
Human-Guided Complexity-Controlled Abstractions

Andi Peng∗
MIT

Mycal Tucker∗
MIT

Eoin M. Kenny
MIT

Noga Zaslavsky
UC Irvine

Pulkit Agrawal
MIT

Julie A. Shah
MIT

Abstract

Neural networks often learn task-specific latent representations that fail to general-
ize to novel settings or tasks. Conversely, humans learn discrete representations
(i.e., concepts or words) at a variety of abstraction levels (e.g., “bird” vs. “spar-
row”) and deploy the appropriate abstraction based on task. Inspired by this, we
train neural models to generate a spectrum of discrete representations and control
the complexity of the representations (roughly, how many bits are allocated for
encoding inputs) by tuning the entropy of the distribution over representations. In
finetuning experiments, using only a small number of labeled examples for a new
task, we show that (1) tuning the representation to a task-appropriate complexity
level supports the highest finetuning performance, and (2) in a human-participant
study, users were able to identify the appropriate complexity level for a down-
stream task using visualizations of discrete representations. Our results indicate a
promising direction for rapid model finetuning by leveraging human insight.

1 Introduction

Neural networks learn implicit representations tailored to specific training tasks, but such represen-
tations, or abstractions, often fail to generalize to distinct test tasks. One approach to mitigating
such generalization failures is based on the Information Bottleneck (IB) method [26, 1, 25, 24],
which provides a framework for controlling how much information is passed through the network,
effectively limiting its representational complexity. Unfortunately, it is difficult to know a-priori how
much information to retain for optimal task performance.

Humans, however, when given a task, are remarkably adept at understanding which abstraction to
deploy [35]. Consider an expert birdwatcher who has learned fine-grained classes of birds such as
“sparrows,” “goldfinches,” and “kiwis.” When accompanied by other experts, a birdwatcher knows
to deploy their “most complex” abstraction for classifying birds; meanwhile, when at home with a
6-year old child, a birdwatcher knows to deploy a far simpler representation to communicate about a
“red” vs. “yellow” bird. In other words, given a task, humans naturally adopt the right abstraction
level that meaningfully captures task-relevant information and enables rapid learning [11, 5]. Inspired
by humans, we seek to train neural nets along an axis of representational complexity and allow end
users to select the desired complexity level to support data-efficient finetuning.

In this paper, we introduce a human-in-the-loop framework, depicted in Figure 1, for pre-training
and finetuning complexity-regulated neural representations. Within this framework, we first generate
a spectrum of complexity-controlled representations by training discrete information bottleneck
methods [29] on a pre-training task. Second, we allow a human to specify a finetuning task, unknown

∗Equal contribution.
1Code available at github.com/mycal-tucker/human-guided-abstractions.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/mycal-tucker/human-guided-abstractions

Human 1

…

Low complexity High complexity

red vs. yellow red, yellow, black, brown cardinal, crow, goldfinch, etc.

Model 1 Model 2 Model 3

Pre-training

Selection and
Finetuning

Human 2

Canary,
cardinal,

osprey, etc.

Selects low
complexity
model

Selects high
complexity
model

Red vs.
yellow

Figure 1: Our human-in-the-loop framework for pre-training and finetuning, illustrated for a bird-
identification example. In pre-training, we generate a spectrum of encoders using representations
from low to high complexity (e.g., just two crude categories to fine-grained species classifications).
In fine-tuning, based on a desired task, a human selects an appropriate model for finetuning (e.g.,
crude categories for a child learning colors and fine-grained categories for a birder).

a priori, and select and finetune a pre-trained model. Given that humans specify the finetuning task,
and may have to provide finetuning labels, few-shot adaptation is important.

In computational experiments, we find that finetuning performance is non-monotonically linked to
representation complexity: representations that are too complex are data-inefficient, and representa-
tions that are too simple fail to capture important information. In a user study, we show that humans,
given a desired finetuning task, can select high-performance models from a set of pre-trained models
at different complexity levels. For example, as in Figure 1, a child performing a low-complexity
task might select a low-complexity representation. More generally, while our computational experi-
ments establish that finetuning performance is a function of model complexity, our study shows that
humans can select (near) optimal complexity levels given a task for model finetuning. Lastly, the
choice of neural architecture significantly affects finetuning efficiency: on one task, for example, our
best-performing architecture, tuned to the right complexity, achieves better performance than other
standard encoding methods with 50× more finetuning data.

Our findings suggest that automatically constructing complexity-regulated abstractions during pre-
training and then providing a diverse spectrum for human use for finetuning is a promising direction for
human-in-the-loop few-shot adaptation. In summary, our contributions are (1) introducing a human-in-
the-loop framework for automatically generating a spectrum of complexity-regulated abstractions for
fast adaptation, (2) establishing that finetuning performance is a function of representation complexity,
and (3) demonstrating the utility of our human-in-the-loop framework in a user study.

2 Related Work

2.1 Abstraction in Human Cognition

There is substantial evidence that suggests that much of human learning, perception, communication,
and cognition may be understood as compression of relevant information [31, 36, 11]. For example,
fast human learning can be enabled by merging two or more instances of statistical patterns into one
when appropriate [20]. Moreover, the simplicity of these patterns appears key to supporting their
predictive power on downstream tasks [2]. This connection between compression and prediction
provides an elegant explanation for why human brains have evolved to be such efficient compressors
of information and experience [17]. Furthermore, visual abstractions have been found to prioritize
functional properties, i.e. downstream task use, at the expense of visual fidelity, i.e. image recon-
struction [11]. This suggests that different abstractions are constructed and deployed conditioned on
tasks. Inspired by this, we seek to train neural networks to output visual abstractions that are also
functionally useful to human users on a diverse range of downstream tasks.

2

2.2 Discrete Information Bottleneck

In our work, we build upon and compare to methods from prior research in discrete information
bottlenecks. Generally, such work seeks to generate complexity-limited representations (roughly,
limiting the number of bits about the input in a representation) using a finite set of representations
(dubbed quantized vectors or prototypes). Recent work [27, 28, 7, 12] has approached this problem
by combining ideas from the Variational Information Bottleneck [1, 9] with Vector Quantization
(VQ) [29]. In such works, an encoder network outputs parameters to a normal distribution, from
which a continuous latent variable is sampled, and the sample is discretized to the closest element
of a learnable codebook. By penalizing the KL divergence between the normal and a fixed prior
(typically a unit normal), one can limit the complexity of representations. We refer to this family
of approaches as the Vector Quantized Variational Information Bottleneck - Normal (VQ-VIBN).
Other work proposes a different sampling mechanism before vector quantization, but experimental
evaluation of these methods remains limited [22, 32].

In our work, we propose that complexity-constrained discrete representation learning can be used
to generate a meaningful variety of encoders for a human-in-the-loop finetuning process. We
use methods from prior work, and we propose a novel combination of entropy regularization and
categorical sampling that, in experiments, supports the best finetuning performance.

3 Approach

3.1 Problem Formulation and Human-in-the-loop Framework

We consider a pre-training and finetuning problem, wherein a model is first trained on a pre-training
dataset and must be rapidly adapted to a distinct finetuning task. Unlike classic meta-learning
frameworks [6, 21, 19], we do not assume access to a distribution of tasks.

In pre-training, we assume access to a dataset of inputs and pre-training outputs, (X,Yp) (e.g.,
images of birds and species labels). That is, x ∼ P(X), y ∼ Pp(Y |X). In finetuning, we assume
access to a task-specific dataset with similarly-drawn inputs but novel task labels: (X,Yt), for
x ∼ P(X), y ∼ Pt(Y |X) (e.g., for the depicted girl’s finetuning task, the color of the bird).
Lastly, we assume that the pre-training labels are a sufficient statistic for the task-specific labels:
I(X;Yt) = I(Yp;Yt). Intuitively, this states that the pre-training objective must include relevant
information for the finetuning task. This is trivially satisfied with a reconstruction loss (i.e., Yp = X)
or fine-grained classifications (e.g., pre-training on exact species, but finetuning on groups of species).

Without information about the finetuning task, it is difficult, a priori, to identify how to pre-train
a model to perform optimally on the finetuning task. Regularization methods like information
bottleneck, for example, depend upon insight on the downstream task to specify the right level of
regularization [1]. Rather than automatically identifying the right model, therefore, we propose a
human-in-the-loop framework, depicted in Figure 1. Within our framework, we seek to generate a
suite of pre-trained neural net encoders such that an end user can identify which one uses abstractions
that support high performance for their desired task.

3.2 Technical Approach

Within our human-in-the-loop framework, it is critical to generate a “good” set of encoders from which
the human chooses. This set must exhibit important variation (such that some encoders are better than
others) and human-interpretability (such that humans can select the better encoders). We propose
and validate in experiments that complexity-controlled discrete representation learning mechanisms
achieve these desiderata. First, discrete representations can support human interpretability (via
visualizations of the finite set of representations) [15, 18]. Second, controlling the complexity of
representations is a meaningful axis of variation for encoders that likely supports human-specified
tasks [34].

3

…
𝑥

𝑧 = [𝑧1, … , 𝑧𝑛]

…

ℎ

ℎ1

ℎ𝑛

𝑃 𝑧1 = 𝜁𝑖|ℎ1 ∝ 𝑒− ℎ1−𝜁
𝑖 2

𝑧1

𝑧𝑛

…

Figure 2: A VQ-VIBC encoder maps an input, x, to a
representation, h in RZ , which is divided into n sub-
representations, hi. Each hi is discretized stochastically
by sampling based on distance to each quantized vector in
the codebook, ζ. Lastly, the sampled quantized vectors are
concatenated for the full latent representation, z.

𝑥 𝑧

ො𝑥

𝑦

𝐸

𝐷

𝑃

Reconstruction

Utility

Entropy

Figure 3: Different encoders train
within an encoder-decoder-predictor
framework via utility, entropy, and re-
construction losses [adapted from 27].

3.3 Neural Architecture Improvements

To generate a spectrum of encoders using representations at different complexity levels, we extend
prior methods in discrete information bottleneck. We briefly present a novel neural method, which
we dub the Vector-Quantized Variational Information Bottleneck - Categorical, or VQ-VIBC .

In VQ-VIBC , we combine information-theoretic losses from Tucker et al. [27]’s Vector Quantized
Variational Information Bottleneck method (which we dub VQ-VIBN to emphasize that latent
representations are drawn from a normal distribution) with categorical sampling mechanisms similar
to Roy et al. [22] and Wu and Flierl [32]. Our VQ-VIBC encoder architecture is depicted in Figure 2.
The encoder is parametrized by a feature extractor (in our cases, a standard feedforward neural
network), an integer, n, representing how many quantized vectors to combine into a single latent
representation, and C learnable quantized vectors ζi; i ∈ [1, C], ζi ∈ RZ/n. Using this architecture,
the encoder is characterized as a function mapping from an input to a distribution over latent
representations: q(z|x);x ∈ RX , z ∈ RZ . Concretely, the VQ-VIBC architecture deterministically
maps from x to a hidden representation, h ∈ RZ . That hidden representation is divided into n vectors
of equal size: h = [h1, h2, ..., hn]. Each hi is then probabilistically quantized by sampling a quantized
vector according to the L2 distance from hi to each quantized vector: P(zi = ζj |hi) ∝ e−||hi−ζj ||2 .
(One can differentiate through sampling from this categorical distribution via the gumbel-softmax
trick [13, 16].) Lastly, these n sampled discrete representations, each of which is dubbed zi, are
concatenated to form the latent representation, z = [z1, z2, ..., zn].

We train VQ-VIBC via a combination of losses introduced by Tucker et al. [27]. We assume the
VQ-VIBC encoder is trained with a decoder and a predictor, as depicted in Figure 3. Given a utility
function, U , VQ-VIBC is trained to maximize the objective function in Equation 1:

max λUE[U(x, y)]− λIE[∥x− x̂∥2] − λHE

 ∑
i∈[1,n]

H(P(ζ|hi(x))

− ∥sg[hi(x)]− ζi(x)∥2 − α∥hi(x)− sg[ζi(x)]∥2

(1)

This objective trades off, in order in the equation: 1) maximizing the expected utility (e.g., cross-
entropy loss), 2) minimizing the expected reconstruction loss (here, MSE), 3) minimizing the entropy
of the distribution over codebook elements, and 4) minimizing a clustering loss from prior literature,
encouraging encodings and quantized vectors to cluster (and, as in prior art, we leave α = 0.25 in all
experiments) [29]. Here, sg represents the stop-gradient operation.

We include a more thorough discussion of this loss function, and comparisons to losses and archi-
tectures proposed in prior literature, in Appendix A. We emphasize that, while we propose some
modifications to neural architectures, the primary contributions of this work are not about VQ-VIBC
but rather: 1) our human-in-the-loop framework and 2) the recognition that discrete information bot-
tleneck methods support high performance within this framework. In experiments, we found that our
VQ-VIBC method performed better than methods from prior art, so we include this technical section
to inform future researchers about modest architectural changes that support better performance.

4

4 Assessing Representational Complexity’s Impact on Finetuning

We first present results for computational experiments in three different visual classification domains,
indicating that finetuning performance varies as a function of representation complexity in a non-
monotonic way. All experiments consisted of pre-training and finetuning phases. First, in pre-training
on a low-level task, we generated a spectrum of models at varying complexity levels by varying
loss hyperparameters. Second, we used the encoders from the pre-trained models and trained
predictors to map from encodings to downstream predictions. Jointly, these steps enabled us to assess
the importance of complexity-controlled representations for data-efficient finetuning. Overall, we
found that, for small amounts of finetuning data, tuning representations to the right complexity was
important, but with large amounts of data, any sufficiently-complex encoder performed similarly.

4.1 Domains

We trained agents on three image classification datasets: FashionMNIST [33], CIFAR100 [14], and
iNaturalist 2019 (iNat) [10]. For FashionMNIST, we used a two-level hierarchy, grouping the 10
low-level classes into 3 higher-level classes (top = Tshirt/top, Pullover, Coat, and Shirt; shoes =
Sandal, Sneaker, and Ankle Boot; other = Trouser, Dress, Bag). The CIFAR100 and iNat datasets
have more extensive hierarchical structures, as detailed by, e.g., Sainte Fare Garnot and Landrieu [23].
For both datasets, we considered two levels of increasing crudeness in the hierarchy. For CIFAR100,
we used both a 20-way division (each class consisting of 5 low-level classes) and a binary division
for alive vs. non-alive objects. For iNat, we used a 34-way division (representing categories like
“butterflies” and “mushrooms”) and a 3-way division for plants, animals, or fungi. Thus, all domains
were characterized by semantically-meaningful hierarchies.

4.2 Pretraining and Finetuning

Our experiments comprised two phases: pre-training and finetuning. In pre-training, we trained an
encoder, decoder, and predictor on a low-level task. For example, for iNat, this consisted of classifying
a photograph among 1010 species. During pre-training, after convergence to high accuracy, we
decreased the complexity of representations by tuning a hyperparameter until representations were
uninformative. For our β-VAE and VQ-VIBN baselines, we increased λC , a scalar weight penalizing
the KL divergence of the conditional Gaussian (generated by the encoder) from a unit Gaussian. (See
Appendix A for details of training losses for β-VAE and VQ-VIBN , including λC . In general, larger
values of λC led to less complex representations and greater MSE values for reconstructions.) For
VQ-VIBC , we increased λH , the scalar weight penalizing the entropy of the categorical distribution
over quantized vectors. In Appendix D, we examine other combinations of losses and architectures to
control complexity, but found that tuning entropy for VQ-VIBC achieved the best results. In general,
to address some conflicting definitions of complexity in prior literature, we distinguish between
an entropy loss, as introduced for our VQ-VIBC model, and a complexity loss, where we use the
definition of complexity as I(X;Z).

In finetuning, we trained new predictor networks to map from encodings to classifications, using a
small amount of training data. Using an encoder saved during pre-training, we generated encodings
from inputs. New predictors were trained on classification tasks given the supervised (encoding,
label) data. We generated k encodings for each class in the supervised dataset, and report results
for different k. By varying k and which encoder was used to generate encodings (from high to low
complexity), we could investigate the effect of encoder complexity on data-efficiency in finetuning.
In all experiments, we pre-trained 5 models and ran 10 finetuning trials for each encoder. Further
details on pre-training and finetuning are included in Appendix A.

4.3 Illustrative Example: FashionMNIST

We illustrate the high-level trends from our computational results using the FashionMNIST dataset.
We trained models on the 10-way classification task to high accuracy (typically around 90%) and
decreased representational complexity until the model was accurate 10% of the time (random chance).

Depictions of the learned quantized vectors for VQ-VIBC are included in Figure 4 at high and low
complexities. At high complexity, VQ-VIBC used a large number of distinct prototypes, including
multiple prototypes per class (e.g., for two different types of handbags). This high complexity

5

(a) VQ-VIBC ; high complexity (b) VQ-VIBC ; low complexity

0.05 0.06 0.07 0.08
MSE

0.3

0.4

0.5

0.6

0.7

0.8

Y
Ac

c.

FashionMNIST 3-Way Accuracy; k = 1

-VAE
VQVIB k = 1
VQVIB k = 1

FashionMNIST 3-way Accuracy; k = 1

MSE

Y
A

cc
.

(c) Finetuning accuracy vs. MSE.

Figure 4: 2D PCA of VQ-VIBC latent representations for FashionMNIST at high (a) or low (b)
complexity. Colorful points and images are prototypes, scaled in proportion to frequency of use. At
high complexity, VQ-VIBC uses a large number of prototypes, including multiple per class (e.g.,
two types of handbags); at low complexity, classes merge (e.g. different types of shirts). c) When
finetuned on a 3-way classification task with 1 example per class, VQ-VIBC outperformed β-VAE
and VQ-VIBN , and less complex representations (greater MSE) improved model scores.

supported low MSE reconstruction loss. As we decreased the representational complexity, VQ-VIBC
used fewer prototypes that represented more abstract concepts (Figure 4 b). For example, five distinct
classes (Tshirt/top, Pullover, Coat, Shirt, and Dress) were merged into a single prototype, increasing
MSE. Further examples of prototype evolution are in Appendix C.

In finetuning experiments, we loaded VQ-VIBC encoders across a range of complexities and finetuned
a predictor on the 3-way classification task described earlier (tops, shoes, or other). Using just one
example per class (k = 1), VQ-VIBC models were more accurate than β-VAE or VQ-VIBN models,
as shown in Figure 4 c. The x axis displays each encoder’s MSE, which is a proxy for the inverse
of the complexity of representations: more complex representations capture more information and
generate better reconstructions (lower MSE). The y axis shows the finetuned predictor’s accuracy on
the 3-way task. While VQ-VIBC peak performance is roughly 70% accuracy (remarkably high, given
k = 1), β-VAE and VQ-VIBN performance peaks at 40% and 55%, respectively.

Beyond comparing VQ-VIBC to other models, Figure 4 c shows the importance of task-appropriate
complexity levels. At low MSE values, VQ-VIBC uses many different prototypes, which impedes
finetuning data efficiency. However, as VQ-VIBC learns more abstract representations (which
increases MSE), finetuning performance improves (the correlation between MSE and accuracy is
positive for MSE < 0.055 (p < 0.03)). However, past an MSE value around 0.055, VQ-VIBC
lacks the representational capacity to distinguish between images that should be classified differently,
and performance worsens.

Here, we discussed finetuning results for 1 labeled example per class (k = 1) and for n = 1,
the number of quantized vectors to combine into representations, but results and analysis for k ∈
[1, 2, 5, 10, 50], n ∈ [1, 2, 4], and for β-VAE, VQ-VIBN , and VQ-VIBC models are included in
Appendix B. For all k, we found that VQ-VIBC outperformed β-VAE and VQ-VIBN . In fact,
VQ-VIBC with k = 1 outperformed β-VAE for k = 50, indicating important architectural benefits.
Increasing n supported higher complexity (lower MSE) but worse fine-tuning performance; intuitively,
many discrete representations approximate continuous representations, which have worse sample
complexity. This is an important limitation of combinatorial codebooks that others propose [28, 12].

A series of ablation studies confirm the importance of the VQ-VIBC architecture and annealing
entropy, instead of complexity, for efficient finetuning (Appendix D, for FashionMNIST and other
domains). In particular, we found that for VQ-VIBC and VQ-VIBN , penalizing entropy led to greater
finetuning accuracy than when penalizing complexity, and VQ-VIBC outperformed VQ-VIBN when
both were trained via entropy regularization. In other words, penalizing entropy enabled better
finetuning performance, and VQ-VIBC supported better entropy regularization.

Lastly, given the importance of complexity on finetuning performance, we considered two methods
for autonomously selecting the optimal complexity level. For low-data regimes (k ≤ 5), the simple
heuristic of choosing the most complex encoder was clearly suboptimal; however, as the amount
of finetuning data increased (e.g., k = 50), the most complex encoders achieved near-optimal

6

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Y
Ac

c.

CIFAR100 2-Way Accuracy; k = 1

-VAE
VQVIB
VQVIB

CIFAR100 2-way Accuracy; k = 1

MSE

Y
A

cc
.

(a) CIFAR100 2-way k = 1

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.5

0.6

0.7

0.8

0.9

Y
Ac

c.

CIFAR100 2-Way Accuracy; k = 50

-VAE
VQVIB
VQVIB

CIFAR100 2-way Accuracy; k = 50

MSE

Y
A

cc
.

(b) CIFAR100 2-way k = 50

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Y
Ac

c.

CIFAR100 20-Way Accuracy; k = 1

-VAE
VQVIB
VQVIB

CIFAR100 20-way Accuracy; k = 1

MSE

Y
A

cc
.

(c) CIFAR100 20-way k = 1

Figure 5: CIFAR100 finetuning, using 1 (a) or 50 (b) training examples for living vs. non-living things.
With small amounts of data VQ-VIBC benefits from tuning to the right complexity level. When
finetuning on the 20-way classification task (c) VQ-VIBC continues to outperform other architectures.

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.3

0.4

0.5

0.6

0.7

0.8

Y
Ac

c.

iNat 3-Way Accuracy; k = 1

-VAE
VQVIB
VQVIB

iNat 3-way Accuracy; k = 1

MSE

Y
A

cc
.

(a) iNat 3-way k = 1

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y
Ac

c.
iNat 3-Way Accuracy; k = 50

-VAE
VQVIB
VQVIB

iNat 3-way Accuracy; k = 50

MSE

Y
A

cc
.

(b) iNat 3-way k = 50

0.40 0.45 0.50 0.55 0.60
MSE

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y
Ac

c.

iNat 3-Way Accuracy; VQVIB n = 1

VQVIB k = 1
VQVIB k = 2
VQVIB k = 5
VQVIB k = 10
VQVIB k = 50

iNat 3-way Accuracy; VQ-VIBC n = 1

MSE

Y
A

cc
.

(c) iNat VQ-VIBC varying k

Figure 6: iNat finetuning results for the plant-animal-fungus classification task. Using only 1
finetuning example (a), VQ-VIBC performance improved as complexity decreased, and outperformed
β-VAE and VQ-VIBN . Using 50 finetuning examples, performance plateaued, but VQ-VIBC
continued to outperform other methods (b). VQ-VIBC performance shifts smoothly for varying k (c).

performance (see Figure 10 in Appendix B). We also tested methods for selecting encoders via
validation-set accuracy and found similar trends. In finetuning, we held out a subset of the data for
assessing finetuning accuracy and selected the best-performing encoder via validation set accuracy.
For k ≤ 5, this validation-set approach did not consistently converge to optimal performance, but, for
sufficiently large k, it did. Further results from this approach are included in Table 4 and Appendix B.
Generally, we found that for large enough k, the importance of tuning to the right complexity
decreases, and several methods can select optimal encoders; for very small k, however, autonomous
methods are suboptimal.

This illustrative FashionMNIST use case demonstrates many of the important trends we explore in
our later experiments: tuning VQ-VIBC representations to the “right” complexity was important for
optimal performance for small k, and VQ-VIBC generally outperformed other encoders for few-shot
finetuning.

4.4 CIFAR100 and iNat

In this section, we present results from computational experiments in the more challenging CIFAR100
and iNat domains. As before, in the smallest data regime (small k), using less complex representations
afforded greater efficiency benefits, and VQ-VIBC outperformed β-VAE and VQ-VIBN .

Figure 5 a and b show finetuning accuracy on the binary classification task for CIFAR100 on
identifying living vs. non-living things. With only 1 datapoint per class (Figure 5 a), β-VAE
performance remained effectively flat at random chance: barely exceeding 50%. However, for
VQ-VIBC , for MSE < 0.35, performance increased as MSE increased (linear regression slope
was positive p < 0.001), up to a 70% accuracy rate, before worsening as MSE increased further.
Increasing k to 50 (Figure 5 b) shrank the gap between the encoder architectures, and flattened
the improvements previously observed, but VQ-VIBC continued to outperform β-VAE and VQ-

7

(a) PCA of high-complexity VQ-VIBC . Note the orange bird in the
pine tree.

(b) PCA of low-complexity VQ-VIBC .
Note the bird in its nest on the left.

Figure 7: 2D PCA of the VQ-VIBC latent space for iNat, at different complexity levels. Each gray
point represents the continuous encoding output by the encoder; the colorful points represent the
learnable prototypes. For visualization purposes, the closest training image to each prototype is
included in the diagrams. In the high-complexity case, the model has learned many distinct prototypes,
representing concepts like birds or insects. In the low-complexity case, VQ-VIBC uses only two
prototypes, which capture a plant-animal distinction the aligns closely with the iNat hierarchy.

VIBN models. When finetuned on the 20-way classification task, the same trends of VQ-VIBC
outperforming other architectures held (Figure 5 c), although the finetuning accuracy decreased
monotonically as MSE increased, rather than peaking at a specific complexity. Plots for a larger range
of k, and for varying n, for both finetuning tasks, are included in Appendix B.

Similar trends held in the iNat dataset when finetuned on the 3-way animal-plant-fungus task, as
depicted in Figure 6. For small k, VQ-VIBC finetuning performance initially improved as the encoder
learned more compressed representations (Figure 6 a). For VQ-VIBC , k = 1, the linear correlation
between MSE and finetuning accuracy is positive (p < 0.001) for MSE < 0.55. Further analysis
of finetuning performance for VQ-VIBC , for varying k, shows a smooth change in behavior as k
increases: simultaneously improving overall performance, and benefiting less from compressed
representations (Figure 6 c). This indicates that VQ-VIBC is most advantageous in a low-data regime.
Similar results for finetuning on the 34-way finetuning task are included in Appendix B. Visualization
via 2D principle component analysis (PCA) confirms our intuition of how VQ-VIBC models support
few-shot learning for iNat. At lower complexity levels, a VQ-VIBC encoder used a decreasing number
of prototypes to represent increasingly abstract concepts (Figure 7).

As in the FashionMNIST domain, we evaluated autonomous methods for selecting the optimal
encoder and found that, while they succeeded for sufficiently large k, they struggled in a low-data
regime. For k = 1, for example, the heuristic of choosing the most complex encoder was suboptimal
(e.g., see Figure 5 a and Figure 6 a). At the same time, for k = 50, this heuristic worked quite well
(e.g., Figure 5 b and Figure 6 b). Lastly, selecting models via validation set accuracy similarly worked
well for large enough k, but struggled for k ≤ 5 (see Appendix B).

Finally, we briefly note some limitations of VQ-VIBC and our finetuning method. In the results
discussed so far, we found consistent advantages in using VQ-VIBC and low-complexity representa-
tions. However, as the amount of finetuning data increases, more complex representation methods
like β-VAEs outperform VQ-VIBC . A more complete discussion of this phenomenon is included in
Appendix B. Between our main results and these limitations, we find that the data-efficiency benefits
of using VQ-VIBC in finetuning are greatest in data-poor and low-complexity settings.

5 Human-in-the-Loop Selection of Task-Appropriate Representations

Given our main motivation of a human-in-the-loop framework for selecting task-appropriate abstrac-
tions (recall Figure 1), we conducted a human-participant study to evaluate whether users could select
the highest-performing task-appropriate models given visualizations of prototypes as task abstractions.
This is important because, in order to take full advantage of our setup, users must be able to select the
appropriate task-level representation so the neural network best learns the finetuning task in a sample
efficient manner. We asked users to select the optimal encoder for a given task, given a visualization
of encoder prototypes. A positive result would show that, given a spectrum of pre-trained VQ-VIBC
encoders, a human user wishing to deploy a task-appropriate model could specify the right encoder
for a given task, and thus fine-tune the model in a sample efficient manner.

8

a

b

c

d

Epoch

a b

c

d

M
SE

Correct
option

R
es

p
o

n
se

 C
o

u
n

ts

Encoder Checkpoint

Figure 8: Participants were asked to select the optimal encoder for the FashionMNIST finetuning
task based on MSE values (left) or decoded representations (middle). Using only MSE values, users
often incorrectly selected option b), whereas when viewing prototypes, users were able to correctly
identify the appropriate abstraction level, and thus the optimal encoder (c).

5.1 User Study

Our human experiment was performed using the pre-trained models from the FashionMNIST domain
in Section 4.3. Users were told that a robot was good at sorting clothing into 10 distinct categories
(i.e., the 10 normal categories in FashionMNIST), but that in their case they should consider a
different set of categories. Each user was randomly assigned a model type (VQ-VIBC or VQ-VIBN)
and a visualization type (prototypes or a plot of MSE during training). In three questions (explained
below), users were shown different groupings of the 10 FashionMNIST classes and asked to select
which of four model checkpoints they thought best represented the groupings. Overall, this between-
subjects setup allowed us to compare the effects of different visualization methods on user accuracy
in selecting the optimal representation.

For our main question, in which users were asked to select an encoder that could sort FashionMNIST
items into the three finetuning categories (tops, shoes, and other), our null hypothesis, H0, was

“Users viewing VQ-VIBC prototypes will select the optimal encoder as often as those viewing MSE
scores". Our alternative hypothesis, H1, was “Viewing VQ-VIBC prototypes improves users’ ability
to select the optimal encoder compared to just viewing MSE scores.”

Participants. We crowd-sourced 20 participants per group from Prolific.com (N=80). The sample
was balanced to have an even number of male and female participants. All participants were native
English speakers above the age of 18 and resided in the U.S., the U.K., or Ireland. Given estimates of
survey duration, calculated in a pilot study, we paid participants according to an estimated $12 per
hour wage. The study received IRB approval from MIT.

Materials. Each user was presented three questions, corresponding to different groupings of the
10 FashionMNIST classes: in Question 1 classes were grouped according to the finetuning labels in
our computational experiments (tops, shoes, and other), in Question 2, there were 10 distinct classes
corresponding to the 10 FashionMNIST classes,and in Question 3, classes were grouped according to
an unintuitive 3-way grouping (e.g., Pullover, Dress, Sneaker were one class). Despite the numbering,
we randomized the order of questions for each participant. In each question, users were asked to
select which of four model checkpoints they thought best represented groupings for that specific
question. The four models corresponded to checkpoints taken 1) near the start of training, 2) at the
minimum MSE value, 3) at an intermediate MSE value, and 4) at the end of training. We primarily
focused on results for Question 1, as it was the only question for which selecting the most complex
encoder was not optimal. Responses were categorized as correct if users picked the optimal encoder
(option “c” in Figure 8) and otherwise incorrect (but during the study, users were not told whether
they were correct).

5.2 Results

Results from our user study supported our hypothesis. As shown in Figure 8, for Question 1,
corresponding to the 3-way grouping from our computational experiments, users who viewed VQ-
VIBC prototypes selected the optimal encoder 55% of the time, compared to 10% accuracy when

9

viewing MSE scores (prototype accuracy was significantly greater at p < 0.01 for a Fisher’s exact test).
Interestingly, users who viewed VQ-VIBN models never achieved high performance (binomial test
for non-random chance at p > 0.2), suggesting an important advantage of the VQ-VIBC architecture.
Thus, VQ-VIBC prototypes was the only visualization method that supported greater-than-random
chance performance in selecting optimal abstractions.

Further analysis, using responses to Questions 2 and 3 as well, highlighted the benefit afforded by
VQ-VIBC prototypes. Overall, we observed high accuracy rates for Questions 2 and 3 regardless
of visualization method; this is unsurprising given that the correct behavior for both questions
was the selecting most complex encoder. We fitted a Mixed Linear Effects Model (MLEM) to
the survey results, predicting user accuracy as a function of model visualization and question,
grouped by participant. Using Wilkinson notation [30], our model was: Acc. ∼ Q + M + Q :
M + (1|Participant) where Q represents the categorical variable for question and M represents
the categorical variable for model type and visualization (VQ-VIBC Prototypes, VQ-VIBC MSE,
VQ-VIBN Prototypes, etc.). We grouped results by participant to model random-intercept effects of
some participants being more accurate than others. Full results for accuracy rates and the MLEM
model are included in Appendix E.

Overall, we found a significant (p < 0.05) positive interaction effect between Question 1 and
visualization of VQ-VIBC prototypes. The only other significant effect we found was a negative
effect for Question 1. Together, these results show that 1) Question 1 was harder than the other
two questions and 2) viewing VQ-VIBC prototypes mitigated the effects of increased difficulty
for Question 1. This provides crucial support for our hypothesis, showing that viewing VQ-VIBC
prototypes enabled participants to select the optimal encoder more often.

Lastly, the combination of all results helps rule out several alternative hypotheses for how participants
selected encoders based on VQ-VIBC prototypes. Users did not merely select the most complex
encoder; otherwise, they would have performed poorly on Question 1. Similarly, users did not simply
use the fewest number of prototypes greater than the number of finetuning classes; otherwise, they
would have performed worse on Question 3. Thus, our results suggest that users interpreted VQ-VIBC
prototypes as desired in intelligently selecting task-appropriate representations.

6 Contributions

We proposed a human-in-the-loop framework for selecting task-appropriate representations for data-
efficient adaptation to new tasks. Discrete information bottleneck methods provide a principled way
to generate representations along a spectrum of low to high complexity; we tested methods from prior
literature and a novel architecture, VQ-VIBC , for generating such representations.

We found that controlling the complexity of representations was important for data-efficient fine-
tuning: overly-complex representations required more training examples, but overly-simplified
representations failed to capture important information. In computational studies, we showed the
importance of learning low-entropy representations and that VQ-VIBC tends to outperform other
discrete information bottleneck methods. In a human study, we found that human partners are able to
identify optimal complexity levels, indicating a promising direction for human-in-the-loop training.

Broader Impact: Generally, we hope that this work supports broader and better human-AI col-
laboration, supporting human-selected individualized models for particular use cases; however, we
recognize that our current prototype-inspection framework may be limited and that care must be taken
in future work to verify that representations along the complexity spectrum correspond to desired
human concepts. In future work, we hope to explore models that simultaneously support different
complexity levels instead of training separate models for different levels.

7 Acknowledgements

We thank members of the Interactive Robotics Group for helpful feedback and discussions. Andi
Peng is supported by the NSF Graduate Research Fellowship and Open Philanthropy. Mycal Tucker
is supported by an Amazon Alexa Science Hub Fellowship.

10

References
[1] Alex Alemi, Ian Fischer, Josh Dillon, and Kevin Murphy. Deep variational information

bottleneck. In International Conference on Learning Representations, 2017.

[2] Nick Chater and Paul Vitányi. Simplicity: a unifying principle in cognitive science? Trends in
cognitive sciences, 7(1):19–22, 2003.

[3] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su.
This looks like that: deep learning for interpretable image recognition. Advances in neural
information processing systems, 32, 2019.

[4] Jon Donnelly, Alina Jade Barnett, and Chaofan Chen. Deformable protopnet: An interpretable
image classifier using deformable prototypes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10265–10275, 2022.

[5] Judith Fan, Robert Hawkins, Mike Wu, and Noah Goodman. Modeling contextual flexibility in
visual communication. Journal of Vision, 18:1045, 09 2018. doi: 10.1167/18.10.1045.

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In International conference on machine learning, pages 1126–1135.
PMLR, 2017.

[7] Srishti Gautam, Ahcene Boubekki, Stine Hansen, Suaiba Amina Salahuddin, Robert Jenssen,
Marina MC Höhne, and Michael Kampffmeyer. ProtoVAE: A trustworthy self-explainable
prototypical variational model. In Advances in Neural Information Processing Systems, 2022.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

[9] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a
constrained variational framework. In International Conference on Learning Representations,
2017.

[10] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alexander Shepard, Hartwig
Adam, Pietro Perona, and Serge J. Belongie. The inaturalist species classification and detection
dataset. In CVPR, pages 8769–8778. IEEE Computer Society, 2018.

[11] Holly Huey, Xuanchen Lu, Caren M Walker, and Judith E Fan. Visual explanations prioritize
functional properties at the expense of visual fidelity. Cognition, 236:105414, 2023.

[12] Riashat Islam, Hongyu Zang, Manan Tomar, Aniket Didolkar, Md Mofijul Islam, Samin Yeasar
Arnob, Tariq Iqbal, Xin Li, Anirudh Goyal, Nicolas Heess, et al. Representation learning in
deep rl via discrete information bottleneck. AISTATS, 2023.

[13] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
In International Conference on Learning Representations, 2017.

[14] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[15] O. Li, H. Liu, C. Chen, and C. Rudin. Deep learning for case-based reasoning through prototypes:
A neural network that explains its predictions. In AAAI, 2018.

[16] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A contin-
uous relaxation of discrete random variables. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings,
2017.

[17] Phil Maguire, Philippe Moser, and Rebecca Maguire. Understanding consciousness as data
compression. Journal of Cognitive Science, 17(1):63–94, 2016.

11

[18] Yao Ming, Panpan Xu, Huamin Qu, and Liu Ren. Interpretable and steerable sequence learn-
ing via prototypes. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 903–913, 2019.

[19] Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. arXiv preprint arXiv:1803.11347, 2018.

[20] Samuel Planton, Timo van Kerkoerle, Leïla Abbih, Maxime Maheu, Florent Meyniel, Mariano
Sigman, Liping Wang, Santiago Figueira, Sergio Romano, and Stanislas Dehaene. A theory of
memory for binary sequences: Evidence for a mental compression algorithm in humans. PLoS
computational biology, 17(1):e1008598, 2021.

[21] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with
implicit gradients. Advances in neural information processing systems, 32, 2019.

[22] Aurko Roy, Ashish Vaswani, Arvind Neelakantan, and Niki Parmar. Theory and experiments
on vector quantized autoencoders. arXiv preprint arXiv:1805.11063, 2018.

[23] Vivien Sainte Fare Garnot and Loic Landrieu. Metric-guided prototype learning. arXiv preprint
arXiv:2007.03047, 2020.

[24] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via
information. arXiv preprint arXiv:1703.00810, 2017.

[25] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
2015 ieee information theory workshop (itw), pages 1–5. IEEE, 2015.

[26] Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method.
arXiv preprint physics/0004057, 2000.

[27] Mycal Tucker, Roger Levy, Julie Shah, and Noga Zaslavsky. Trading off utility, informativeness,
and complexity in emergent communication. Neural Information Processing Systems (NeurIPS),
2022.

[28] Mycal Tucker, Roger P. Levy, Julie Shah, and Noga Zaslavsky. Generalization and translatability
in emergent communication via informational constraints. In NeurIPS 2022 Workshop on
Information-Theoretic Principles in Cognitive Systems, 2022.

[29] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

[30] GN Wilkinson and CE Rogers. Symbolic description of factorial models for analysis of variance.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 22(3):392–399, 1973.

[31] J Gerard Wolff. Information compression as a unifying principle in human learning, perception,
and cognition. Complexity, 2019, 2019.

[32] Hanwei Wu and Markus Flierl. Variational information bottleneck on vector quantized autoen-
coders. arXiv preprint arXiv:1808.01048, 2018.

[33] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[34] Justin Yang and Judith Fan. Visual communication of object concepts at different levels of
abstraction. Journal of Vision, 21, 2021.

[35] Justin Yang and Judith E Fan. Visual communication of object concepts at different levels of
abstraction. arXiv preprint arXiv:2106.02775, 2021.

[36] Noga Zaslavsky, Charles Kemp, Terry Regier, and Naftali Tishby. Efficient compression in
color naming and its evolution. Proceedings of the National Academy of Sciences, 115(31):
7937–7942, 2018. doi: 10.1073/pnas.1800521115.

12

𝑥 𝑧

ො𝑥

𝑦

𝐸

𝐷

𝑃

𝐹

Figure 9: In experiments, we used a common feature-extractor (F), decoder (D), and predictor (P)
network backbone while replacing different encoder heads (E).

A Implementation details

A.1 Pretraining

In pre-training (before the finetuning with a small number of examples on a cruder task), we used
the following setup. In general, the overall network architecture comprised a feature extractor, an
encoder head, a decoder, and a predictor, as depicted in Figure 9.

In all experiments, the predictor was parametrized as a two-layer feedforward neural network with
hidden dimension 128 and a ReLU activation. The last layer’s dimension depended upon the exact
prediction task (e.g., 10 neurons for FashionMNIST, 100 for CIFAR100, and 1010 for iNat) and used
a softmax activation.

The feature extractors and decoders varied by domain. For FashionMNIST, the feature extractor
used 3 2D convolution layers, followed by one fully connected layer. The decoder used two linear
layers, followed by 3 inverse convolution layers. We again emphasize that the code for these models
is available in our codebase, linked to at the beginning of this section.

For CIFAR100 and iNat, we pre-processed the images to extract the 512-dimensional activations
from the penultimate layer of a ResNet18 pretrained on ImageNet [8]. These features were used as
inputs to the feature extractor (x in Figure 9). For both CIFAR100 and iNat, the feature extractor used
two linear layers, with a ReLU activation after the first layer, which had hidden dimension 128. The
decoder was used to reconstruct the 512-dimension outputs of the ResNet18, using 3 fully-connected
layers of dimension 128, 256, and 512, with ReLU activations between layers.

The different encoder heads were β-VAE, VQ-VIBC , and VQ-VIBN models. β-VAE models used
two linear layers, branching off the output of the feature extractor, to generate µ and σ from which
to sample a continuous latent variable. VQ-VIBC directly passed the output of the feature extractor
into the vector quantization layer, from which the discrete latent representations were sampled, as
described in the main paper. In VQ-VIBN , the output of the feature extractor was passed through two
linear layers to generate a µ and a σ (exactly as in the β-VAE case) before the sampled continuous
representation was discretized via vector quantization. Across experiments, the only differences
among encoder heads that could arise were due to different latent dimensions (although we fixed it to
32 for all experiments) or, for VQ-VIBC and VQ-VIBN , the number of elements in the learnable
codebook or n, the number of quantized vectors to combine into a latent representation.

In the main paper, we discussed the VQ-VIBC training loss (Equation 1), maximizing utility, mini-
mizing reconstruction loss, and minimizing the entropy of the categorical distribution over codebook
elements. A strict generalization of Equation 1, in which a variational bound on the complexity of
representations is also penalized, is included in Equation 2:

max λUE[U(x, y)]− λIE[∥x− x̂∥2]

− λHE

 ∑
i∈[1,n]

H(P(ζ|hi(x))

− λCE [DKL[P(ζ|h(x))∥U(C)]]

− ∥sg[hi(x)]− ζi(x)∥2 − α∥hi(x)− sg[ζi(x)]∥2

(2)

13

Equation 2 differs from Equation 1 via the third line, penalizing the KL divergence between the
conditional categorical distribution over codebook elements and a uniform distribution over the C
elements. This provides a variational bound on I(X,Z), dubbed the complexity of representations
in prior literature [36, 27]. In our main experiments, we set λC = 0 and vary λH ; ablation studies
in which we varied λC instead of λH are included in Appendix D and confirm that controlling the
entropy of representations supported better finetuning accuracy.

In training β-VAEs, we trained to maximize the function described in Equation 3, where µ(x) and
σ(x) represent the µ and σ parameters output by the encoder.

max λUE[U(x, y)]− λIE[∥x− x̂∥2]
− λCE [DKL[N (µ(x), σ(x))∥N (0, 1)]]

(3)

Equation 3 trains agents to maximize classification accuracy, minimize MSE, and minimize the
complexity of representations. The scalar weight λC can be viewed as a Lagrange multiplier,
constraining how much information can be encoded in representations. This equation is closely
related to Equation 2 but, given the continuous nature of encodings in β-VAE, we could not penalize
the entropy of a categorical distribution.

In training VQ-VIBN , we used the training objective proposed by Tucker et al. [27], which closely
resembles the training loss for VQ-VIBC and is shown in Equation 4 (and closely matches Equation 2).
We use the same notation as for the β-VAE and VQ-VIBC models.

max λUE[U(x, y)]− λIE[∥x− x̂∥2]

− λHE
[
Ĥ(P(ζ|µ(x))

]
− λCE [DKL[N (µ(x), σ(x))∥N (0, 1)]]

− ∥sg[hi(x)]− ζi(x)∥2 − α∥hi(x)− sg[ζi(x)]∥2

(4)

The two key differences between Equation 4 and Equation 2 (used for training VQ-VIBC) are bounds
on entropy and complexity (on the second and third lines of Equation 4). Just as for β-VAEs, VQ-
VIBN models uses a KL divergence loss to regulate the complexity of representations. Increasing λC ,
as we did while annealing complexity in experiments, decreases the amount of encoded information.
However, as shown in our results, simply increasing λC does not ensure that VQ-VIBN models will
use fewer discrete representations. (For visualizations of this effect, see Appendix C.) Tucker et al.
[27] advocate for using a small positive λH to penalize the estimated entropy over codebook elements.
We explore varying λH in Appendix D and find some benefits relative to our main experiments, in
which we set λH = 0. However, given that VQ-VIBN only supports an approximation of the entropy
term, we find that controlling the entropy for VQ-VIBN is not as effective as controlling the entropy
for VQ-VIBC .

A.2 Finetuning

In finetuning, we loaded pretrained frozen encoders and trained new predictor models to map from
encodings to downstream predictions.

For a finetuning task with M distinct classes, and a “duplication factor,” k, for how many examples
of each class to train with, we randomly selected k ∗M datapoints to train with. For example, when
finetuning on the binary CIFAR100 task of living vs. non-living things, M = 2, so we loaded 2
total datapoints for k = 1, 4 datapoints for k = 2, etc.. For each input in the finetuning dataset,
we generated an encoding by passing through the encoder once. This generated a new dataset of
encodings and labels, which we used the train the predictor. (Note that this approach is distinct
from passing the input through the encoder many times; given stochastic encoders, which we used,
the same input could result in many different encodings. Here, we assumed a limited budget of
encodings.)

Predictor neural networks were instantiated as feedforward networks with 4 fully connected layers,
with hidden dimension 256 and ReLU activations, and trained to map from shifted encodings (see

14

Table 1: Hyperparameters for FashionMNIST training.

ENCODER LATENT DIM C n λU λI λC0 λC INCR λH0 λH INCR

β-VAE 32 NA NA 10 10 0.01 0.5 0.0 0.0
VQ-VIBN 32 1000 1 10 10 0.01 0.5 0.0 0.0
VQ-VIBN 32 1000 2 10 10 0.01 0.5 0.0 0.0
VQ-VIBN 32 1000 4 10 10 0.01 0.5 0.0 0.0
VQ-VIBC 32 1000 1 10 10 0.0 0.0 0.001 0.2
VQ-VIBC 32 1000 2 10 10 0.0 0.0 0.001 0.4
VQ-VIBC 32 1000 4 10 10 0.0 0.0 0.001 0.8

next paragraph) to classifications for 100 epochs using an Adam optimizer with default parameters,
with the learning rate decreasing by a factor of 10 based on plateauing training loss, with a patience
of 5 epochs, and early stopping if the learning rate fell below 10−8.

One particular design choice that we made in finetuning predictors merits elaboration: shifting
encodings. Rather than directly training predictors to map from encodings to predictions, we applied
a simple linear transformation to the encodings before feeding them to the predictor. Specifically, we
multiplied all tensor elements by 5 and increased them by 1. This simple linear transformation does
not affect any relations between encodings except scale, and indeed we found that predictors could
be successfully trained with this rescaling. Nevertheless, this linear transformation was important to
provide a check against merely relying upon initialization conditions for good finetuning performance.
In particular, we found that if we did not apply this linear transformation (i.e., pass the raw encodings
to the predictor), predictors sometimes performed better than they should given the training data. For
example, as a sanity check, we trained a predictor on a binary classification task, but only provided
two positive datapoints and no negative data. In general, given this data, one would expect a trained
predictor to only predict positive labels. However, we observed that in several cases, the predictor
would achieve nearly perfect accuracy, including predicting negative labels for negative inputs.
This surprising result disappeared when we simply shifted encodings, indicating that the particular
initialization conditions of the predictor seemed to align well with pre-trained encoders. We wanted
to measure the effect of data on finetuning performance, rather than just initialization conditions, but
we note that this odd phenomenon of well-aligned initializations merits further investigation.

We ran 10 finetuning trials per model, which was important given the small amount of randomly-
sampled finetuning data.

A.3 Hyperparameters

In the following subsections, we present the hyperparameters used for training different encoders in
the different domains. In general, we used the following principles when choosing hyperparameters:

• For VQ-based methods, use a large enough codebook to have at least one element per class.
Larger C are also acceptable, as tuning weights should decrease the effective codebook size.

• When annealing, use a small enough weight increment to generate smooth changes during
training. Larger increments, however, speed up training.

• When annealing for larger n one can increase the annealing rate. Models with greater n
tended to use more complex representations, so annealing could be extremely slow for small
increments.

A.3.1 FashionMNIST

For FashionMNIST, we trained all models with batch size 64 for 200 epochs, using the hyperparam-
eters specified in Table 1. The only differences across methods were which hyperparameters we
annealed to penalize complexity. Other differences simply reflected differences in architecture (e.g.,
using a codebook for vector-quantization methods). Pre-training a single model for 200 epochs took
approximately 5 minutes on a desktop computer with one NVIDIA 2080 GeForce RTX.

15

Table 2: Hyperparameters for CIFAR100 training.

ENCODER LATENT DIM C n λU λI λC0 λC INCR λH0 λH INCR

β-VAE 32 NA NA 10 10 0.01 0.1 0.0 0.0
VQ-VIBN 32 1000 1 10 10 0.01 0.5 0.0 0.0
VQ-VIBN 32 1000 2 10 10 0.01 0.5 0.0 0.0
VQ-VIBN 32 1000 4 10 10 0.01 0.5 0.0 0.0
VQ-VIBC 32 1000 1 10 10 0.0 0.0 0.001 0.04
VQ-VIBC 32 1000 2 10 10 0.0 0.0 0.001 0.08
VQ-VIBC 32 1000 4 10 10 0.0 0.0 0.001 0.12

Table 3: Hyperparameters for iNaturalist training.

ENCODER LATENT DIM C n λU λI λC0 λC INCR λH0 λH INCR

β-VAE 32 NA NA 10 10 0.0001 0.03 0.0 0.0
VQ-VIBN 32 2000 1 10 10 0.001 0.1 0.0 0.0
VQ-VIBN 32 2000 2 10 10 0.001 0.2 0.0 0.0
VQ-VIBN 32 2000 4 10 10 0.001 0.4 0.0 0.0
VQ-VIBC 32 2000 1 10 10 0.0 0.0 0.001 0.05
VQ-VIBC 32 2000 2 10 10 0.0 0.0 0.001 0.10
VQ-VIBC 32 2000 4 10 10 0.0 0.0 0.001 0.20

A.3.2 CIFAR100

For CIFAR100, we trained all models with batch size 256 for 400 epochs, using the hyperparameters
specified in Table 2. As explained for FashionMNIST, the only substantial differences across
architectures were architecture-specific terms that needed to be specified, and which terms were
annealed to penalize complexity. Pre-training a single model for 400 epochs took approximately 10
minutes on a desktop computer with one NVIDIA 3080.

A.3.3 iNaturalist

For iNat, we trained all models with batch size 256, using the hyperparameters specified in Table 3.
We trained β-VAE and VQ-VIBC models for 300 epochs, while we trained VQ-VIBN models for
600. We used more annealing epochs for VQ-VIBN simply because it seemed to need more epochs
to eventually anneal to random chance. Likely, a larger annealing rate could also accomplish the
desired effect, but initial experiments with faster annealing tended to induce rapid codebook collapse
that did not generate the smooth spectrum of MSE values we desired. Pre-training a single model
for 300 epochs took approximately 10 minutes on a desktop computer with one NVIDIA 3080 (and
twice as long for 600 epochs).

B Further Finetuning Results

In the main paper, we included only a small number of graphs highlighting our key results. Here,
we include further results that corroborate the main trends stated in the paper. Primarily, these plots
include further experiments for varying the amount of finetuning data, as well as varying n, the
number of codebook elements to combine into a latent representation. We further include details of
validation-set experiments, wherein we evaluated a method for autonomously selecting the optimal
encoder. Results are divided by domain: FashionMNIST, CIFAR100, and iNat.

B.1 FashionMNIST

Here, we include the finetuning results for the FashionMNIST domain for varying amounts of
finetuning data, ranging over k ∈ [1, 2, 5, 10, 50], and n, the number of quantized vectors to combine
into a single representation. Results for each k are included in Figure 10.

16

0.03 0.04 0.05 0.06 0.07 0.08 0.09
MSE

0.3

0.4

0.5

0.6

0.7

0.8

Y
Ac

c.

FashionMNIST 3-Way Accuracy; k = 1

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

FashionMNIST 3-way Accuracy; k = 1

MSE

Y
A

cc
.

(a) k = 1

0.03 0.04 0.05 0.06 0.07 0.08 0.09
MSE

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y
Ac

c.

FashionMNIST 3-Way Accuracy; k = 2

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

FashionMNIST 3-way Accuracy; k = 2

MSE

Y
A

cc
.

(b) k = 2

0.03 0.04 0.05 0.06 0.07 0.08 0.09
MSE

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y
Ac

c.

FashionMNIST 3-Way Accuracy; k = 5

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

FashionMNIST 3-way Accuracy; k = 5

MSE

Y
A

cc
.

(c) k = 5

0.03 0.04 0.05 0.06 0.07 0.08 0.09
MSE

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y
Ac

c.

FashionMNIST 3-Way Accuracy; k = 10

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

FashionMNIST 3-way Accuracy; k = 10

MSE

Y
A

cc
.

(d) k = 10

0.03 0.04 0.05 0.06 0.07 0.08 0.09
MSE

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y
Ac

c.

FashionMNIST 3-Way Accuracy; k = 50

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

FashionMNIST 3-way Accuracy; k = 50

MSE

Y
A

cc
.

(e) k = 50

Figure 10: FashionMNIST finetuning results for varying k. As k increased, all models benefited. The
data-efficiency of advantage of VQ-VIBC was most pronounced when using the least amount of data.

Table 4: Finetuning accuracy across domains, using encoders selected via validation set accuracy.
For large validation (v) and training (k) set sizes, this method selected high-performance encoders,
but for low k and v, it struggled. This motivates our human-in-the-loop framework in the low-data
regime.

FASHIONMNIST CIFAR100 2-WAY INAT 2-WAY
v k =2 5 10 50 2 5 10 50 2 5 10 50
1 0.73 0.89 0.93 0.97 0.71 0.79 0.83 0.90 0.65 0.79 0.89 0.90
5 – – 0.94 0.97 – – 0.82 0.91 – – 0.88 0.90
10 – – – 0.97 – – – 0.91 – – – 0.89

As expected, increasing the amount of finetuning data improved performance for all models, and the
gap between all model types (VQ-VIBC , VQ-VIBN , and β-VAE) shrank. It is noteworthy, however,
that a VQ-VIBC model, tuned to the right complexity level and trained with just one example per
ternary class (Figure 10 a), achieved better accuracy than a β-VAE model trained with 50 examples
per class (Figure 10 e). Further, for any fixed k, VQ-VIBC consistently outperformed VQ-VIBN ,
suggesting that many recent works that use VQ-VIB N could be improved by replacing the model
type [27, 28, 12, 7]. Lastly, for both VQ-VIBN and VQ-VIBC , increasing n tended to support
lower MSE but worse finetuning accuracy. This supports an intuition that combining more discrete
representations starts to more densely fill the representation space, trending towards continuous
representations.

We note briefly that VQ-VIBN , both in this domain and others (explored in the next sections),
typically failed to learn as complex representations as either VQ-VIBC or β-VAEs. This is apparent
given the limited range of MSE values for the VQ-VIBN curves. We consistently struggled to
make VQ-VIBN learn as rich representations as for the other model types, which led to worse
reconstructions and higher MSE values.

Lastly, Table 4 includes results from our validation experiments for all three experiment domains.
Recall that we tested a method for autonomously selecting the best encoder, among the suite of
encoders of different complexity levels, by measuring validation set accuracy. Table 4 includes results
from such experiments for different validation set sizes (v) and different k. For a given k and v, we
randomly sampled v datapoints per class label to be part of the validation set and used the remaining

17

data for finetuning. For large k, this method worked quite well by selecting high-accuracy encoders.
However, for small k and v, validation set accuracy was a noisy proxy for model performance
(because of the small validation set size), so performance tended to be suboptimal. For example, in
the FashionMNIST domain, for k = 2, v = 1, models achieved mean performance of 73%, lower
than the over than 80% accuracy achieved by tuning to the right complexity (Figure 10 b). Overall,
these validation set experiments confirm that, for large enough k, one may autonomously select
optimal encoders, but for very small k, such autonomous methods fail.

B.2 CIFAR100

We found similar trends in the CIFAR100 to those in the FashionMNIST domain and plotted results
in Figures 11 and 12 (for 2-way and 20-way finetuning tasks, respectively). In all experiments,
VQ-VIBC outperformed both β-VAE and VQ-VIBN . In the 2-way finetuning example, we again
found a peaked curve for VQ-VIBC finetuning accuracy as a function of MSE, indicating that tuning
to the right complexity level induced the best accuracy. In the more complex 20-way classification
task, however, we did not observe this peak.

This last result is unsurprising: the 20-way hierarchy in CIFAR100 is less semantically meaningful
and likely less obvious in photos than the 2-way task of distinguishing living and non-living things.
For example, two of the 20 categories are simply different sorts of vehicles. It would be extremely
surprising for VQ-VIBC to learn such arbitrary groups automatically while compressing represen-
tations. Without learning the right groupings, VQ-VIBC cannot benefit from learning less complex
representations.

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.4

0.5

0.6

0.7

0.8

Y
Ac

c.

CIFAR100 2-Way Accuracy; k = 1

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

CIFAR100 2-way Accuracy; k = 1

MSE

Y
A

cc
.

(a) k = 1

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.4

0.5

0.6

0.7

0.8

Y
Ac

c.

CIFAR100 2-Way Accuracy; k = 2

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

CIFAR100 2-way Accuracy; k = 2

MSE

Y
A

cc
.

(b) k = 2

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.4

0.5

0.6

0.7

0.8

Y
Ac

c.

CIFAR100 2-Way Accuracy; k = 5

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

CIFAR100 2-way Accuracy; k = 5

MSE

Y
A

cc
.

(c) k = 5

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.5

0.6

0.7

0.8

0.9

Y
Ac

c.

CIFAR100 2-Way Accuracy; k = 10

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

CIFAR100 2-way Accuracy; k = 10

MSE

Y
A

cc
.

(d) k = 10

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.4

0.5

0.6

0.7

0.8

0.9

Y
Ac

c.

CIFAR100 2-Way Accuracy; k = 50

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

CIFAR100 2-way Accuracy; k = 50

MSE

Y
A

cc
.

(e) k = 50

Figure 11: CIFAR100 2-way finetuning results for varying k.

18

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Y
Ac

c.

CIFAR100 20-Way Accuracy; k = 1

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

CIFAR100 20-way Accuracy; k = 1

MSE

Y
A

cc
.

(a) k = 1

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.1

0.2

0.3

0.4

0.5

Y
Ac

c.

CIFAR100 20-Way Accuracy; k = 2

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

CIFAR100 20-way Accuracy; k = 2

MSE

Y
A

cc
.

(b) k = 2

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.1

0.2

0.3

0.4

0.5

0.6

Y
Ac

c.

CIFAR100 20-Way Accuracy; k = 5

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

CIFAR100 20-way Accuracy; k = 5

MSE

Y
A

cc
.

(c) k = 5

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.1

0.2

0.3

0.4

0.5

0.6

Y
Ac

c.

CIFAR100 20-Way Accuracy; k = 10

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

CIFAR100 20-way Accuracy; k = 10

MSE

Y
A

cc
.

(d) k = 10

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Y
Ac

c.

CIFAR100 20-Way Accuracy; k = 50

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

CIFAR100 20-way Accuracy; k = 50

MSE

Y
A

cc
.

(e) k = 50

Figure 12: CIFAR100 20-way finetuning results for varying k.

19

B.3 iNaturalist

Lastly, we found similar trends in finetuning in the iNat domain, finetuned on a 3-way (Figure 13),
34-way (Figure 14), and 1010-way (Figure 15) finetuning task.

On the 3-way finetuning task (between animals, plants, and fungi), we observed similar peaking
behavior as in earlier experiments, indicating yet again the importance of tuning to the right complex-
ity. In addition, as in prior results, we found a similar trend that greater n tended to allow greater
complexity (lower MSE) but induced worse finetuning performance. For example, in Figure 13 b, the
orange line, corresponding to n = 1 stays above and to the right of the green (n = 2) and red (n = 4)
lines. Intuitively, this seems to indicate that the more combinatorial representations, with greater
n, were somewhat of a midpoint between the continuous β-VAE representations and the discrete
representations used by VQ-VIBC for n = 1.

Results from the 34-way finetuning followed similar patterns as before as well. Just as in CIFAR100
wherein we tested both a 2-way and 20-way finetuning task, this 34-way finetuning task for iNat
showed that VQ-VIBC continued to outperform VQ-VIBN and β-VAE for more complex finetuning
tasks, although the performance gap shrank as k increased.

Most interestingly, perhaps, we conducted yet another iNat finetuning experiment, this time using
the 1010 low-level labels that had originally been used during pre-training. As before, we used very
small amounts of data in finetuning (e.g., for k = 1, only 1 example from each class, so 1010 labeled
examples total). Results from those experiments are shown in Figure 15.

For small k, we again see that VQ-VIBC outperforms other model types. For larger k, however,
we see one of the limitations of VQ-VIBC . Because the discrete encoders learned less complex
representations than β-VAEs (as shown by the fact that they never reach lower MSE values), with
enough finetuning data, β-VAEs are able to capture distinctions between classes that VQ-VIBC models
cannot. Thus, in the particular case of large amounts of finetuning data and complex finetuning tasks,
more complex, continuous encoders continue to outperform our method.

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y
Ac

c.

iNat 3-Way Accuracy; k = 1

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

iNat 3-way Accuracy; k = 1

MSE

Y
A

cc
.

(a) k = 1

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y
Ac

c.

iNat 3-Way Accuracy; k = 2

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

iNat 3-way Accuracy; k = 2

MSE

Y
A

cc
.

(b) k = 2

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y
Ac

c.

iNat 3-Way Accuracy; k = 5

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

iNat 3-way Accuracy; k = 5

MSE

Y
A

cc
.

(c) k = 5

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y
Ac

c.

iNat 3-Way Accuracy; k = 10

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

iNat 3-way Accuracy; k = 10

MSE

Y
A

cc
.

(d) k = 10

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y
Ac

c.

iNat 3-Way Accuracy; k = 50

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

iNat 3-way Accuracy; k = 50

MSE

Y
A

cc
.

(e) k = 50

Figure 13: iNat 3-way finetuning results for varying k.

20

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Y

Ac
c.

iNat 34-Way Accuracy; k = 1

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

iNat 34-way Accuracy; k = 1

MSE

Y
A

cc
.

(a) k = 1

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Y
Ac

c.

iNat 34-Way Accuracy; k = 2

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

iNat 34-way Accuracy; k = 2

MSE

Y
A

cc
.

(b) k = 2

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.0

0.1

0.2

0.3

0.4

Y
Ac

c.

iNat 34-Way Accuracy; k = 5

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

iNat 34-way Accuracy; k = 5

MSE

Y
A

cc
.

(c) k = 5

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.0

0.1

0.2

0.3

0.4

0.5

Y
Ac

c.

iNat 34-Way Accuracy; k = 10

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

iNat 34-way Accuracy; k = 10

MSE

Y
A

cc
.

(d) k = 10

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.0

0.1

0.2

0.3

0.4

0.5

Y
Ac

c.

iNat 34-Way Accuracy; k = 50

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

iNat 34-way Accuracy; k = 50

MSE
Y

A
cc

.

(e) k = 50

Figure 14: iNat 34-way finetuning results for varying k.

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.000

0.005

0.010

0.015

0.020

Y
Ac

c.

iNat 1010-Way Accuracy; k = 1

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

iNat 1010-way Accuracy; k = 1

MSE

Y
A

cc
.

(a) k = 1

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Y
Ac

c.

iNat 1010-Way Accuracy; k = 2

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

iNat 1010-way Accuracy; k = 2

MSE

Y
A

cc
.

(b) k = 2

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Y
Ac

c.

iNat 1010-Way Accuracy; k = 5

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

iNat 1010-way Accuracy; k = 5

MSE

Y
A

cc
.

(c) k = 5

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Y
Ac

c.

iNat 1010-Way Accuracy; k = 10

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

iNat 1010-way Accuracy; k = 10

MSE

Y
A

cc
.

(d) k = 10

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.00

0.05

0.10

0.15

0.20

0.25

Y
Ac

c.

iNat 1010-Way Accuracy; k = 50

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

iNat 1010-way Accuracy; k = 50

MSE

Y
A

cc
.

(e) k = 50

Figure 15: iNat 1010-way finetuning results for varying k.

21

(a) Epoch 40 (b) Epoch 60

(c) Epoch 70 (d) Epoch 199

Figure 16: The evolution of the distribution over prototypes during annealing for VQ-VIBC in
the FashionMNIST domain. In early epochs, VQ-VIBC uses many prototypes, with a long-tailed
distribution. Over the course of annealing the entropy, the probability distribution becomes more
concentrated (b and c) before collapsing to a single prototype (d).

C Prototype Utilization: Further Visualizations

Here, we include some further visualizations that we omitted from the main paper due to space
constraints. These visualization primarily illustrate the importance of entropy-regulated representation
learning (for VQ-VIBC) vs. complexity-regulated (for VQ-VIBN).

Figures 16 and 17 shows the prototypes for VQ-VIBC and VQ-VIBN , respectively, in the FashionM-
NIST domain over the course of training. Each subfigure consists of a top row of decoded prototypes,
with associated probabilities (frequency of use measured when passing through images from the test
set) below. The 30 most frequent prototypes are visualized, or fewer prototypes if fewer were used.

There is an important trend in Figures 16 and 17: the entropy-based annealing for VQ-VIBC caused
models to use fewer prototypes, while the complexity-based annealing for VQ-VIBN did not. At
epoch 40, just as both methods begin annealing, VQ-VIBC and VQ-VIBN use a large number of
prototypes, as seen by the long-tailed distributions. Over the course of annealing, however, VQ-VIBC
uses fewer prototypes, and merges images of different classes into the same prototype. Thus, the
degenerate encoder at the end of annealing (epoch 199) uses just a single prototype to represent all
possible inputs (Figure 16). At the same time, VQ-VIBN , during annealing, does not use fewer
prototypes. Rather, the complexity-penalization term seems to induce the model to make the mapping
from input to prototype more stochastic (Figure 17). Thus, the degenerate VQ-VIBN encoder uses
many prototypes, each of which is blurry because it could correspond to any input.

Visualizations of decoded prototypes for the CIFAR100 domain is more challenging. In richer image
domains, prototype-based methods often use training examples as prototypes [3, 18, 4], which can
make it more difficult to understand when a single prototype represents more than one concept.
Nevertheless, by visualizing the distribution over prototypes (without decoding them), we see the
same pattern that VQ-VIBC tends to learn to use fewer prototypes over the course of annealing than
VQ-VIBN . Snapshots of the categorical distributions for CIFAR100 are included in Figure 18.

D Ablation Study: Entropy vs. Complexity

Here, we present results motivating penalizing entropy, as opposed to complexity, in VQ-VIBC .
Appendix C showed how annealing entropy in VQ-VIBC caused models to use fewer prototypes,
whereas penalizing complexity in VQ-VIBN did not induce similar reductions in effective codebook

22

(a) Epoch 40 (b) Epoch 60

(c) Epoch 70 (d) Epoch 199

Figure 17: The evolution of the distribution over prototypes during annealing for VQ-VIBN in
the FashionMNIST domain. Unlike annealing entropy for VQ-VIBC , annealing the complexity in
VQ-VIBN did not result in fewer prototypes being used. Instead, each prototype became blurrier,
indicating that each prototype became more likely regardless of class.

(a) VQ-VIBC Epoch 50 (b) VQ-VIBC Epoch 399

(c) VQ-VIBN Epoch 50 (d) VQ-VIBN Epoch 399

Figure 18: Categorical distribution over prototypes while annealing in the CIFAR100 domain at the
start of annealing (Epoch 50) and at the end (Epoch 399) for VQ-VIBC (top row) and VQ-VIBN
(bottom row). Annealing the entropy in VQ-VIBC caused the model to use fewer prototypes (note
the degenerate categorical distribution over only one prototype at Epoch 399), whereas annealing
complexity for VQ-VIBN did not cause similar concentration.

23

0.03 0.04 0.05 0.06 0.07 0.08 0.09
MSE

0.3

0.4

0.5

0.6

0.7

0.8

Y
Ac

c.

FashionMNIST 3-Way Accuracy; k = 1

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB Comp n = 1
VQVIB Comp n = 2
VQVIB Comp n = 4

FashionMNIST 3-way Accuracy; k = 1

MSE

Y
A

cc
.

(a) k = 1

0.03 0.04 0.05 0.06 0.07 0.08 0.09
MSE

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y
Ac

c.

FashionMNIST 3-Way Accuracy; k = 2

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

FashionMNIST 3-way Accuracy; k = 2

MSE

Y
A

cc
.

(b) k = 2

0.03 0.04 0.05 0.06 0.07 0.08 0.09
MSE

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y
Ac

c.

FashionMNIST 3-Way Accuracy; k = 5

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

FashionMNIST 3-way Accuracy; k = 5

MSE

Y
A

cc
.

(c) k = 5

0.03 0.04 0.05 0.06 0.07 0.08 0.09
MSE

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y
Ac

c.

FashionMNIST 3-Way Accuracy; k = 10

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

FashionMNIST 3-way Accuracy; k = 10

MSE

Y
A

cc
.

(d) k = 10

0.03 0.04 0.05 0.06 0.07 0.08 0.09
MSE

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y
Ac

c.

FashionMNIST 3-Way Accuracy; k = 50

-VAE
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4
VQVIB n = 1
VQVIB n = 2
VQVIB n = 4

FashionMNIST 3-way Accuracy; k = 50

MSE

Y
A

cc
.

(e) k = 50

Figure 19: FashionMNIST finetuning results for varying k, comparing annealing by entropy (VQ-
VIBC) and annealing by complexity (VQ-VIBC Comp.). Annealing by complexity resulted in worse
finetuning performance.

size. Further experiments corroborate our findings that penalizing entropy was the key to this
difference in behavior.

We trained VQ-VIBC agents on the FashionMNIST task, using the same pre-training and finetuning
procedures as in the main paper, with the only difference being that we annealed the complexity of
representations instead of the entropy. Results from finetuning such models are included in Figure 19.

Figure 19 shows that annealing by entropy, as opposed to complexity, was the key factor in improving
VQ-VIBC finetuning performance. The difference in performance when penalizing entropy vs. com-
plexity closely matches the difference in performance between VQ-VIBC and VQ-VIBN examined
in the main paper. Thus, the entropy-regularization term seems to explain much of the difference
between VQ-VIBC and VQ-VIBN .

In subsequent experiments in the CIFAR100 and iNat domains, therefore, we tested whether penaliz-
ing the estimated entropy of VQ-VIBN models matched VQ-VIBC results from the main paper. We
note that Tucker et al. [27] advocate for a small positive λH to penalize entropy, but the authors also
acknowledge that exactly computing this entropy is impossible given the VQ-VIBN architecture.

Finetuning results for CIFAR100 (on the 2-way and 20-way finetuning tasks) and iNat (on the 3-way
and 34-way finetuning tasks), for VQ-VIBC trained by varying λC and VQ-VIBN trained by varying
λH , are included in Figures 20, 21, 22, and 23. Several important trends emerge from viewing these
plots, especially compared to results from our main paper for VQ-VIBC controlled via λH .

First, finetuning performance is noisier using these models compared to results from the main text.
This likely arises, for VQ-VIBN models, because increasing λH failed to consistently reduce the
number of discrete representations used. Thus, for a given MSE value, different models used different
numbers of representations, and therefore exhibited different finetuning performance.

Second, varying λH , instead of λC , seemed to somewhat improve VQ-VIBN performance, but
not as much as when varying λH for VQ-VIBC , as presented in our main paper. For example,
consider Figure 21 a. The best-performing model, VQ-VIBN , n = 1, peaks at finetuning accuracy of
approximately 0.16, outperforming VQ-VIBC models when varying λC . However, in Figure 12 a, we
found that VQ-VIBC models in the exact same setting achieved a mean accuracy of approximately
0.38: more than double the VQ-VIBN performance. Thus, varying λH seemed to improve VQ-VIBN

24

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.40

0.45

0.50

0.55

0.60

0.65
Y

Ac
c.

CIFAR100 2-Way Accuracy; k = 1

-VAE
VQVIB C n = 1
VQVIB C n = 2
VQVIB C n = 4
VQVIB H n = 1
VQVIB H n = 2
VQVIB H n = 4

CIFAR100 2-way Accuracy; k = 1

MSE

Y
A

cc
.

(a) k = 1

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Y
Ac

c.

CIFAR100 2-Way Accuracy; k = 2

-VAE
VQVIB C n = 1
VQVIB C n = 2
VQVIB C n = 4
VQVIB H n = 1
VQVIB H n = 2
VQVIB H n = 4

CIFAR100 2-way Accuracy; k = 2

MSE

Y
A

cc
.

(b) k = 2

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Y
Ac

c.

CIFAR100 2-Way Accuracy; k = 5

-VAE
VQVIB C n = 1
VQVIB C n = 2
VQVIB C n = 4
VQVIB H n = 1
VQVIB H n = 2
VQVIB H n = 4

CIFAR100 2-way Accuracy; k = 5

MSE

Y
A

cc
.

(c) k = 5

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Y
Ac

c.

CIFAR100 2-Way Accuracy; k = 10

-VAE
VQVIB C n = 1
VQVIB C n = 2
VQVIB C n = 4
VQVIB H n = 1
VQVIB H n = 2
VQVIB H n = 4

CIFAR100 2-way Accuracy; k = 10

MSE

Y
A

cc
.

(d) k = 10

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.4

0.5

0.6

0.7

0.8

Y
Ac

c.

CIFAR100 2-Way Accuracy; k = 50

-VAE
VQVIB C n = 1
VQVIB C n = 2
VQVIB C n = 4
VQVIB H n = 1
VQVIB H n = 2
VQVIB H n = 4

CIFAR100 2-way Accuracy; k = 50

MSE
Y

A
cc

.

(e) k = 50

Figure 20: Ablation study results for the CIFAR100 2-way finetuning task. Tuning λC for VQ-VIBC
or λH for VQ-VIBN led to worse results than in our main paper.

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Y
Ac

c.

CIFAR100 20-Way Accuracy; k = 1

-VAE
VQVIB C n = 1
VQVIB C n = 2
VQVIB C n = 4
VQVIB H n = 1
VQVIB H n = 2
VQVIB H n = 4

CIFAR100 20-way Accuracy; k = 1

MSE

Y
A

cc
.

(a) k = 1

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.05

0.10

0.15

0.20

0.25

0.30

Y
Ac

c.

CIFAR100 20-Way Accuracy; k = 2

-VAE
VQVIB C n = 1
VQVIB C n = 2
VQVIB C n = 4
VQVIB H n = 1
VQVIB H n = 2
VQVIB H n = 4

CIFAR100 20-way Accuracy; k = 2

MSE

Y
A

cc
.

(b) k = 2

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Y
Ac

c.

CIFAR100 20-Way Accuracy; k = 5

-VAE
VQVIB C n = 1
VQVIB C n = 2
VQVIB C n = 4
VQVIB H n = 1
VQVIB H n = 2
VQVIB H n = 4

CIFAR100 20-way Accuracy; k = 5

MSE

Y
A

cc
.

(c) k = 5

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.1

0.2

0.3

0.4

Y
Ac

c.

CIFAR100 20-Way Accuracy; k = 10

-VAE
VQVIB C n = 1
VQVIB C n = 2
VQVIB C n = 4
VQVIB H n = 1
VQVIB H n = 2
VQVIB H n = 4

CIFAR100 20-way Accuracy; k = 10

MSE

Y
A

cc
.

(d) k = 10

0.250 0.275 0.300 0.325 0.350 0.375 0.400
MSE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Y
Ac

c.

CIFAR100 20-Way Accuracy; k = 50

-VAE
VQVIB C n = 1
VQVIB C n = 2
VQVIB C n = 4
VQVIB H n = 1
VQVIB H n = 2
VQVIB H n = 4

CIFAR100 20-way Accuracy; k = 50

MSE

Y
A

cc
.

(e) k = 50

Figure 21: Ablation study results for the CIFAR100 20-way finetuning task. Tuning λC for VQ-VIBC
or λH for VQ-VIBN led to worse results than in our main paper.

25

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.20

0.25

0.30

0.35

0.40

0.45

0.50
Y

Ac
c.

iNat 3-Way Accuracy; k = 1

-VAE
VQVIB C n = 1
VQVIB C n = 2
VQVIB C n = 4
VQVIB H n = 1
VQVIB H n = 2
VQVIB H n = 4

iNat 3-way Accuracy; k = 1

MSE

Y
A

cc
.

(a) k = 1

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.2

0.3

0.4

0.5

0.6

Y
Ac

c.

iNat 3-Way Accuracy; k = 2

-VAE
VQVIB C n = 1
VQVIB C n = 2
VQVIB C n = 4
VQVIB H n = 1
VQVIB H n = 2
VQVIB H n = 4

iNat 3-way Accuracy; k = 2

MSE

Y
A

cc
.

(b) k = 2

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.2

0.3

0.4

0.5

0.6

0.7

Y
Ac

c.

iNat 3-Way Accuracy; k = 5

-VAE
VQVIB C n = 1
VQVIB C n = 2
VQVIB C n = 4
VQVIB H n = 1
VQVIB H n = 2
VQVIB H n = 4

iNat 3-way Accuracy; k = 5

MSE

Y
A

cc
.

(c) k = 5

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y
Ac

c.

iNat 3-Way Accuracy; k = 10

-VAE
VQVIB C n = 1
VQVIB C n = 2
VQVIB C n = 4
VQVIB H n = 1
VQVIB H n = 2
VQVIB H n = 4

iNat 3-way Accuracy; k = 10

MSE

Y
A

cc
.

(d) k = 10

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y
Ac

c.

iNat 3-Way Accuracy; k = 50

-VAE
VQVIB C n = 1
VQVIB C n = 2
VQVIB C n = 4
VQVIB H n = 1
VQVIB H n = 2
VQVIB H n = 4

iNat 3-way Accuracy; k = 50

MSE
Y

A
cc

.

(e) k = 50

Figure 22: Ablation study results for the iNat 3-way finetuning task. Tuning λC for VQ-VIBC or λH

for VQ-VIBN led to worse results than in our main paper.

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Y
Ac

c.

iNat 34-Way Accuracy; k = 1

-VAE
VQVIB C n = 1
VQVIB C n = 2
VQVIB C n = 4
VQVIB H n = 1
VQVIB H n = 2
VQVIB H n = 4

iNat 34-way Accuracy; k = 1

MSE

Y
A

cc
.

(a) k = 1

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Y
Ac

c.

iNat 34-Way Accuracy; k = 2

-VAE
VQVIB C n = 1
VQVIB C n = 2
VQVIB C n = 4
VQVIB H n = 1
VQVIB H n = 2
VQVIB H n = 4

iNat 34-way Accuracy; k = 2

MSE

Y
A

cc
.

(b) k = 2

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Y
Ac

c.

iNat 34-Way Accuracy; k = 5

-VAE
VQVIB C n = 1
VQVIB C n = 2
VQVIB C n = 4
VQVIB H n = 1
VQVIB H n = 2
VQVIB H n = 4

iNat 34-way Accuracy; k = 5

MSE

Y
A

cc
.

(c) k = 5

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Y
Ac

c.

iNat 34-Way Accuracy; k = 10

-VAE
VQVIB C n = 1
VQVIB C n = 2
VQVIB C n = 4
VQVIB H n = 1
VQVIB H n = 2
VQVIB H n = 4

iNat 34-way Accuracy; k = 10

MSE

Y
A

cc
.

(d) k = 10

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
MSE

0.0

0.1

0.2

0.3

0.4

0.5

Y
Ac

c.

iNat 34-Way Accuracy; k = 50

-VAE
VQVIB C n = 1
VQVIB C n = 2
VQVIB C n = 4
VQVIB H n = 1
VQVIB H n = 2
VQVIB H n = 4

iNat 34-way Accuracy; k = 50

MSE

Y
A

cc
.

(e) k = 50

Figure 23: Ablation study results for the iNat 34-way finetuning task. Tuning λC for VQ-VIBC or
λH for VQ-VIBN led to worse results than in our main paper.

26

performance somewhat, but VQ-VIBC better supports penalizing entropy, and therefore achieves
higher performance.

Third, varying λC , instead of λH , for VQ-VIBC worsened finetuning performance. Once again,
by comparing finetuning performance for VQ-VIBC models in Figure 21 a (achieving a maximum
accuracy around 0.14), to results from our main paper, we note the importance of penalizing the
entropy of representations.

Thus, in general these ablation studies support many of the design decisions made in the main paper.

1. Varying λH , instead of λC for VQ-VIBC improves finetuning performance by decreasing
the number of discrete representations used.

2. VQ-VIBN benefits somewhat from penalizing entropy, but because it is architecturally
unable to support exact calculations of entropy, we were unable to match VQ-VIBN perfor-
mance.

It is certainly possible that some optimal combination of λH and λC might further improve VQ-VIBN
or VQ-VIBC performance; initial explorations of such combinations with fixed λH values while
annealing λC did not yield obvious results. Most importantly, our current findings are enough to
indicate that controlling the entropy of discrete representations appears important for data-efficient
finetuning.

27

E User Study Results

Here, we include complete results from our user study. Table 5 includes accuracy rates for all model
types and visualizations, for all three questions. For Questions 2 and 3, selecting the lowest-MSE
(highest complexity) encoder was correct, so accuracy rates for all model and visualization types for
these questions remained high. For Question 1, however, selecting the correct encoder required users
to select non-maximally-complex representations; for this question, only users viewing prototypes of
VQ-VIBC models performed above random chance.

Table 5: Accuracy rates by encoder type and visualization method for the three questions (reporting
means and standard errors over 20 subjects). For the most challenging question (Question 1),
visualizing VQ-VIBC prototypes supported the greatest accuracy.

Model Viz. Question 1 Question 2 Question 3

VQ-VIBC MSE 0.10 (0.02) 0.70 (0.05) 0.85 (0.03)
VQ-VIBC Proto 0.55 (0.06) 0.75 (0.04) 0.90 (0.02)
VQ-VIBN MSE 0.10 (0.02) 0.80 (0.04) 0.85 (0.03)
VQ-VIBN Proto 0.10 (0.02) 0.90 (0.02) 0.90 (0.02)

We further included full results for our Mixed Linear Effects Modeling statistical tests in Table 6. All
but two effects are not significant at the p < 0.05 level. The two significant effects are 1) Question 1
had a significant negative effect on accuracy rate, and 2) there was a significant positive interaction
effect between visualizing VQ-VIBC prototypes and Question 1. Jointly, these two effects show that
Question 1 was harder for users than the other questions, but that seeing VQ-VIBC prototypes to
some extent mitigated this increased difficulty.

Table 6: Results of the Mixed Linear Effects Modeling of user responses, predicting accuracy
as a function of model and visualization type and Question. Our key results is that there is a
significant positive interaction effect between visualizing VQ-VIBC prototypes and performing
better on Question 1 (bolded for emphasis). The intercept row corresponds to Question 2 with
VQ-VIBC-MSE.

Coef. Std.Err. z P|z| [0.025 0.975]

Intercept 0.700 0.084 8.356 0.000 0.536 0.864
VQ-VIBC-Proto 0.050 0.118 0.421 0.674 -0.182 0.282
VQ-VIBN -MSE 0.100 0.118 0.845 0.398 -0.132 0.332
VQ-VIBN -Proto 0.200 0.119 1.692 0.091 -0.032 0.433
Question 1 -0.600 0.118 -5.085 0.000 -0.831 -0.369
Question 3 0.150 0.118 1.271 0.204 -0.081 0.381
VQ-VIBC-Proto:Question 1 0.400 0.167 2.397 0.017 0.073 0.727
VQ-VIBN -MSE:Question 1 -0.100 0.167 -0.599 0.549 -0.427 0.227
VQ-VIBN -Proto:Question 1 -0.200 0.167 -1.199 0.231 -0.527 0.127
VQ-VIBC-Proto:Question 3 -0.000 0.167 -0.000 1.000 -0.327 0.327
VQ-VIBN -MSE:Question 3 -0.100 0.167 -0.599 0.549 -0.427 0.227
VQ-VIBN -Proto:Question 3 -0.150 0.167 -0.899 0.369 -0.477 0.177
Group Var 0.001 0.024

F User Study

In the subsequent pages, we have included the exact pdf document of a survey shared with participants
of the user study. This pdf was generated for a participant viewing VQ-VIBC prototypes; similar
surveys were populated with data for other models (VQ-VIBN) or visualization methods (MSE plots).
Furthermore, the order of the three questions was randomized to avoid ordering effects.

28

26/10/2023, 12:02 Qualtrics Survey Software

https://mit.co1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_02HfTuvflYtf3DM&ContextLibraryID=UR_5yEW3LUzp… 1/12

Block 1

Brief

Please do not take this study on a mobile phone, the text and images will not
display correctly.

You are free to leave this study at any time.

We will (1) explain the survey format, (2) include two examples of how to complete the
survey, and then (3) ask three questions. In total, the survey will take around five minutes.

After you are finished with the survey, you will be redirected to Prolific to recieve your
payment.

Please do not take this study if you have done a similar one before.

Thank you for your participation!

Block 11

Please enter your Prolific ID

Block 2

Introduction

A computer program is good at classifying clothes into these 10 categories

T-shirt
Trouser

26/10/2023, 12:02 Qualtrics Survey Software

https://mit.co1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_02HfTuvflYtf3DM&ContextLibraryID=UR_5yEW3LUzp… 2/12

Pullover
Dress
Coat
Sandal
Shirt
Sneaker
Bag
Ankleboot

See below for example visualizations of these 10 categories

Block 3

Introduction

However, imagine that you don’t care about these 10 specific categories.

Instead, you want to categorize them into more high-level groups.

For example, you may only want to sort your clothes into these more general 3 groups:

Group 1: t-shirt, shirt, pullover, and dress
Group 2: boot, sandal, ankleboot, and sneaker
Group 3: bag and trouser

26/10/2023, 12:02 Qualtrics Survey Software

https://mit.co1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_02HfTuvflYtf3DM&ContextLibraryID=UR_5yEW3LUzp… 3/12

Block 10

Your task is the following:

 Step 1: Read a description of the categories that the computer program needs to sort
items of clothing into. These categories will change for different questions, so make sure
to re-read the categories.

 Step 2: Look at visualizations of different computer programs.

 Step 3: Based on the visualizations from Step 2, select which of the programs you think
will be best able to accomplish the task described in Step 1. In general, try to select the
visualization that 1) can represent the different categories we ask for and 2) has the
fewest representations, while still having enough representations to distinguish between
categories.

On the next page, we have included an example of how to follow these steps.

Example Question

Example Question 1:

Step 1:
The categories are:

1. Group 1: T-shirt, Shirt, Pullover
2. Group 2: Purse

Step 2:
Select which of the following visualizations best reflects the categories from Step 1.

Option 1

26/10/2023, 12:02 Qualtrics Survey Software

https://mit.co1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_02HfTuvflYtf3DM&ContextLibraryID=UR_5yEW3LUzp… 4/12

Option 2

Option 3

Option 2 is best for this task because it demonstrates visualizations of the two
groupings that we care about here (distinguishing between purses and different types of
shirts) while using few representations.

Options 1 has enough representations for the two groups we care about, but it has more
representations than Option 2, so Option 2 is a better choice.

Option 3 is too simple and therefore cannot tell the two groupings apart.

Step 3 (Example 1):
Please select which option you think best represents the groupings listed:

Example Question 2:

Option 1
Option 2
Option 3

26/10/2023, 12:02 Qualtrics Survey Software

https://mit.co1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_02HfTuvflYtf3DM&ContextLibraryID=UR_5yEW3LUzp… 5/12

Step 1:
The categories are:

1. Group 1: T-shirt
2. Group 2: Pullover and Shirt
3. Group 3: Purse

Step 2:
Select which of the following visualizations best reflects the categories from Step 1.

Option 1

Option 2

Option 3

Option 1 is best for this task because it demonstrates visualizations of the three
groupings that we care about here. Because we care about distinguishing between t-
shirts and shirts (Group 1 vs. 2), we need to be able to tell t-shirts apart based on the
visualizations.

Options 2 and 3 are bad choices because they cannot tell t-shirts (Group 1) apart from
other pullovers or shirts (Group 2). Therefore, even though they use fewer representations

26/10/2023, 12:02 Qualtrics Survey Software

https://mit.co1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_02HfTuvflYtf3DM&ContextLibraryID=UR_5yEW3LUzp… 6/12

than Option 1, they are bad options.

Step 3 (Example 2):
Please select which option you think best represents the groupings listed:

Block 10

Please only participate in this study if you
are confident you understand the
instructions correctly

Block 11

Click next to begin the study
Question 1

Question:

Step 1:
The computer program needs to sort the items into the following 3 categories:

1. Group 1: T-shirt, Trouser, Sandal
2. Group 2: Pullover, Dress, Sneaker
3. Group 3: Coat, Shirt, Bag, Ankle Boot

Step 2:
Please look at the options below:

Option 1

Option 1
Option 2
Option 3

26/10/2023, 12:02 Qualtrics Survey Software

https://mit.co1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_02HfTuvflYtf3DM&ContextLibraryID=UR_5yEW3LUzp… 7/12

Option 2

Option 3

Option 4

26/10/2023, 12:02 Qualtrics Survey Software

https://mit.co1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_02HfTuvflYtf3DM&ContextLibraryID=UR_5yEW3LUzp… 8/12

Step 3:
Please select which option you think best represents the groupings listed:

Question 2

Question:

Step 1:
The computer program needs to sort the items into the following 3 categories:

1. Group 1: T-shirt, Pullover, Coat, Shirt
2. Group 2: Trouser, Dress, Bag
3. Group 3: Sandal, Sneaker, Ankle boot

Step 2:
Please look at the options below:

Option 1

Option 2

Option 1
Option 2
Option 3
Option 4

26/10/2023, 12:02 Qualtrics Survey Software

https://mit.co1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_02HfTuvflYtf3DM&ContextLibraryID=UR_5yEW3LUzp… 9/12

Option 3

Option 4

Step 3:
Please select which option you think best represents the groupings listed:

Option 1
Option 2
Option 3
Option 4

26/10/2023, 12:02 Qualtrics Survey Software

https://mit.co1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_02HfTuvflYtf3DM&ContextLibraryID=UR_5yEW3LUz… 10/12

Question 3

Question:

Step 1:
The computer program needs to sort the items into the following 10 categories:

1. T-shirt
2. Trouser
3. Pullover
4. Dress
5. Coat
6. Sandal
7. Shirt
8. Sneaker
9. Bag
10. Ankleboot

Step 2:
Please look at the options below:

Option 1

Option 2

26/10/2023, 12:02 Qualtrics Survey Software

https://mit.co1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_02HfTuvflYtf3DM&ContextLibraryID=UR_5yEW3LUz… 11/12

Option 3

Option 4

Step 3:
Please select which option you think best represents the groupings listed:

Block 9

Debrief Page

Option 1
Option 2
Option 3
Option 4

26/10/2023, 12:02 Qualtrics Survey Software

https://mit.co1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_02HfTuvflYtf3DM&ContextLibraryID=UR_5yEW3LUz… 12/12

Powered by Qualtrics

Thank you for your participation, this study was designed to evaluate people’s ability to
select the right level of abstraction for an AI to perform well at a particular task.

if you have any questions please contact ekenny@mit.edu

 Click next to finish

	Introduction
	Related Work
	Abstraction in Human Cognition
	Discrete Information Bottleneck

	Approach
	Problem Formulation and Human-in-the-loop Framework
	Technical Approach
	Neural Architecture Improvements

	Assessing Representational Complexity's Impact on Finetuning
	Domains
	Pretraining and Finetuning
	Illustrative Example: FashionMNIST
	CIFAR100 and iNat

	Human-in-the-Loop Selection of Task-Appropriate Representations
	User Study
	Results

	Contributions
	Acknowledgements
	Implementation details
	Pretraining
	Finetuning
	Hyperparameters
	FashionMNIST
	CIFAR100
	iNaturalist

	Further Finetuning Results
	FashionMNIST
	CIFAR100
	iNaturalist

	Prototype Utilization: Further Visualizations
	Ablation Study: Entropy vs. Complexity
	User Study Results
	User Study

