hard samples. Here in this discussion, we separate easy and hard samples
only to ease our illustration of different pace of PS improvement among the samples, which results in most
samples with PS > 0.9 having high PT .
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Figure A.4: We use Dpriv = CelebA [3], Dpub = CelebA [3], T = FaceNet64, S = DenseNet-161. The face
embeddings are extracted using publicly available SOTA face recognition models here. Similar to our main
paper, we apply the framework of [2] to analyze learning dynamics of S to reason why S possesses P1, and
therefore could be an effective proxy for T under MI. We analyze generated samples xf from our T-ACGAN for
3 identities (IDs 49, 34, 58). We use 150 samples for each identity, and show results for both training set (top)
and validation set (bottom). Note that xf analysis is relevant as generated samples are used in MI attacks. (a):
Different clusters and different distances from cluster centroids can be observed, suggesting patterns of face
identities in some samples (easy samples) while diverse appearance in other samples (hard samples). We use
distances from centroids to identify easy samples xe

f and hard samples xh
f (easy samples are indicated using

a transparent blue circle for each ID in the visualization). Visualization of xe
f and xh

f in image space further
demonstrates identity patterns in xe

f and diverse appearance in xh
f . (b): Similar to [2], we observe that xe

f and
xh
f tend to have high and low likelihood under T (PT ) resp. This is shown using 500k training data (top) and

500k validation data (bottom). (c): We track likelihood under S (PS) for xe
f and xh

f during the training of S.
As training progresses, PS of xe

f and xh
f improve in general, and samples move up vertically (note that PT

of samples do not change). Consistent with the “DNNs Learn Patterns First” finding in [2], S learns general
identity patterns first to fit the easy samples. Therefore, PS of xe

f improve at a faster pace in the training, and
many of them achieve high PS at epoch = 200. As xe

f tend to have high PT , we observe property P1 in S. For
xh
f (many of them tend to have low PT ), it is uncommon for S to achieve high likelihood on them as they do not

fit easily to the pattern learned by S. Best viewed in color.

4

https://github.com/ageitgey/face_recognition


  behaviour under 
Easy & Hard samples 

Easy Hard

epoch = 0 epoch = 100 epoch = 200

Easy HardTraining Dynamics of Easy & Hard samples(c)T(b)

Easy & Hard samples(a) Training Set

  behaviour under 
Easy & Hard samples 

Easy Hard

epoch = 0 epoch = 100 epoch = 200

Easy HardTraining Dynamics of Easy & Hard samples(c)T(b)

Easy & Hard samples(a) Validation Set

Figure A.5: We use Dpriv = CelebA [3], Dpub = CelebA [3], T = FaceNet64, S = DenseNet-161. The face
embeddings are extracted using publicly available SOTA face recognition models here. Similar to our main
paper, we apply the framework of [2] to analyze learning dynamics of S to reason why S possesses P1, and
therefore could be an effective proxy for T under MI. We analyze generated samples xf from our T-ACGAN for
3 identities (IDs 71, 64, 93). We use 150 samples for each identity and show results for both the training set (top)
and the validation set (bottom). Note that xf analysis is relevant as generated samples are used in MI attacks.
(a): Different clusters and different distances from cluster centroids can be observed, suggesting patterns of face
identities in some samples (easy samples) while diverse appearance in other samples (hard samples). We use
distances from centroids to identify easy samples xe

f and hard samples xh
f (easy samples are indicated using

a transparent blue circle for each ID in the visualization). Visualization of xe
f and xh

f in image space further
demonstrates identity patterns in xe

f and diverse appearance in xh
f . (b): Similar to [2], we observe that xe

f and
xh
f tend to have high and low likelihood under T (PT ) resp. This is shown using 500k training data (top) and

500k validation data (bottom). (c): We track likelihood under S (PS) for xe
f and xh

f during the training of S.
As training progresses, PS of xe

f and xh
f improve in general, and samples move up vertically (note that PT

of samples do not change). Consistent with the “DNNs Learn Patterns First” finding in [2], S learns general
identity patterns first to fit the easy samples. Therefore, PS of xe

f improve at a faster pace in the training, and
many of them achieve high PS at epoch = 200. As xe

f tend to have high PT , we observe property P1 in S. For
xh
f (many of them tend to have low PT ), it is uncommon for S to achieve high likelihood on them as they do not

fit easily to the pattern learned by S. Best viewed in color.
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Figure A.6: We use Dpriv = CelebA [3], Dpub = CelebA [3], T = FaceNet64, S = DenseNet-161. The face
embeddings are extracted using publicly available SOTA face recognition models here. Similar to our main
paper, we apply the framework of [2] to analyze learning dynamics of S to reason why S possesses P1, and
therefore could be an effective proxy for T under MI. We analyze generated samples xf from our T-ACGAN
for 3 identities (IDs 121, 95, 163). We use 150 samples for each identity and show results for both the training
set (top) and the validation set (bottom). Note that xf analysis is relevant as generated samples are used in MI
attacks. (a): Different clusters and different distances from cluster centroids can be observed, suggesting patterns
of face identities in some samples (easy samples) while diverse appearance in other samples (hard samples). We
use distances from centroids to identify easy samples xe

f and hard samples xh
f (easy samples are indicated using

a transparent blue circle for each ID in the visualization). Visualization of xe
f and xh

f in image space further
demonstrates identity patterns in xe

f and diverse appearance in xh
f . (b): Similar to [2], we observe that xe

f and
xh
f tend to have high and low likelihood under T (PT ) resp. This is shown using 500k training data (top) and

500k validation data (bottom). (c): We track likelihood under S (PS) for xe
f and xh

f during the training of S.
As training progresses, PS of xe

f and xh
f improve in general, and samples move up vertically (note that PT

of samples do not change). Consistent with the “DNNs Learn Patterns First” finding in [2], S learns general
identity patterns first to fit the easy samples. Therefore, PS of xe

f improve at a faster pace in the training, and
many of them achieve high PS at epoch = 200. As xe

f tend to have high PT , we observe property P1 in S. For
xh
f (many of them tend to have low PT ), it is uncommon for S to achieve high likelihood on them as they do not

fit easily to the pattern learned by S. Best viewed in color.
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Figure A.7: We use Dpriv = CelebA [3], Dpub = CelebA [3], T = FaceNet64, S = DenseNet-161. The face
embeddings are extracted using publicly available SOTA face recognition models here. Similar to our main
paper, we apply the framework of [2] to analyze learning dynamics of S to reason why S possesses P1, and
therefore could be an effective proxy for T under MI. We analyze generated samples xf from our T-ACGAN for
3 identities (IDs 20, 16, 36). We use 150 samples for each identity and show results for the validation set. The
training set results are already shown in the main paper Fig. 2. Note that xf analysis is relevant as generated
samples are used in MI attacks. (a): Different clusters and different distances from cluster centroids can be
observed, suggesting patterns of face identities in some samples (easy samples) while diverse appearance in
other samples (hard samples). We use distances from centroids to identify easy samples xe

f and hard samples xh
f

(easy samples are indicated using a transparent blue circle for each ID in the visualization). Visualization of xe
f

and xh
f in image space further demonstrates identity patterns in xe

f and diverse appearance in xh
f . (b): Similar to

[2], we observe that xe
f and xh

f tend to have high and low likelihood under T (PT ) resp. This is shown using
500k training data (top) and 500k validation data. (c): We track likelihood under S (PS) for xe

f and xh
f during

the training of S. As training progresses, PS of xe
f and xh

f improve in general, and samples move up vertically
(note that PT of samples do not change). Consistent with the “DNNs Learn Patterns First” finding in [2], S
learns general identity patterns first to fit the easy samples. Therefore, PS of xe

f improve at a faster pace in the
training, and many of them achieve high PS at epoch = 200. As xe

f tend to have high PT , we observe property
P1 in S. For xh

f (many of them tend to have low PT ), it is uncommon for S to achieve high likelihood on them
as they do not fit easily to the pattern learned by S. Best viewed in color.
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Figure A.8: We report γ tracking results during T-ACGAN training for 2 setups. Our T-ACGAN is trained for
100k iterations. In both setups, • γ starts low (γ ≈ 0 for iterations less than 5000) • With increasing iterations,
γ increases indicating adequate decision knowledge transfer from the target model T to T-ACGAN. We remark
that Setup 2 has lower γ in general compared to Setup 1 due to a large distribution shift between public data
and private data.
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B Additional results

B.1 Different white-box attacks with surrogate models

In this section, we perform a set of experiments to demonstrate that the surrogate models trained using
our proposed framework are versatile enough to be used with different white-box MI attacks. For this
analysis, we use two SOTA white-box attacks, namely KEDMI [5] and PLGMI [6]. For each white-
box attack, we train five different surrogate models using our proposed framework including: C ◦D,
SDN121 = Desenet-121, SDN161 = Desenet-161, SDN169 = Desenet-169, and Sen = {Desenet-121,
Desenet-161, Desenet-169}, and then, evaluate the white-box MI attack performance on each of these
surrogate models.

In the case of KEDMI, we train a specific-GAN using our surrogate model S using the official
implementation §. As for PLGMI ¶, given that our T-ACGAN can serve as a replacement for the
conditional GAN of PLGMI, we leverage our T-ACGAN to apply the PLGMI attack. It is noteworthy
that the target classifier T is not used during the attacks when we apply white-box attacks on our
surrogate models.

We report the results in Table B.1, utilizing the CelebA dataset setup. Our results demonstrate
the effectiveness of our surrogate models using white-box MI attacks, and are consistent with the
outcomes obtained using the target classifier T in white-box attacks.

Table B.1: We compare the attack results using different white-box attacks with five surrogate models.
We use T = FaceNet64, Dpriv = CelebA, Dpub = CelebA. The results show that our different
designs of surrogate model perform well across different white-box attacks. Note that the white-box
attack results on T are included only as reference as our setup does not have access to T parameters
nor soft-label of T .

Attack Model Attack acc. ↑ KNN dt. ↓

KEDMI

T [5] 81.13 ± 4.66 1298.63

C ◦D 42.07 ± 3.46 1473.99
SDN121 62.93 ± 4.67 1350.67
SDN161 65.07 ± 3.79 1351.07
SDN169 62.80 ± 4.45 1350.56
Sen 69.00 ± 4.03 1329.84

PLGMI

T [6] 99.00 ± 0.01 1103.03

C ◦D 81.00 ± 4.79 1298.63
SDN121 92.27 ± 2.85 1208.55
SDN161 92.80 ± 2.59 1207.25
SDN169 92.33 ± 3.36 1206.15
Sen 93.93 ± 2.78 1181.72

B.2 Different TACGAN architecture

For a fair comparison with BREPMI [1], we provide the experiment results by training a new T-
ACGAN using the same architectures as the GAN used by BREPMI. For the discriminator (D), we
apply max pooling and add a linear layer before the last layer for the classifier head. As for the
generator (G), we retain the same architecture and replace batch normalization with conditional batch
normalization.

We report the results in Table B.2. Our results are better than BREPMI when using the same GAN
architecture.

B.3 White-box attack results for reference

We show the our proposed method and other SOTA white-box attacks including GMI [7], KEDMI
[5], PLGMI [6], and the SOTA label-only attack BREPMI [1] in Table B.3 for reference.

§https://github.com/SCccc21/Knowledge-Enriched-DMI
¶https://github.com/LetheSec/PLG-MI-Attack
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Table B.2: We conduct comprehensive comparison between our proposed method and existing SOTA
BREPMI [1] using the same GAN architecture. Specifically, we evaluate the performance of our
three proposed designs of surrogate, namely C ◦D, S, and Sen, while BREPMI performs black-box
search on T directly. We highlight the best results in each setup in bold.

Setup Attack Attack acc. ↑ KNN dt. ↓

T = FaceNet64
Dpriv = CelebA
Dpub = CelebA

BREPMI 73.93 ± 4.98 1284.41

LOKT
C ◦D 85.47 ± 2.95 1336.45
S 90.73 ± 3.57 1251.16
Sen 93.20 ± 1.98 1214.60

T = IR152
Dpriv = CelebA
Dpub = CelebA

BREPMI 71.47 ± 5.32 1277.23

LOKT
C ◦D 88.20 ± 3.48 1304.05
S 92.27 ± 2.46 1236.87
Sen 94.53 ± 2.34 1214.38

T = VGG16
Dpriv = CelebA
Dpub = CelebA

BREPMI 57.40 ± 4.92 1376.94

LOKT
C ◦D 68.93 ± 4.23 1450.74
S 78.07 ± 2.91 1362.70
Sen 82.80 ± 3.20 1346.51

T = FaceNet64
Dpriv = CelebA
Dpub = FFHQ

BREPMI 43.00 ± 5.14 1470.55

LOKT
C ◦D 59.87 5.05 1509.09
S 67.20 ± 4.23 1467.62
Sen 72.33 ± 3.30 1454.43

B.4 Model stealing

One related area to training surrogate models for a target model is model stealing where an attacker
aims to copy the performance of a target model. In this section, we compare the performance of our
proposed method for training surrogate models —specifically designed for MI attacks— with model
stealing approaches. More specifically, we apply the SOTA model stealing approach DFMS-HL ||

[9] that only uses the hard labels to train the surrogate model S. We train two surrogate models
S = C ◦D, and S = Densenet-161 [10] using DFMS-HL and compare it with the trained surrogate
models with the proposed approach. Table B.4 shows that the surrogate models trained with our
proposed method can perform much better for MI attacks.

B.5 Architecture selection for Surrogate models

Our proposed approach (casting label-only MI attack as white-box MI attack) allows the possibility for
MI attackers to choose the surrogate model architecture(s). In this section, we study the effect of model
architectures on model accuracy and MI attack accuracy to empirically justify our use of DenseNet
model variants [10] as surrogate models. The details of this study is as follows: We conduct MI attacks
on three different model families including MobileNet (MobileNetV2 [11] and MobileNetV3-small/
large [12]), EfficientNet [13] (EfficientNet-B0, EfficientNet-B1, EfficientNet-B2, EfficientNet-B3,
EfficientNet-B4, EfficientNet-B7), and DenseNet [10] (DenseNet-121, DenseNet-161, DenseNet-
169). The number of parameters for each model (in Millions) is given in Table B.5. We first train
these 12 model architectures using private dataset Dpriv = CelebA [3] which contains 30,027 images/
1,000 identities following the exact training protocol in [5].

After training target models, we perform white-box MI attacks on these target models. We use two
popular white-box MI attacks namely GMI [7] and KEDMI [5]. Following [5], we use evaluation
model E = FaceNet [14]. We report the model accuracy and MI attack accuracy in Fig. B.1. When
comparing models within the same family, in general, we observe that architectures with more
parameters achieve better model accuracy and are more susceptible to MI attacks (Higher MI Attack
Acc). Based on KEDMI [5] results obtained in this study, we use architectures from the DenseNet
family**.

||https://github.com/val-iisc/Hard-Label-Model-Stealing
**DenseNet-161 has more parameters than DenseNet-169 More details: as our surrogate model(s)
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Table B.3: We evaluate the performance of our label-only attack method across various experimental
setups. For reference, we also include our results against three state-of-the-art (SOTA) white-box
attacks, namely GMI [7], KEDMI [5], PLGMI [6], as well as the SOTA label-only attack BREPMI
[1]. The obtained results clearly demonstrate the effectiveness of our label-only attack method over
BREPMI, while also achieving comparable performance with other white-box attacks.

Label-only MI Attacks White-box MI Attacks (for reference only)
LOKT BREPMI [1] GMI [7] KEDMI [5] PLGMI [6]

S Attack acc. ↑ KNN dt. ↓ Attack acc. ↑ KNN dt. ↓ Attack acc. ↑ KNN dt. ↓ Attack acc. ↑ KNN dt. ↓ Attack acc. ↑ KNN dt. ↓
T = FaceNet64, Dpriv = CelebA, Dpub = CelebA

C ◦D 81.00 ± 4.79 1298.63
73.93 ± 4.98 1284.41 26.20 ± 4.66 1626.60 81.13 ± 4.66 1247.91 99.00 ± 0.01 1103.03

S 92.80 ± 2.59 1207.25

Sen 93.93 ± 2.78 1181.72
T = IR152, Dpriv = CelebA, Dpub = CelebA

C ◦D 72.07 ± 4.03 1358.94
71.47 ± 5.32 1277.23 29.47 ± 4.70 1609.57 79.87 ± 3.52 1251.37 100.0 ± 0.00 1026.71

S 89.80 ± 2.33 1220.00

Sen 92.13 ± 2.06 1206.78
T = VGG16, Dpriv = CelebA, Dpub = CelebA

C ◦D 71.33 ± 4.39 1364.47
57.40 ± 4.92 1376.94 18.07 ± 4.44 1705.04 74.07 ± 4.21 1290.81 97.00 ± 0.01 1120.61

S 85.60 ± 3.03 1252.09

Sen 87.27 ± 1.97 1246.71
T = BiDO-HSIC [8], Dpriv = CelebA, Dpub = CelebA

C ◦D 45.73 ± 5.94 1493.48
37.40 ± 3.66 1500.45 5.93 ± 1.85 1930.52 42.80 ± 4.58 1478.32 87.53 ± 3.08 1237.41

S 58.53 ± 4.87 1427.22

Sen 60.73 ± 3.07 1395.93
T = FaceNet64, Dpriv = Facescrub, Dpub = Facescrub

C ◦D 45.70 ± 4.00 1296.29
40.20 ± 6.60 1236.40 14.60 ± 3.70 1599.67 55.20 ± 4.61 1193.41 92.50 ± 2.91 1012.74

S 53.20 ± 5.29 1280.70

Sen 58.60 ± 4.86 1225.13
T = FaceNet64, Dpriv = Pubfig83, Dpub = Pubfig83

C ◦D 74.80 ± 5.93 924.58
55.60 ± 4.34 1012.83 16.40 ± 4.77 1338.61 66.00 ± 4.00 1031.86 99.60 ± 0.89 832.07

S 61.60 ± 3.58 995.08

Sen 80.00 ± 3.16 883.52
T = FaceNet64, Dpriv = CelebA, Dpub = FFHQ

C ◦D 43.27 ± 3.53 1516.18
43.00 ± 5.14 1470.55 11.00 ± 4.64 1750.74 54.20 ± 5.16 1443.44 95.00 ± 0.04 1241.41

S 59.13 ± 2.77 1437.86

Sen 62.07 ± 3.89 1428.04
T = FaceNet64, Dpriv = Facescrub, Dpub = FFHQ

C ◦D 44.50 ± 5.98 1403.73
37.30 ± 3.99 1456.59 11.00 ± 3.63 1864.71 50.80 ± 4.58 1337.96 89.10 ± 3.05 1196.88

S 47.20 ± 4.39 1404.85

Sen 53.70 ± 4.57 1338.67
T = FaceNet64, Dpriv = Pubfig83, Dpub = FFHQ

C ◦D 85.60 ± 2.61 914.15
72.80 ± 3.90 971.51 36.40 ± 5.55 1199.00 84.00 ± 4.00 891.21 100.0 ± 0.00 787.57

S 88.40 ± 2.97 920.99

Sen 94.40 ± 3.85 862.24

Table B.4: The comparison on MI attacks results using our surrogate models and model stealing
DFMS-HL [9]. Here we use PLGMI [6], Dpriv = CelebA, Dpub = CelebA, T = FaceNet64.

S DFMS-HL [9] LOKT
Attack Acc. ↑ KNN dt. ↓ Attack Acc. ↑ KNN dt. ↓

C ◦D 14.00 ± 4.01 1775.71 81.00 ± 4.79 1298.63
Densenet-161 67.13 ± 3.67 1411.45 92.80 ± 2.59 1207.25

Table B.5: Number of parameters (in Millions) for different model architectures.
Model Mobi_small Mobi_large Mobi_v2 Eff-B0 Eff-B1 Eff-B2 Eff-B3 Eff-B4 Eff-B7 Den-121 Den-161 Den-169

Parameters (M) 1.50 3.93 3.50 5.29 7.79 9.11 12.20 19.30 66.30 11.10 35.30 19.10

C Additional Reconstruction Results

In this section, we show reconstructed samples for 3 additional setups using our proposed method.
We show cross-dataset MI results in Fig. C.2 using FaceNet64 target model. In addition, we also
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Figure B.1: Architecture selection for surrogate models: We report model accuracy and MI attack accuracy
of 12 models from 3 model families namely, MobileNet (MobileNetV2 [11] and MobileNetV3-small/ large
[12]), EfficientNet [13] (EfficientNet-B0, EfficientNet-B1, EfficientNet-B2, EfficientNet-B3, EfficientNet-B4,
EfficientNet-B7), and DenseNet [10] (DenseNet-121,DenseNet-161, DenseNet-169). The number of parameters
for each model is included in Table B.5. • We observe that compact models such as MobileNets obtain relatively
lower model accuracy and lower MI Attack accuracy. • We observe that larger models, i.e.: DenseNet models,
achieve relatively higher model accuracy and higher MI Attack accuracy making them good candidates for
surrogate models.

show results for 2 additional target models: IR152 [15] and VGG16 [16] in Fig. C.3 and Fig. C.4
respectively.

 ()Attack 
Acc.

Private

Data
Training

62.07%
Our

Reconstruction
Results

Figure C.2: We use Dpriv = CelebA [3], Dpub = FFHQ [4], T = FaceNet64. We show private data
(top), our reconstruction results (bottom) and Attack accuracy. We remark that these results are
obtained using Sen.

 ()Attack 
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Results

Figure C.3: We use Dpriv = CelebA [3], Dpub = CelebA [3], T = IR152 [15]. We show private data
(top), our reconstruction results (bottom) and Attack accuracy. We remark that these results are
obtained using Sen.

D Experiment details/ Design choices

We use three datasets including CelebA [3], Facescrub [17], and Pubfig83 [18]. We further examinate
the distribution shift by using FFHQ dataset [4] which includes images that vary in terms of back-
ground, ethnicity, and age. Following [5, 1], we divide CelebA into two datasets Dpriv for training
the target model T and Dpub for training GAN and surrogate models C. The details of each dataset
are summarized in Table D.6.
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Figure C.4: We use Dpriv = CelebA [3], Dpub = CelebA [3], T = VGG16 [16]. We show private
data (top), our reconstruction results (bottom) and Attack accuracy. We remark that these results are
obtained using Sen.

Table D.6: Details of three datasets including CelebA [3], Facescrub [17], and Pubfig83 [18].

Dataset Dpriv Dpub

# Target id # Images # Id # Images
CelebA [3] 1,000 30,027 - 30,000
Facescrub [17] 200 40,953 330 65,910
Pubfig83 [18] 50 8,145 33 5,693
FFHQ [4] - - - 70,000

E Evaluation details

Following [1], we attack the first 300 out of 1000 labels in the experiments using CelebA dataset. In
cases of Facescrub and Pubfig, we attack all the labels of the target classifier (200 and 50, respectively).
As for the evaluation model, we use FaceNet which is trained on the private dataset and has higher
resolution than the target classifier (image resolution 112x112). We remark that all pre-trained target/
evaluation models are released publicly by [1], and we adopt these models in our experiments for fair
comparison.

E.1 T-ACGAN architecture

We adopt the SNResnet architecture [19, 20] for our T-ACGAN. The architecture of the generator
and the discriminator are as shown in Table E.7 and E.8.

Table E.7: Generator
Operation Kernel Strides Feature maps BN?
Linear N/A N/A 16384
Convolution 3x3 1x1 512
Convolution 3x3 1x1 512 yes
Convolution 1x1 1x1 512
Convolution 3x3 1x1 256
Convolution 3x3 1x1 256 yes
Convolution 1x1 1x1 256
Convolution 3x3 1x1 128
Convolution 3x3 1x1 128 yes
Convolution 1x1 1x1 128
Convolution 3x3 1x1 64
Convolution 3x3 1x1 64 yes
Convolution 1x1 1x1 64 yes
Convolution 1x1 1x1 3

E.2 Hyperparameters

Training T-ACGAN. The T-ACGAN model was trained using different numbers of iterations for
CelebA [3], Facescrub [17], and Pubfig83 [18] datasets. Specifically, we utilized 20k iterations
for CelebA, 5k iterations for Facescrub, and 3k iterations for Pubfig83. It’s important to note that
during training, the generator G was trained once while the discriminator D was trained five times
for each iteration. For T-ACGAN loss, including generator loss LG, and discriminator loss LD,C
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Table E.8: Discriminator. N is the number of classes.
Operation Kernel Strides Feature maps
Convolution 3x3 1x1 64
Convolution 3x3 1x1 64
Convolution 1x1 1x1 64
Convolution 3x3 1x1 64
Convolution 3x3 1x1 128
Convolution 1x1 1x1 128
Convolution 3x3 1x1 128
Convolution 3x3 1x1 256
Convolution 1x1 1x1 256
Convolution 3x3 1x1 256
Convolution 3x3 1x1 512
Convolution 1x1 1x1 512
Convolution 3x3 1x1 512
Convolution 3x3 1x1 1024
Convolution 1x1 1 1024
Linear N/A N/A 1
Linear N/A N/A N

(Eqn. (3) and (4) in the main paper), we select λ1 = 1.0 and λ2 = 1.5 for all experiments. This
deliberate choice aims to enhance the learning process of both the generator and the discriminator by
emphasizing the importance of conditional loss.

LG = λ1E[logP (s = Fake|xf )]− λ2E[logP (c = y|xf )]

LD,C = −λ1[E[logP (s = Fake|xf )]− E[logP (s = Real|xp)]]− λ2E[logP (c = ỹ|xf )]

Training surrogate models S and Sen. As we mentioned in the main paper, to train additional
surrogate models S and Sen, we create a new synthetic dataset generated by our T-ACGAN. Specially,
we generate images using 500 pseudo labels for each class. These images are then labeled by the
target classifier T . To train S and Sen, we use SGD optimizer with learning rate lr = 0.1, momentum
0.9 and weight decay 5× 10−4, and apply the CosineAnnealingLR scheduler [21].

Inversion. To reconstruct the images, after training the surrogate model S, in the main experimental
results, we apply PLGMI [6] as the white-box MI attack on S using our T-ACGAN. For this
reconstruction, we use Adam optimizer with the learning rate lr = 0.002 and optimize in 600
iterations as [6]. For other experiments, when using KEDMI and GMI as white-box MI attacks on S,
following [5], we use SGD optimizer with learning rate lr = 0.02 and optimize in 2400 iterations.

E.3 User study

The user interface is shown in Figure E.5. The results are included in the main paper.

F Related works

Model Inversion (MI) aims to extract/ reconstruct the private information about the training data
through a trained model. Depending on the level of information that can be accessed, MI attacks
can be classified into three distinct categories: white-box attacks, black-box attacks, and label-only
attacks.

White-Box MI Attack. In white-box attacks, the attacker is assumed to have complete access to the
target model including model weights. Therefore, the MI attack is usually formulated as optimizing
an identification loss:

x∗ = argmin
x

Lid(x; y, T ) (1)
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A B

These are 5 images of the same person

Which image below looks like the person above?

Submit

Select an Option

A

B

(i)

Figure E.5: Human study setup/ user interface: We follow the setup proposed by An et al. for
human study. • In this setup, users are shown 5 real images of a person (identity) as reference. • Then
users are required to compare the 5 real images with two inverted images: one from our method, the
other from BREPMI. In the above example, A and B correspond to BREPMI and Ours respectively.
The order is randomized for each task. Each user is given a maximum of 60 seconds per task, and
each task is assigned to 10 unique users. Following [22], we randomly select 50 identities, resulting
in 1000 pairs. We use Amazon Mechanical Turk service (MTurk). We use Dpriv = CelebA, Dpub =
CelebA, T = FaceNet64.

where Lid(x; y, T ) = − logPT (y|x), with PT (y|x) denoting the probability (soft label) that the
target model T classifies input x as label y. When handling a high-dimensional input data x like an
image, performing the optimization (Eqn. 1) in input space ends up with degraded results [23, 7].
To overcome this issue, recent white-box approaches [7, 5, 24] constraint the search space into the
manifold of related public images using a GAN. More specifically, GMI [7] proposes to train a GAN
on a public dataset Dpub, and perform the inversion step on the latent space of GAN:

z∗ = argmin
z

Lid(z; y, T ) + λLprior(z) (2)

where z∗ denotes the optimal latent code which is later used by GAN to generate the reconstructed
sample, i.e., x∗ = G(z∗). In addition, Lprior = −D(G(z)) measures the realness of the generated
sample. KEDMI [5] improves GMI by introducing inversion-specific GAN, and restoring a distribu-
tion of latent space instead of an optimal point. In addition, VMI [24] defines the variational inference
in latent space. PLGMI [6] uses the target classifier to produce pseudo label for public data and trains
a conditional GAN (cGAN) to limit the search space.

Black-Box MI Attack. In the black-box setup, the attackers have access to only model’s output and
confidence scores (soft labels) which is very limited compared to the white-box setup. Due to this
limitation, performing optimization discussed in Eqn. 1, and 2 become unfeasible in the black-box
setup. Yang et al. [25] train an inversion model of the target model which serves as an encoder
model specifically trained to produce the predicted score (soft labels). Simultaneously, the generator
(decoder) is trained to generate the target image based on the predicted score of the inversion model.

Label-Only MI Attack. Label-only MI attack relies solely on the final decision of the model, i.e.,
the predicted label, without any additional information about the model or the confidence score of
the prediction. Kahla et. al [1] propose Boundary-Repelling Model Inversion (BREP-MI) to address
the model inversion attack under label-only setup. Beginning by initializing a random point that is
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already classified into the target class, BREPMI evaluates the model’s predicted labels based on other
neighbor points in the latent space and estimate the direction to reach the target class’s centroid.

In future work, we hope to explore different aspects of model inversion including multimodal
learning, advanced knowledge transfer, data-centric applications and different types of generative
models [26, 27, 28, 29, 30, 31, 32].

G Additional information for checklist

Amount of Compute. The amount of compute in this project is reported in Table G.1. We follow
NeurIPS guidelines to include the amount of compute for different experiments along with CO2

emission.

Table G.1: Amount of compute in this project. The GPU hours include computations for initial
explorations / experiments to produce the reported values. CO2 emission values are computed using
https://mlco2.github.io/impact/

Experiment Hardware GPU hours Carbon emitted in kg
Main paper : Table 3 (Repeated 3 times) RTX A5000 306 29.56

Main paper : Table 2 and Table 4 RTX A5000 50 4.83

Main paper : Figure 1 / Figure 2 RTX A5000 4 0.39

Supplementary : All additional analysis/ Ablation study RTX A5000 10 0.97

Additional Compute for Hyper-parameter tuning RTX A5000 24 2.32

Total 394 38.07

Standard deviation of our experiments (Error Bars). We report the standard deviation of MI
Attack accuracies for 2 experiment setups: • We use Dpriv = CelebA [3], Dpub = CelebA [3], T =
FaceNet64. • We use Dpriv = CelebA [3], Dpub = FFHQ [4], T = FaceNet64. We repeated the entire
training and experiments three times. For each trial, we trained T-ACGAN and surrogate models
from scratch using different random seeds. The results are shown in Table G.2.

Table G.2: We report standard deviations for MI Attack accuracies for 2 experiment setups over
3 independent runs. The setups include: • We use Dpriv = CelebA [3], Dpub = CelebA [3], T =
FaceNet64. • We use Dpriv = CelebA [3], Dpub = FFHQ [4], T = FaceNet64. We also report the
standard deviations for existing SOTA [1].

Setup Attack Attack acc. ↑ KNN dt. ↓
T = FaceNet64
Dpriv = CelebA
Dpub = CelebA

BREPMI 74.87 ± 4.17 1286.04 ± 1.42

LOKT
C ◦D 80.80 ± 4.35 1305.97 ± 6.50
S 91.96 ± 2.62 1211.15 ± 17.06
Sen 93.11 ± 2.69 1193.16 ± 25.99

T = FaceNet64
Dpriv = CelebA
Dpub = FFHQ

BREPMI 41.91 ± 5.09 1484.20 ± 13.21

LOKT
C ◦D 44.33 ± 4.25 1510.34 ± 5.07
S 58.42 ± 3.61 1439.02 ± 13.79
Sen 62.11 ± 3.66 1426.89 ± 12.73
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